Decreasing Aerosol Loading in the North American Monsoon Region
Abstract
:1. Introduction
2. Methodology
2.1. Satellite Products
Instrument and Dataset | Resolution | Relevance to Study (Main Product Reference) |
---|---|---|
NASA Terra and Aqua L3 MODIS Aerosol Optical Depth (AOD) 550 nm | 1° × 1° | aerosol loading (Levy et al., 2007 [29]) |
NASA Terra L3 MODIS Fire Radiative Power (FRP) and fire counts | 1° × 1° | fire sources (Wooster et al., 2005 [36]) |
NASA Terra L3 MODIS Normalized Vegetation Index (NDVI) | 0.05° × 0.05° | biogenic and dust sources (Lunetta et al., 2006 [38]) |
NASA OMI L2G UV Aerosol Index (AI) 354 nm | 0.25° × 0.25° | aerosol cluster identification (Torres et al., 2007 [39]) |
NASA MOPITT L3 TIR/NIR Total Column CO | 1° × 1° | combustion sources (Deeter et al., 2012 [41]) |
NASA TRMM Best Estimate Precipitation Rate (BEPR) | 0.25° × 0.25° | aerosol removal (Huffman et al., 2007 [40]) |
UMBC Anthropogenic Biomes V2 (2000) (ecotope.org) | 0.083° × 0.083° | aerosol cluster identification (Ellis et al., 2010 [45]) |
NASA SEDAC Global Rural Urban Mapping Project version 1 (GRUMPv1) Population Density (sedac.ciesin.columbia.edu) | 1 km × 1 km | aerosol cluster identification (Balk et al., 2009 [43]) |
2.1.1. MODIS
2.1.2. Ozone Monitoring Instrument (OMI) Ultraviolet Aerosol Index (UV AI)
2.1.3. Tropical Rainfall Measuring Mission (TRMM) Precipitation Rate
2.1.4. Measurements of Pollution in the Troposphere (MOPITT) Carbon Monoxide (CO)
2.2. Ancillary Datasets
2.3. Data Analysis
Site No. | Site Name | Latitude (deg N) | Longitude (deg W) | Aerosol Cluster |
---|---|---|---|---|
1 | Mt. Whitney, CA | 36.557 | 118.50 | Fire |
2 | Charleston Peak, CA | 36.29 | 115.69 | Fire |
3 | Tucson, AZ | 32.22 | 110.93 | NAM alley |
4 | Baja, CA | 30.98 | 115.38 | NAM alley |
5 | Phoenix, AZ | 33.45 | 112.08 | NAM alley |
6 | Yuma, AZ | 32.69 | 114.63 | Dust |
7 | LA County, CA | 34.35 | 118.37 | Anthro |
8 | Bakersfield, CA | 35.37 | 119.02 | Anthro |
9 | Prescott, AZ | 34.54 | 112.46 | Fire |
10 | Petrified Forest, AZ | 34.41 | 110.65 | NAM alley |
11 | White Mountain, NM | 33.41 | 105.74 | Fire |
12 | Farmington, NM | 36.73 | 108.22 | Dust |
13 | Albuquerque, NM | 35.01 | 106.61 | Dust |
14 | Ejido El Vergel, Mex | 31.20 | 106.59 | Dust |
15 | Chihuahuan Desert, Mex | 29.52 | 105.48 | Dust |
16 | Hermosillo, Mex | 29.07 | 110.97 | NAM alley |
17 | Sierra Madre Occidental, Mex | 25.96 | 107.53 | NAM alley |
18 | Sierra Madre Oriental, Mex | 26.12 | 103.10 | Dust |
19 | Houston, TX | 29.74 | 95.36 | Anthro |
20 | Waco, TX | 31.55 | 97.15 | Dust |
3. Results and Discussion
3.1. Spatial Variability
Cluster | Season | Mean | Standard Deviation () |
---|---|---|---|
PRM | 0.23 | 0.12 | |
Fire | MON | 0.21 | 0.10 |
POM | 0.15 | 0.09 | |
PRM | 0.19 | 0.08 | |
NAM alley | MON | 0.18 | 0.09 |
POM | 0.11 | 0.07 | |
PRM | 0.23 | 0.11 | |
Dust | MON | 0.23 | 0.11 |
POM | 0.16 | 0.08 | |
PRM | 0.13 | 0.02 | |
anthro | MON | 0.14 | 0.02 |
POM | 0.10 | 0.01 |
3.2. Overall Aerosol Trend
3.3. Aerosol Trends Across Clusters
Clusters | PRM (n = 10) | MON (n = 10) | POM (n = 10) |
---|---|---|---|
Fire | −0.27 (0.0002) | −0.19 (0.02) | −0.21 (0.01) |
NAM alley | −0.21(0.01) | −0.15 (0.11) | −0.13 (0.06) |
Dust | −0.21 (0.007) | −0.17 (0.03) | −0.17 (0.02) |
Anthro | −0.25 (0.0007) | −0.21 (0.009) | −0.22 (0.0001) |
entire domain | −0.14 (0.02) | −0.12 (0.07) | −0.15 (0.01) |
3.4. Multivariate Correlations
3.5. AOD Sensitivity
3.6. Comparison between OMI UV AI and MODIS AOD during MON
4. Conclusions
Supplementary Materials
- Figure S1:
