Retrieval of Aerosol Optical Depth over Arid Areas from MODIS Data
Abstract
:1. Introduction
2. Fundamentals and the Algorithm
2.1. Fundamentals
2.2. Inversion Algorithm
2.3. Look-Up Tables
- (1)
- Observation geometry. During satellite imaging, the geometric relationship between the sun, target, and satellite can be described by the solar zenith angle, solar azimuth, viewing zenith angle, and viewing azimuth. The sun and viewing azimuths can be described by their relative azimuths. In addition, based on a simulation of the analytical sensitivity between the angle and satellite apparent reflectance provided by the 6S model, three angle parameters were set: the solar zenith angle and viewing zenith angle were set 0°–80° with a step size of 5° and 17 parameters, and the relative azimuth angle was set from 0° to 180° with a step size of 10° and 19 parameters.
- (2)
- Atmospheric conditions. According to the geographical position of the research region and the imaging time, the atmospheric conditions in the LUT were set to those of the mid-latitudes during summer. The default values in the atmospheric model in 6S, including ozone, carbon dioxide, carbon monoxide, and nitrous oxide, were used for the atmospheric parameters.
- (3)
- Aerosol parameters. In accordance with the general range of the AOD and its inversion accuracy, the following 15 parameters were set: 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5, and 2.0. The continental mode was selected based on practical considerations.
- (4)
- Surface reflectance. By considering the land surface a Lambertian surface and by ignoring the effect of the Bidirectional Reflectance Distribution Function (BRDF), the surface reflectance ranges of the red and blue bands were between 0.0 and 0.12 and 0.0 and 0.15, respectively, and both were set to an interval of 0.01 in the LUT.
3. Data Source and Experimental Area
4. Results and Validation
4.1. Surface Reflectance
4.2. Inversion Experiments
4.3. Validation
5. Conclusions and Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Griggs, M. Measurements of atmospheric aerosol optical thickness over water using ERTS-1 data. J. Air Pollut. Control Assoc. 1975, 25, 622–626. [Google Scholar] [CrossRef] [PubMed]
- Mekler, Y.; Quenzel, H.; Ohring, G.; Marcus, I. Relative atmospheric aerosol content from ERTS observations. J. Geophys. Res. 1977, 82, 967–970. [Google Scholar] [CrossRef]
- Griggs, M. Satellite observations of atmospheric aerosols during the E0MET cruise. J. Atmos. Sci. 1979, 36, 695–698. [Google Scholar] [CrossRef]
- Nagaraja Rao, C.R.; Stowe, L.L.; McClain, E.P. Remote sensing of aerosols over the oceans using AVHRR data theory, practice and applications. Int. J. Remote Sens. 1989, 10, 743–749. [Google Scholar] [CrossRef]
- Durkee, P.A.; Pfeil, F.; Frost, E.; Shema, R. Global analysis of aerosol particle characteristics. Atmos. Environ. A Gen. Top. 1991, 25, 2457–2471. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Sendra, C. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. Int. J. Remote Sens. 1988, 9, 1357–1381. [Google Scholar] [CrossRef]
- Holben, B.; Vermote, E.; Kaufman, Y.J.; Tanré, D.; Kalb, V. Aerosol retrieval over land from AVHRR data-application for atmospheric correction. IEEE Trans. Geosci. Remote Sens. 1992, 30, 212–222. [Google Scholar] [CrossRef]
