Cloud Properties under Different Synoptic Circulations: Comparison of Radiosonde and Ground-Based Active Remote Sensing Measurements
Abstract
:1. Introduction
2. Method and Data
2.1. Radiosonde-Based Cloud Detection Algorithm and Products
2.2. ARSCL Products
2.3. Synoptic Patterns Algorithm and Products
3. Comparison of Cloud Retrievals from Radiosonde and ARSCL in Different Synoptic Patterns
3.1. Total Cloud Cover
3.2. Vertical Cloud Fraction
3.3. Collocation of Cloud Boundaries
3.4. Vertical Distributions of Cloud-Base Height, Cloud-Top Height and Cloud Thickness
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ramanathan, V.; Cess, R.D.; Harrison, E.F.; Minnis, P.; Barkstrom, B.R.; Ahmad, E.; Hartmann, D. Cloud-radiative forcing and climate: Results from the earth radiation budget experiment. Science 1989, 243, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Kalesse, H.; Kollias, P. Climatology of high clouds dynamics using profiling ARM Doppler radar observations. J. Clim. 2013, 26, 6340–6359. [Google Scholar] [CrossRef]
- Sherwood, S.C.; Bony, S.; Dufresne, J.L. Spread in model climate sensitivity traced to atmospheric convective mixing. Nature 2014, 505, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, H.; Xia, X.; Wang, W.C. Dynamic and thermodynamic features of low and middle clouds derived from Atmospheric Radiation Measurement Program mobile facility radiosonde data at Shouxian, China. Adv. Atmos. Sci. 2016, 33, 21–33. [Google Scholar] [CrossRef]
- Stephens, G. Cloud feedbacks in the climate system: A critical review. J. Clim. 2005, 18, 237–273. [Google Scholar] [CrossRef]
- Thorsen, T.J.; Fu, Q.; Comstock, J.M.; Sivaraman, C.; Vaughan, M.A.; Winker, D.M.; Turner, D.D. Macrophysical properties of tropical cirrus clouds from the CALIPSO satellite and from ground-based micropulse and Raman lidars. J. Geophys. Res. 2013, 118, 9209–9220. [Google Scholar] [CrossRef]
- Protat, A.; Young, S.A.; McFarlane, S.; L’Ecuyer, T.; Mace, G.G.; Comstock, J.; Long, J.C.; Berry, E.; Delanoë, J. Reconciling ground-based and space-based estimates of the frequency of occurrence and radiative effect of clouds around Darwin, Australia. J. Appl. Meteor. Clim. 2014, 53, 456–478. [Google Scholar] [CrossRef]
- Dolinar, E.; Dong, X.; Xi, B.; Jiang, J.H.; Sui, H. Evaluation of CMIP5 simulated clouds and TOA radiation budgets using NASA satellite observations. Clim. Dyn. 2015, 44, 229–2247. [Google Scholar] [CrossRef]
- Clothiaux, E.E.; Ackerman, T.P.; Mace, G.G.; Moran, K.P.; Marchand, R.T.; Miller, M.A.; Martner, B.E. Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. App. Meteorol. 2000, 39, 645–665. [Google Scholar] [CrossRef]
- Kollias, P.; Tselioudis, G.; Albrecht, B.A. Cloud climatology at the Southern Great Plains and the layer structure, drizzle, and atmospheric modes of continental stratus. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Xi, B.; Dong, X.; Minnis, P.; Khaiyer, M.M. A 10 year climatology of cloud fraction and vertical distribution derived from both surface and GOES observations over the DOE ARM SGP Site. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Qian, Y.; Long, C.N.; Wang, H.; Comstock, J.M.; McFarlane, S.A.; Xie, S. Evaluation of cloud fraction and its radiative effect simulated by IPCC AR4 global models against ARM surface observations. Atmos. Chem. Phys. 2012, 12. [Google Scholar] [CrossRef]
- Yoo, H.; Li, Z.; Hou, Y.; Lord, S.; Weng, F.; Barker, H. Diagnosis and testing of low-level cloud parameterizations for the NCEP/GFS model satellite and ground-based measurements. Clim. Dyn. 2013, 41, 1595–1613. [Google Scholar] [CrossRef]
- Chernykh, I.V.; Eskridge, R.E. Determination of cloud amount and level from radiosonde soundings. J. App. Meteorol. 1996, 35, 1362–1369. [Google Scholar] [CrossRef]
- Wang, J.; Rossow, W.B.; Uttal, T.; Rozendaal, M. Variability of cloud vertical structure during ASTEX observed from a combination of rawinsonde, radar, ceilometer, and satellite. Mon. Weather Rev. 1999, 127, 2482–2502. [Google Scholar] [CrossRef]
- Wang, J.; Rossow, W.B.; Zhang, Y. Cloud vertical structure and its variations from a 20-year global rawinsonde dataset. J. Clim. 2000, 13, 3041–3056. [Google Scholar] [CrossRef]