- Correlation matrices for AOD anomalies all the hotspots between the months May–October. The hotspots considered here are: (1) Mt.Whitney, CA; (2) Charleston Peak, CA; (3) Tucson, AZ; (4) Baja, CA; (5) Phoenix, AZ; (6) Phoenix, AZ; (7) Yuma, AZ; (8) LA county, CA; (9) Bakersfield, CA; (10) Prescott, AZ; (11) Petrified forest, AZ; (12) White mountain, NM; (13) Farmington, NM; (14) Albuquerque, NM; (15) Ejido El Vergel, Mex; (16) Chihuahuan Desert, Mex; (17) Hermosillo, Mex; (18) Sierra Madre Occidental, Mex; (19) Sierra Madre Oriental, Mex; (20) Houston, TX; (21) Waco, TX. The panels correspond to (A) May; (B) June; (C) July; (D) August; (E) September; (F) October.
- Figure S2:
- Box plots of Terra/MODIS firecount standardized anomaly over the fire cluster for the years 2005–2014 between the months May–October. Whiskers represent 1.5 (IQR) above/below the upper/lower quartiles. The panels correspond to (A) May; (B) June; (C) July; (D) August; (E) September; (F) October.
- Figure S3:
- Box plots of Terra/MODIS NDVI standardized anomaly over the dust cluster for the years 2005–2014 between the months May–October. The panels correspond to (A) May; (B) June; (C) July; (D) August; (E) September; (F) October.
- Figure S4:
- Box plots of TRMM rainfall rate standardized anomaly over the NAM alley for the years 2005–2014 between the months May–October. The panels correspond to (A) May; (B) June; (C) July; (D) August; (E) September; (F) October.
- Figure S5:
- Box plots of MOPITT CO standardized anomaly over the anthropogenic cluster for the years 2005–2014 between the months May–October. The panels correspond to (A) May; (B) June; (C) July; (D) August; (E) September; (F) October.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hansen, J.; Sato, M.; Ruedy, R.; Lacis, A.; Oinas, V. Global warming in the twenty-first century: An alternative scenario. Proc. Natl. Acad. Sci. USA 2000, 97, 9875–9880. [Google Scholar] [CrossRef] [PubMed]
- Lau, K.M.; Tsay, S.C.; Hsu, C. The Joint Aerosol-Monsoon Experiment: A new challenge for monsoon climate research. Bull. Am. Meteorol. Soc. 2008, 89, 369–383. [Google Scholar] [CrossRef]
- Meehl, G.A.; Arblaster, J.M.; Collins, W.D. Effects of black carbon aerosols on the Indian monsoon. J. Clim. 2008, 21, 2869–2882. [Google Scholar] [CrossRef]
- Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 2008, 1, 221–227. [Google Scholar] [CrossRef]
- Seager, R.; Ting, M.; Held, I.; Kushnir, Y.; Lu, J.; Vecchi, G.; Huang, H.P.; Harnik, N.; Leetmaa, A.; Lau, N.C.; et al. Model projections of an imminent transition to a more arid climate in southwestern North America. Science 2007, 316, 1181–1184. [Google Scholar] [CrossRef] [PubMed]
- Westerling, A.L.; Bryant, B.P. Climate change and wildfire in California. Clim. Chang. 2008, 87, 231–249. [Google Scholar] [CrossRef]
- Dennison, P.E.; Brewer, S.C.; Arnold, J.D.; Moritz, M.A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 2014, 41, 2928–2933. [Google Scholar] [CrossRef]
- Raman, A.; Arellano, A.F.; Brost, J.J. Revisiting haboobs in the southwestern United States: An observational case study of the 5 July 2011 Phoenix dust storm. Atmos. Environ. 2014, 89, 179–188. [Google Scholar] [CrossRef]
- Zhao, Z.; Pritchard, M.S.; Russell, L.M. Effects on precipitation, clouds, and temperature from long-range transport of idealized aerosol plumes in WRF-Chem simulations. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Crosbie, E.; Youn, J.S.; Balch, B.; Wonaschütz, A.; Shingler, T.; Wang, Z.; Conant, W.; Betterton, E.; Sorooshian, A. On the competition among aerosol number, size and composition in predicting CCN variability: A multi-annual field study in an urbanized desert. Atmos. Chem. Phys. 2015, 15, 6943–6958. [Google Scholar] [CrossRef] [PubMed]
