Carbon Sequestration and Carbon Markets for Tree-Based Intercropping Systems in Southern Quebec, Canada
Abstract
:1. Introduction
2. Results and Discussion
2.1. Carbon Sequestration
St. Edouard | Cl | Ccs | Ccr | C Soil (0–30 cm) | C Tree-h (Clb + Cw) | C Tree-h (Ctr) | C Tree-p (Clb + Cw) | C Tree-p (Ctr) | C Sequestration |
TBI | 0.62 | 1.44 | 0.36 | 159.90 | 13.22 | 3.79 | 56.09 | 11.80 | 244.35 |
non-TBI | 0.67 | 2.02 | 0.50 | 167.90 | NA | NA | NA | NA | 167.05 |
St. Paulin | Cl | Ccs | Ccr | C Soil (0–30 cm) | C Tree-h (Clb + Cw) | C Tree-h (Ctr) | C Tree-p (Clb + Cw) | C Tree-p (Ctr) | C Sequestration |
TBI | 0.41 | 1.10 | 0.66 | 148.50 | 3.61 | 1.04 | 26.38 | 5.55 | 185.07 |
non-TBI | 0.20 | 1.30 | 0.78 | 131.90 | NA | NA | NA | NA | 131.58 |
2.2. Financial Benefits of C Sequestration
Experimental Site | Discount Rate | Net Present Value (CAD ha−1) |
---|---|---|
St. Edouard | 2% | 2259 |
4% | 2490 | |
6% | 2758 | |
St. Paulin | 2% | 1568 |
4% | 1728 | |
6% | 1913 |
3. Experimental Section
3.1. Site Description and Experimental Design
3.2. Field Operations for St. Paulin
3.3. Field Operations for St. Edouard
3.4. Soil Sampling for C and CO2-C Analyses
3.5. Above- and Below-Ground Biomass and Crop C Content
Species | S:R | References |
---|---|---|
Fagopyrum esculentum Moench | 0.17 ± 0.58 a | [30,31] |
Forages (Eastern Canada) | 1.80 ± 1.10 | [28] |
Populus spp. | 5.42 ± 1.53 | [32,33] |
Quercus spp. | 1.20 ± 1.88 | [33,34] |
Prunus serotina | 0.78 ± 0.55 b | [35,36] |
Fraxinus Americana | 4.15 ± 3.35 c | [37,38] |
3.6. Litterfall
3.7. Estimation of Biomass and C Content for Tree Components
- (1)
- (2)
- The estimated C content for trees was based on a literature value, 50% of the total tree biomass content, following Smith et al. [41] and IPCC Guidelines [29]. This value was appropriate because foliage from the canopy of the tree species in our TBI systems contained 46%–54% C content. Foliage for C analysis was sampled from three trees in the middle of each row by taking the third branch below the top of the tree was selected on three sides of the tree. Then 10–15 leaves with petioles were collected from the top, middle, and bottom of each tree branch. Leaves were then dried, ground and analyzed for C content with a ThermoFinnigan Flash EA 1112 CN analyzer.
3.8. Estimated C Sequestration for the TBI and the Non-TBI Systems
3.9. Potential C Payment of the TBI Systems
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Schoeneberger, M.; Bentrup, G.; de Gooijer, H.; Soolanayakanahally, R.; Sauer, T.; Brandle, J.; Zhou, X.; Current, D. Branching out: Agroforestry as a climate change mitigation and adaptation tool for agriculture. J. Soil Water Conserv. 2012, 67, 128–136. [Google Scholar] [CrossRef]
- Smith, J.; Pearce, B.D.; Wolfe, M.S. Reconciling productivity with protection of the environment: Is temperate agroforestry the answer? Renew. Agric. Food Syst. 2013, 28, 80–92. [Google Scholar] [CrossRef]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B 2008, 363, 789–813. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, K.; Lal, R. Soil organic carbon sequestration in agroforestry systems. A review. Agron. Sustain. Dev. 2014, 34, 443–454. [Google Scholar] [CrossRef]
- Peichl, M.; Thevathasan, N.V.; Gordon, A.M.; Huss, J.; Abohassan, R.A. Carbon sequestration potentials in temperate tree-based intercropping systems, southern Ontario, Canada. Agrofor. Syst. 2006, 66, 243–257. [Google Scholar] [CrossRef]
- Graves, A.R.; Burgess, P.J.; Palma, J.H.N.; Herzog, F.; Moreno, G.; Bertomeu, M.; Dupraz, C.; Liagre, F.; Keesman, K.; van der Werf, W.; et al. Development and application of bio-economic modeling to compare silvoarable, arable, and forestry systems in three European countries. Ecol. Eng. 2007, 29, 434–449. [Google Scholar] [CrossRef] [Green Version]
- Udawatta, R.P.; Jose, S. Carbon sequestration potential of agroforestry practices in temperate North America. In Carbon Sequestration Potential of Agroforestry Systems: Opportunities and Challenges; Kumar, B., Nair, P.K.R., Eds.; Advances in Agroforestry; Springer: New York, NY, USA, 2011; Volume 8, pp. 17–42. [Google Scholar]
- Alam, M.; Olivier, A.; Paquette, A.; Dupras, J.; Revéret, J.P.; Messier, C. A general framework for the quantification and valuation of ecosystem services of tree-based intercropping systems. Agrofor. Syst. 2014, 88, 679–691. [Google Scholar] [CrossRef]
- Salvail, M.C. Liaison des Marchés du Carbone Québec-Californie: L’assemblée Nationale Donne le Feu Vert. 2013. Available online: http://www.mddelcc.gouv.qc.ca/infuseur/communique.asp?no=2701 (accessed on 1 October 2014). [Google Scholar]
- Scott, S. Carbon Pricing Options for Canada. Can. Public Policy 2013, 39, S109–S124. [Google Scholar] [CrossRef]
- Government of Quebec. The Carbon Market: The Québec Cap and Trade System for Greenhouse Gas Emissions Allowances. Available online: http://www.mddelcc.gouv.qc.ca/changements/carbone/Systeme-plafonnement-droits-GES-en.htm (accessed on 1 October 2014).