- Sun, L.; Wei, J.; Bilal, M.; Tian, X.; Jia, C.; Guo, Y.; Mi, X. Aerosol optical depth retrieval over bright areas using landsat 8 OLI images. Remote Sens. 2015, 8. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D.; Remer, L.A.; Vermote, E.F.; Chu, A.; Holben, B.N. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res. Atmos. 1997, 102, 17051–17067. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Mi, W.; Li, Z.; Xia, X.; Holben, B.; Levy, R.; Zhao, F.; Chen, H.; Cribb, M. Evaluation of the moderate resolution imaging spectroradiometer aerosol products at two aerosol robotic network stations in China. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Li, Z.; Niu, F.; Lee, K.; Xin, J.; Hao, W.; Nordgren, B.; Wang, Y.; Wang, P. Validation and understanding of moderate resolution imaging spectroradiometer aerosol products (C5) using ground-based measurements from the handheld Sun photometer network in China. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Xia, X.; Yu, Y.; Chen, D. Significantly higher global MODIS aerosol optical thickness over land. Chin. Sci. Bull. 2006, 51, 2297–2303. [Google Scholar] [CrossRef]
- Hsu, N.C.; Tsay, S.C.; King, M.D.; Herman, J.R. Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sens. 2004, 42, 557–569. [Google Scholar] [CrossRef]
- Hsu, N.C.; Jeong, M.J.; Bettenhausen, C.; Sayer, A.M.; Hansell, R.; Seftor, C.S.; Huang, J.; Tsay, S.C. Enhanced deep blue aerosol retrieval algorithm:the second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef]
- Remer, L.A.; Mattoo, S.; Levy, R.C.; Munchak, L.A. MODIS 3 km aerosol product: Algorithm and global perspective. Atmos. Meas. Tech. 2013, 6, 69–112. [Google Scholar] [CrossRef]
- Sun, L.; Sun, C.; Liu, Q.; Zhong, B. Aerosol optical depth retrieval by HJ-1/CCD supported by MODIS surface reflectance data. Sci. China Earth Sci. 2010, 53, 74–80. [Google Scholar] [CrossRef]
- Li, S.; Chen, L.; Tao, J.; Han, D.; Wang, Z.; Su, L.; Fan, M.; Yu, C. Retrieval of aerosol optical depth over bright targets in the urban areas of North China during winter. Sci. China Earth Sci. 2012, 55, 1545–1553. [Google Scholar] [CrossRef]
- Sun, L. Remote Sensing of Aerosols over Urban Areas. Ph.D. Thesis, Institute of Remote Sensing Applications Chinese Academy of Science, Beijing, China, 2006. [Google Scholar]
- Vermote, E.F.; Tanré, D.; Deuze, J.L.; Herman, M.; Morcrette, J.J. Second Simulation of a Satellite Signal in the Solar Spectrum-Vector (6SV). Available online: http://6s.ltdri.org/files/tutorial/6S_Manual_Part_1.pdf (accessed on 30 June 2015).
- Tanré, D.; Kaufman, Y.J.; Holben, B.N.; Chatenet, B.; Karnieli, A.; Lavenu, F.; Blarel, L.; Dubovik, O.; Remer, L.A.; Smirnov, A. Climatology of dust aerosol size distribution and optical properties derived from remotely sensed data in the solar spectrum. J. Geophys. Res. 2001, 106, 18205–18217. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.J.; Holben, B.N. The size distribution of ambient aerosol particles: Smoke vs. urban/industrial aerosol. In Biomass Burning and Global Change; Levine, J.S., Ed.; MIT Press: Cambridge, MA, USA, 1996; pp. 519–530. [Google Scholar]
- Mishchenko, M.I.; Travis, L.D. Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observation. Appl. Opt. 1994, 33, 7206–7225. [Google Scholar] [CrossRef] [PubMed]
- Bodhaine, B.A.; Wood, N.B.; Dutton, E.G.; Slusser, J.R. On Rayleigh optical depth calculations. J. Atmos. Ocean. Technol. 1999, 16, 1854–1861. [Google Scholar] [CrossRef]
- Bucholtz, A. Rayleigh-scattering calculations for the terrestrial atmosphere. Appl. Opt. 1995, 34, 2765–2773. [Google Scholar] [CrossRef] [PubMed]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovik, O.; Smirnov, A.; O’Neill, N.T.; Slutsker, I.; Kinne, S. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. 1999, 104, 31333–31349. [Google Scholar] [CrossRef]