- Sorooshian, A.; Shingler, T.; Harpold, A.; Feagles, C.W.; Meixner, T.; Brooks, P.D. Aerosol and precipitation chemistry in the southwestern United States: Spatio-temporal trends and interrelationships. Atmos. Chem. Phys. 2013, 13, 7361–7379. [Google Scholar] [CrossRef] [PubMed]
- Sprigg, W.A.; Nickovic, S.; Galgiani, J. N.; Pejanovic, G.; Petkovic, S.; Vujadinovic, M.; Vukovic, A.; Dacic, M.; DiBiase, S.; Prasad, A.; et al. Regional dust storm modeling for health services: the case of valley fever. Aeolian Res. 2014, 14, 53–73. [Google Scholar] [CrossRef]
- Gautam, R.; Hsu, N.C.; Lau, K.M.; Kafatos, M. Aerosol and rainfall variability over the Indian monsoon region: Distributions, trends and coupling. Ann. Geophys. 2009, 27, 3691–3703. [Google Scholar] [CrossRef]
- Krishnamurti, T.N.; Chakraborty, A.; Martin, A.; Lau, W.K.; Kim, K.M.; Sud, Y.; Walker, G. Impact of Arabian Sea pollution on the Bay of Bengal winter monsoon rains. J. Geophys. Res. Atmos. 2009, 114, D06213. [Google Scholar] [CrossRef]
- Douglas, M.W.; Maddox, R.A.; Howard, K.; Reyes, S. The Mexican monsoon. J. Clim. 1993, 6, 1665–1677. [Google Scholar] [CrossRef]
- Adams, D.K.; Comrie, A.C. The North American Monsoon. Bull. Am. Meteorol. Soc. 1997, 78, 2197–2213. [Google Scholar] [CrossRef]
- Gochis, D.J.; Shuttleworth, W.J.; Yang, Z.L. Sensitivity of the modeled North American monsoon regional climate to convective parameterization. Mon. Weather Rev. 2002, 130, 1282–1298. [Google Scholar] [CrossRef]
- Higgins, R.W.; Yao, Y.; Wang, X.L. Influence of the North American monsoon system on the US summer precipitation regime. J. Clim. 1997, 10, 2600–2622. [Google Scholar] [CrossRef]
- Sorooshian, A.; Wonaschütz, A.; Jarjour, E.G.; Hashimoto, B.I.; Schichtel, B.A.; Betterton, E.A. An aerosol climatology for a rapidly growing arid region (southern Arizona): Major aerosol species and remotely sensed aerosol properties. J. Geophys. Res. Atmos. 2011, 116, D19205. [Google Scholar] [CrossRef] [PubMed]
- Wise, E.K.; Comrie, A.C. Meteorologically adjusted urban air quality trends in the Southwestern United States. Atmos. Environ. 2005, 39, 2969–2980. [Google Scholar] [CrossRef]
- American Lung Association Ranking. Available online: http://www.stateoftheair.org/2015/city-rankings/most-polluted-cities.html (accessed on 13 November 2015).
- Hand, J.L.; Schichtel, B.A.; Pitchford, M.; Malm, W.C.; Frank, N.H. Seasonal composition of remote and urban fine particulate matter in the United States. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Malm, W.C.; Schichtel, B.A.; Pitchford, M.L.; Ashbaugh, L.L.; Eldred, R.A. Spatial and monthly trends in speciated fine particle concentration in the United States. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Chin, M.; Diehl, T.; Tan, Q.; Prospero, J.M.; Kahn, R.A.; Remer, L.A.; Yu, H.; Sayer, A.M.; Bian, H.; Geogdzhayev, I.V.; et al. Multi-decadal aerosol variations from 1980 to 2009: A perspective from observations and a global model. Atmos. Chem. Phys. 2014, 14, 3657–3690. [Google Scholar] [CrossRef]
- Streets, D.G.; Yan, F.; Chin, M.; Diehl, T.; Mahowald, N.; Schultz, M.; Wild, M.; Wu, Y.; Yu, C. Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980–2006. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Prabhakar, G.; Betterton, E.A.; Conant, W.; Herman, B.M. Effect of Urban Growth on Aerosol Optical Depth—Tucson, Arizona, 35 Years Later. J. Appl. Meterol. Clim. 2014, 53, 1876–1885. [Google Scholar] [CrossRef]
- GIOVANNI. Available online: http://giovanni.gsfc.nasa.gov/giovanni (accessed on 13 November 2015).