- Yemshanov, D.; McKenney, D.W.; Hatton, T.; Fox, G. Investment attractiveness of afforestation in Canada inclusive of carbon sequestration benefits. Can. J. Agric. Econ. 2005, 53, 307–323. [Google Scholar] [CrossRef]
- Peng, X.; Thevathasan, N.V.; Gordon, A.M.; Mohammed, I.; Gao, P. Photosynthetic response of soybean to microclimate in 26-year-old tree-based intercropping systems in southern Ontario, Canada. PLoS ONE 2015, 10, e0129467. [Google Scholar] [CrossRef] [PubMed]
- Pacaldo, R.S.; Volk, T.A.; Briggs, R.D. No differences in soil organic carbon in short rotation willow (Salix x dasyclados) along a 19-year chronosequence. Biomass Bioenergy 2013, 58, 136–142. [Google Scholar] [CrossRef]
- Bambrick, A.; Whalen, J.; Bradley, R.; Cogliastro, A.; Gordon, A.; Olivier, A.; Thevathasan, N. Spatial heterogeneity of soil organic carbon in tree-based intercropping systems in Quebec and Ontario, Canada. Agrofor. Syst. 2010, 79, 343–353. [Google Scholar] [CrossRef]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta analysis. Glob. Chang. Biol. 2002. [Google Scholar] [CrossRef]
- Carbone, M.S.; Czimczik, C.I.; McDuffee, K.E.; Trumbore, S.E. Allocation and residence time of photosynthestic products in a boreal forest using a low-level 14C pulse-chase labeling technique. Glob. Chang. Biol. 2007, 13, 1–12. [Google Scholar] [CrossRef]
- Watson, R.T.; Noble, I.R.; Bolin, B.; Ravindranath, N.H.; Verardo, D.J.; Dokken, D.J. Land Use, Land-Use Change and Forestry: A Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Centre de Référence en Agriculture et Agroalimentaire du Québec (CRAAQ). Guide de Référence en Fertilisation, 2nd ed.; Centre de Référence en Agriculture et Agroalimentaire du Québec: St-Foy, QC, Canada, 2010. [Google Scholar]
- Toor, I.A.; Smith, E.C.; Whalen, J.K.; Naseem, A. Tree-based intercropping in southern Ontario, Canada. Can. J. Agric. Econ. 2012, 60, 141–154. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, S.; Huntzinger, D.; Michalak, A.; Viovy, N.; Post, W.; Schwalm, C.; Schaefer, K.; Jacobson, A.; Lu, C.; et al. The North American carbon program multi-scale synthesis and terrestrial model intercomparison project—Part 2: Environmental driver data. Geosci. Model Dev. Discuss. 2013, 6, 5375–5422. [Google Scholar] [CrossRef]
- Government of Canada. Available online: http://climate.weather.gc.ca (accessed on 1 October 2014).