- Chernykh, I.V.; Alduchov, O.A.; Eskridge, R.E. Trends in low and high cloud boundaries and errors in height determination of cloud boundaries. Bull. Am. Meteorol. Soc. 2000, 82, 1941–1947. [Google Scholar] [CrossRef]
- Naud, C.; Muller, J.P.; Clothiaux, E.E. Comparison between active sensor and radiosonde cloud boundaries over the ARM Southern Great Plains site. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Minnis, P.; Yi, Y.; Huang, J.; Ayers, J. Relationships between radiosonde and RUC-2 meteorological conditions and cloud occurrence determined from ARM data. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Fan, X.; Chen, H.; Xia, X.; Li, Z.; Cribb, M. Aerosol optical properties from the Atmospheric Radiation Measurement Mobile Facility at Shouxian, China. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Li, Z.; Li, C.; Chen, H.; Tsay, S.C.; Holben, B.N.; Huang, J.; Li, B.; Maring, H.; Qian, Y.; Shi, G.; et al. East Asian studies of tropospheric aerosols and their impact on regional climate (EAST-AIRC): An overview. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Li, Z.; Fan, X.; Peng, L.; Yu, Y.; Cribb, M. Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud radar. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Wang, J.; Rossow, W.B. Determination of cloud vertical structure from upper air observations. J. Appl. Meteorol. 1995, 34, 2243–2258. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Chen, H.; Cribb, M. Validation of a radiosonde-based cloud layer detection method against a ground-based remote sensing method at multiple ARM sites. J. Geophys. Res. 2013, 118, 846–858. [Google Scholar] [CrossRef]
- Costa-Surós, M.; Calbó, J.; González, J.A.; Long, C.N. Comparing the cloud vertical structure derived from several methods based on radiosonde profiles and ground-based remote sensing measurements. Atmos. Meas. Techol. 2014, 7, 2757–2773. [Google Scholar] [CrossRef] [Green Version]
- Gordon, N.D.; Norris, J.R.; Weaver, C.P.; Klein, S.A. Cluster analysis of cloud regimes and characteristic dynamics of midlatitude synoptic systems in observations and a model. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Marchand, R.; Beagley, N.; Thompson, S.; Ackerman, T.; Schultz, D. A bootstrap technique for testing the relationship between local-scale radar observations of cloud occurrence and large-scale atmospheric fields. J. Atmos. Sci. 2006, 63, 2813–2830. [Google Scholar] [CrossRef]
- Marchand, R.; Beagley, N.; Ackerman, T. Evaluation of hydrometeor occurrence profiles in the Multiscale Modeling Framework climate model using atmospheric classification. J. Clim. 2009, 22, 4557–4573. [Google Scholar] [CrossRef]
- Bailey, A.; Chase, T.N.; Cassano, J.J.; Noone, D. Changing temperature inversion characteristics in the U.S. Southwest and relationships to large-scale atmospheric circulation. J. Appl. Meteorol. Climatol. 2011, 50, 1307–1323. [Google Scholar] [CrossRef]
- Evans, S.M.; Marchand, R.T.; Ackerman, T.P.; Beagley, N. Identification and analysis of atmospheric states and associated cloud properties for Darwin, Australia. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Scott, R.C.; Lubin, D. Mixed-phase cloud radiative properties over Ross Island, Antarctica: The influence of various synoptic-scale atmospheric circulation regimes. J. Geophys. Res. 2014, 119, 6702–6723. [Google Scholar] [CrossRef]
- Kennedy, A.; Dong, X.; Xi, B. Cloud Fraction at the ARM SGP Site. Reducing uncertainty with Self Organizing Maps. Theor. Appl. Climatol. 2015, 124, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Moran, K.P.; Martner, B.E.; Post, M.J.; Kropfli, R.A.; Welsh, D.C.; Widener, K.B. An unattended cloud-profiling radar for use in climate research. Bull. Am. Meteorol. Soc. 1998, 79, 443–455. [Google Scholar] [CrossRef]
- Clothiaux, E.E.; Moran, K.P.; Martner, B.E.; Ackerman, T.P.; Mace, G.G.; Uttal, T.; Mather, J.H.; Widener, K.B.; Miller, M.A.; Rodriguez, D.J. The Atmospheric Radiation Measurement Program cloud radars: Operational modes. J. Atmos. Ocean. Technol. 1999, 16, 819–827. [Google Scholar] [CrossRef]