- Knobelspiesse, K.D.; Pietras, C.; Fargion, G.S.; Wang, M.; Frouin, R.; Miller, M.A.; Subramaniam, A.; Balch, W.M. Maritime aerosol optical thickness measured by handheld sun photometers. Remote Sens. Environ. 2004, 93, 87–106. [Google Scholar] [CrossRef]
- Ångström, A. The parameters of atmospheric turbidity. Tellus 1964, 16, 64–75. [Google Scholar] [CrossRef]
- Pan, L.; Che, H.; Geng, F.; Xia, X.; Wang, Y.; Zhu, C.; Chen, M.; Gao, W.; Guo, J. Aerosol optical properties based on ground measurements over the Chinese Yangtze Delta Region. Atmos. Environ. 2010, 44, 2587–2596. [Google Scholar] [CrossRef]
- Sayer, A.M.; Thomas, G.E.; Grainger, R.G.; Carboni, E.; Poulesen, R.S. Use of MODIS-derived surface reflectance data in the ORAC-AATSR aerosol retrieval algorithm: Impact of differences between sensor spectral response functions. Remote Sens. Environ. 2012, 116, 177–188. [Google Scholar] [CrossRef]
- Adames, A.F.; Reynolds, M.; Smirnov, A.; Covert, D.S.; Ackerman, T.P. Comparison of moderate resolution imaging spectroradiometer ocean aerosol retrievals with ship-based sun photometer measurements from the around the americas expedition. J. Geophys Res. 2011, 116. [Google Scholar] [CrossRef]
- Jacovides, C.P.; Kaltsounides, N.A.; Asimakopoulos, D.N.; Kaskaoutis, D.G. Spectral aerosol optical depth and Angstrom parameters in the polluted Athens atmosphere. Theor. Appl. Climatol. 2005, 81, 161–167. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef]
- Chu, D.A.; Kaufman, Y.J.; Ichoku, C.; Remer, L.A.; Tanré, D.; Holben, B.N.; Einaudi, F. Validation of MODIS aerosol optical depth retrieval over land. Geophys. Res. Lett. 2002, 29, 1617–1621. [Google Scholar] [CrossRef]
- Ichoku, C.; Kaufman, Y.J.; Remer, L.A.; Levy, R. Global aerosol remote sensing from MODIS. Adv. Space Res. 2004, 34, 820–827. [Google Scholar] [CrossRef]
- Tang, J.; Ma, X.; Teng, W.; Yan, J.; Wu, W.; Dai, J.; Li, J.; Tang, J.; Ma, X.; Teng, W.; et al. Detection of quantitative trait loci and heterotic loci for plant height using an immortalized F2 population in maize. Chin. Sci. Bull. 2007, 52, 477–483. [Google Scholar] [CrossRef]
CE318 | Microtops II | ||||
---|---|---|---|---|---|
Channel | Central Wavelength (nm) | Band Width (nm) | Channel | Central Wavelength (nm) | Band Width (nm) |
1 | 340 | 2 | 1 | 380 | 4 |
2 | 380 | 2 | 2 | 500 | 10 |
3 | 440 | 10 | 3 | 870 | 10 |
4 | 500 | 10 | 4 | 936 | 10 |
5 | 670 | 10 | 5 | 1020 | 10 |
6 | 870 | 10 | |||
7 | 1020 | 10 | |||
8 | 1640 | 60 |
Site | Observation Number | Average Absolute Error | Relative Error (%) | Correlation Coefficient (R2) | Proportion within Error Bars (%) |
---|---|---|---|---|---|
Dahuangshan | 24 | 0.60 | 24.02 | 0.90 | 83.33 |
Wucaiwan | 21 | 0.60 | 19.36 | 0.85 | 76.19 |
Total | 45 | 0.60 | 21.85 | 0.84 | 82.22 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, X.-p.; Sun, L. Retrieval of Aerosol Optical Depth over Arid Areas from MODIS Data. Atmosphere 2016, 7, 134. https://doi.org/10.3390/atmos7100134
Tian X-p, Sun L. Retrieval of Aerosol Optical Depth over Arid Areas from MODIS Data. Atmosphere. 2016; 7(10):134. https://doi.org/10.3390/atmos7100134
Chicago/Turabian StyleTian, Xin-peng, and Lin Sun. 2016. "Retrieval of Aerosol Optical Depth over Arid Areas from MODIS Data" Atmosphere 7, no. 10: 134. https://doi.org/10.3390/atmos7100134
APA StyleTian, X. -p., & Sun, L. (2016). Retrieval of Aerosol Optical Depth over Arid Areas from MODIS Data. Atmosphere, 7(10), 134. https://doi.org/10.3390/atmos7100134