- Soil Classification Working Group. The Canadian System of Soil Classification, 3rd ed.; NRC Research Press: Ottawa, ON, Canada, 1998. [Google Scholar]
- Winans, K.; Whalen, J.; Coglisatro, A.; Rivest, D.; Ribaudo, L. Soil carbon stocks in two hybrid poplar-hay crop systems in southern Quebec, Canada. Forests 2014, 5, 1952–1966. [Google Scholar] [CrossRef]
- Livingston, G.P.; Hutchinson, G.L. Enclosure-based measurement of trace gas exchange: Applications and sources of error. In Methods in Ecology. Biogenic trace Gases: Measuring Emissions from Soil and Water; Matson, P.A., Harriss, R.C., Eds.; Blackwell Science: Malden, MA, USA, 1995; pp. 14–51. [Google Scholar]
- Parkin, T.B.; Kaspar, T.C. Temperature controls on diurnal carbon dioxide flux. Soil Sci. Soc. Am. J. 2003, 67, 1763–1772. [Google Scholar] [CrossRef]
- Schenk, H.J.; Jackson, R.B. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J. Ecol. 2002, 90, 480–494. [Google Scholar] [CrossRef]
- Bolinder, M.; Janzen, H.; Gregorich, E.; Angers, D.; Vanden Bygaart, A.J. An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agric. Ecosyst. Environ. 2007, 118, 29–42. [Google Scholar] [CrossRef]
- Pipatti, R.; Wagner, J.; Alves, S.; Gao, Q.; Cabrera, C.; Mareckova, K.; Yamada, M. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Washington, DC, USA, 2006. [Google Scholar]
- Abe, T.; Fukami, M.; Ogasawara, M. Cadmium accumulation in the shoots and roots of 93 weed species. Soil Sci. Plant Nutr. 2008, 54, 566–573. [Google Scholar] [CrossRef]
- Murakami, T.; Murayama, S.; Uchitsu, M.; Yoshida, S. Root length and distribution of field-grown buckwheat (Fagopyrum esculentum Moench). Soil Sci. Plant Nutr. 2002, 48, 609–613. [Google Scholar] [CrossRef]
- Fortier, J.; Truax, B.; Gagnon, D.; Lambert, F. Plastic Allometry in Coarse Root Biomass of Mature Hybrid Poplar Plantations. BioEnergy Res. 2015, 8, 1691–1704. [Google Scholar] [CrossRef]
- Kimmins, J.P.; Binkley, D.; Chatarpaul, L.; de Catanzaro, J. Biogeochemistry of Temperate Forest Ecosystems: Literature on Inventories and Dynamics of Biomass and Nutrients; Information Report PI-X-47; Canadian Forestry Service, Petawawa National Forestry Institute: Chalk River, ON, Canda, 1985; p. 227. [Google Scholar]
- Jensen, A.M.; Löf, M.; Gardiner, E.S. Effects of above-and below-ground competition from shrubs on photosynthesis, transpiration and growth in Quercus robur L. seedlings. Environ. Exp. Bot. 2011, 71, 367–375. [Google Scholar] [CrossRef]
- Rieger, M.; Duemmel, M.J. Comparison of drought resistance among Prunus species from divergent habitats. Tree Physiol. 1992, 11, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, K.W. Effects of shading on growth and development of northern red oak, black oak, black cherry, and red maple seedlings, I. Height, diameter, and root/shoot ratio. In Proceedings of the Central Hardwood Forest Conference, Urbana, IL, USA, 15–17 April 1985.
- Ilarioni, L.; Nasini, L.; Brunori, A.; Proietti, P. Experimental measurement of the biomass of olea europaea L. Afr. J. Biotechnol. 2013, 12, 1216–1222. [Google Scholar]
- Kerr, G.; Cahalan, C. A review of site factors affecting the early growth of ash (Fraxinus excelsior L.). For. Ecol. Manag. 2004, 188, 225–234. [Google Scholar]
- Lambert, M.C.; Ung, C.H.; Raulier, F. Canadian national tree aboveground biomass equations. Can. J. For. Res. 2005, 35, 1996–2018. [Google Scholar] [CrossRef]
- Borden, K.A.; Isaac, M.E.; Thevathasan, N.V.; Gordon, A.M.; Thomas, S.C. Estimating coarse root biomass with ground penetrating radar in a tree-based intercropping system. Agrofor. Syst. 2014, 88, 657–669. [Google Scholar] [CrossRef]
- Smith, K.; Coyea, M.; Munson, A. Soil carbon, nitrogen, and phosphorus stocks and dynamics under disturbed black spruce forests. Ecol. Appl. 2000, 10, 775–788. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winans, K.S.; Whalen, J.K.; Rivest, D.; Cogliastro, A.; Bradley, R.L. Carbon Sequestration and Carbon Markets for Tree-Based Intercropping Systems in Southern Quebec, Canada. Atmosphere 2016, 7, 17. https://doi.org/10.3390/atmos7020017
Winans KS, Whalen JK, Rivest D, Cogliastro A, Bradley RL. Carbon Sequestration and Carbon Markets for Tree-Based Intercropping Systems in Southern Quebec, Canada. Atmosphere. 2016; 7(2):17. https://doi.org/10.3390/atmos7020017
Chicago/Turabian StyleWinans, Kiara S., Joann K. Whalen, David Rivest, Alain Cogliastro, and Robert L. Bradley. 2016. "Carbon Sequestration and Carbon Markets for Tree-Based Intercropping Systems in Southern Quebec, Canada" Atmosphere 7, no. 2: 17. https://doi.org/10.3390/atmos7020017
APA StyleWinans, K. S., Whalen, J. K., Rivest, D., Cogliastro, A., & Bradley, R. L. (2016). Carbon Sequestration and Carbon Markets for Tree-Based Intercropping Systems in Southern Quebec, Canada. Atmosphere, 7(2), 17. https://doi.org/10.3390/atmos7020017