- Clothiaux, E.E.; Mace, G.G.; Ackerman, T.P.; Kane, T.J.; Spinhirne, J.; Scott, V.S. An automated algorithm for detection of hydrometeor returns in mico pulse lidar data. J. Atmos. Ocean. Technol. 1998, 15, 1035–1042. [Google Scholar] [CrossRef]
- Dupont, J.C.; Haefflein, M.; Morille, Y.; Comstock, J.M.; Flynn, C.; Long, C.N.; Sivaraman, C.; Newson, R.K. Cloud properties derived from two lidars over the ARM SGP site. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Hogan, R.J.; Francis, P.N.; Flentje, H.; Illingworth, A.J.; Quante, M.; Pelon, J. Characteristics of mixed-phase clouds. I: Lidar, radar and aircraft observations from CLARE’98. Q. J. R. Meteorol. Soc. 2003, 129, 2089–2116. [Google Scholar] [CrossRef]
- Clothiaux, E.E.; Miller, M.A.; Perez, R.C.; Turner, D.D.; Moran, K.P.; Martner, B.E.; Ackerman, T.P.; Widener, K.B.; Rodriguez, D.J.; Uttal, T.; et al. The ARM Millimeter Wave Cloud Radars (MMCRs) and the Active Remote Sensing of Clouds (ARSCL) Value Added Product (VAP). DOE Tech. Memo. ARM VAP-002.1; U.S. Department of Energy: Washington, DC, USA, 2001. Available online: http://web.gps.caltech.edu/~drf/thumb/df_papers/clothiaux_2001_mmcr_arscl.pdf (accessed on 20 March 2016). [Google Scholar]
- Kennedy, A.; Dong, X.; Xi, B. Cloud fraction at the ARM SGP site Instrument and sampling considerations from 14 years of ARSCL. Theor. Appl. Climatol. 2014, 115, 91–105. [Google Scholar] [CrossRef]
- Li, J.; Chen, H.B.; Li, Z.Q.; Wang, C.P.; Cribb, M.; Fan, X.H. Low-level temperature inversions and their effect on aerosol condensation nuclei concentrations under different large-scale synoptic circulations. Adv. Atmos. Sci. 2015, 32, 898–908. [Google Scholar] [CrossRef]
- Huth, R.; Beck, C.; Philipp, A.; Demuzere, M.; Ustrnul, Z.; Cahynov, M.; Kysely, J.; Tveito, O.E. Classifications of atmospheric circulation patterns recent advances and applications. In Trends and Directions in Climate Research; Gimeno, L., Garcia-Herrera, R., Trigo, R.M., Eds.; Blackwell Publishing: Oxford, UK, 2008; pp. 105–152. [Google Scholar]
- Kohonen, T. The self-organizing map. Neurocomputing 1998, 21, 1–6. [Google Scholar] [CrossRef]
- Hewitson, B.C.; Crane, R.G. Self-organizing maps: Applications to synoptic climatology. Clim. Res. 2002, 22, 13–26. [Google Scholar] [CrossRef]
- Dong, X.; Xi, B.; Minnis, P. A climatology of mid-latitude continental clouds from the ARM SGP central facility. Part II: Cloud fraction and surface radiative forcing. J. Clim. 2006, 19, 1765–1783. [Google Scholar] [CrossRef]
- Zhang, Y.; Klein, S.A. Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations of the diurnal cycle collected at the ARM Southern Great Plains site. J. Atmos. Sci. 2010, 67, 2943–2959. [Google Scholar] [CrossRef]
Patterns | Bias | StdDev | R | OC0.5 km |
---|---|---|---|---|
CC | 0.16 | 1.40 | 0.93 | 90% |
WP | 0.00 | 1.49 | 0.93 | 86% |
CB | 0.01 | 1.13 | 0.95 | 88% |
CF | 0.26 | 1.60 | 0.90 | 84% |
AE | 0.15 | 1.63 | 0.90 | 85% |
AC | −0.13 | 1.56 | 0.90 | 80% |
Patterns | Bias | StdDev | R | OC0.5 km |
---|---|---|---|---|
CC | 0.32 | 1.71 | 0.92 | 83% |
WP | 0.16 | 1.67 | 0.92 | 77% |
CB | 0.10 | 1.25 | 0.95 | 82% |
CF | 0.47 | 1.92 | 0.89 | 76% |
AE | 0.35 | 1.81 | 0.90 | 76% |
AC | 0.01 | 1.68 | 0.90 | 76% |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Li, J.; Xia, X.; Chen, H.; Ling, C. Cloud Properties under Different Synoptic Circulations: Comparison of Radiosonde and Ground-Based Active Remote Sensing Measurements. Atmosphere 2016, 7, 154. https://doi.org/10.3390/atmos7120154
Zhang J, Li J, Xia X, Chen H, Ling C. Cloud Properties under Different Synoptic Circulations: Comparison of Radiosonde and Ground-Based Active Remote Sensing Measurements. Atmosphere. 2016; 7(12):154. https://doi.org/10.3390/atmos7120154
Chicago/Turabian StyleZhang, Jinqiang, Jun Li, Xiangao Xia, Hongbin Chen, and Chao Ling. 2016. "Cloud Properties under Different Synoptic Circulations: Comparison of Radiosonde and Ground-Based Active Remote Sensing Measurements" Atmosphere 7, no. 12: 154. https://doi.org/10.3390/atmos7120154
APA StyleZhang, J., Li, J., Xia, X., Chen, H., & Ling, C. (2016). Cloud Properties under Different Synoptic Circulations: Comparison of Radiosonde and Ground-Based Active Remote Sensing Measurements. Atmosphere, 7(12), 154. https://doi.org/10.3390/atmos7120154