- Remer, L.A.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Chu, D.A.; Martins, J.V. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Kleidman, R.G.; Mattoo, S.; Ichoku, C.; Kahn, R.; Eck, T.F. Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys. 2010, 10, 10399–10420. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Papadimas, C.D.; Hatzianastassiou, N.; Mihalopoulos, N.; Querol, X.; Vardavas, I. Spatial and temporal variability in aerosol properties over the Mediterranean basin based on 6-year (2000–2006) MODIS data. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Remer, L.A.; Kleidman, R.G.; Levy, R.C.; Kaufman, Y.J.; Tanre, D.; Mattoo, S. Global aerosol climatology from the MODIS satellite sensors. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- MODIS-Terra Collection 5.1 Atmospheric Data. Available online: http://disc.sci.gsfc.nasa.gov/gesNews/new_modis_version_5.1_data (accessed on 13 November 2015).
- Hubanks, P.; King, M. NASA MODIS Moderate Resolution Imaging Spectroradiometer, Atmosphere Home Page [Fact Sheet]. 2007. Available online: http://modis-atmos.gsfc.nasa.gov/MOD04_L2/index.html (accessed on 13 November 2015). [Google Scholar]
- Giglio, L.; Csiszar, I.; Justice, C.O. Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. J. Geophys. Res. Biogeosci. 2006, 111, G02016. [Google Scholar] [CrossRef]
- Wooster, M.J.; Roberts, G.; Perry, G.L. W.; Kaufman, Y.J. Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J. Geophys. Res. Atmos. 2005, 110, D24311. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Fang, J.; Wang, X. Change in winter snow depth and its impacts on vegetation in China. Glob. Chang. Biol. 2010, 16, 3004–3013. [Google Scholar] [CrossRef]
- Lunetta, R.S.; Knight, J.F.; Ediriwickrema, J.; Lyon, J.G.; Worthy, D. Land-cover change detection using multi-temporal MODIS NDVI data. Remote. Sen. Environ. 2006, 105, 142–154. [Google Scholar] [CrossRef]
- Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia, P.K.; Veefkind, P.; Levelt, P. Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview. J. Geophys. Res. Atmos. 2007, 112, D2108. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G.; Nelkin, E.J.; Bowman, K.P.; Hong, Y.; Stocker, E.F.; Wolff, D.B. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Deeter, M.N.; Martínez-Alonso, S.; Edwards, D.P.; Emmons, L.K.; Gille, J.C.; Worden, H.M.; Pittman, J.E.; Daube, B.C.; Wofsy, S.C. Validation of MOPITT Version 5 thermal-infrared, near-infrared, and multispectral carbon monoxide profile retrievals for 2000–2011. J. Geophys. Res. Atmos. 2013, 118, 6710–6725. [Google Scholar] [CrossRef]
- Worden, H.M.; Deeter, M.N.; Edwards, D.P.; Gille, J.; Drummond, J.; Emmons, L.K.; Francis, G.; Martínez-Alonso, S. 13 years of MOPITT operations: Lessons from MOPITT retrieval algorithm development. Ann Geophys. 2014, 56. [Google Scholar] [CrossRef]
- Balk, D.; Montgomery, M.R.; McGranahan, G.; Kim, D.; Mara, V.; Todd, M.; Buettner, T.; Dorélien, A. Mapping urban settlements and the risks of climate change in Africa, Asia and South America. In Population Dynamics and Climate Change; Guzmán, J.M., Martine, G., McGranahan, G., Schensul, D., Tacoli, C., Eds.; International Institute for Environment and Development: London, UK, 2009. [Google Scholar]
- SEDAC Data Portal: Population Density. Available online: http://sedac.ciesin.columbia.edu/data/set/grump-v1-population-density (accessed on 13 November 2015).
- Ellis, E.C.; Klein Goldewijk, K.; Siebert, S.; Lightman, D.; Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecol. Biogeogr. 2010, 19, 589–606. [Google Scholar] [CrossRef]
- SEDAC Data Portal: Anthropogenic Biomes. Available online: http://sedac.ciesin.columbia.edu/data/set/anthromes-anthropogenic-biomes-world-v2–1900 (accessed on 13 November 2015).
- Singh, H.B.; Anderson, B.E.; Brune, W.H.; Cai, C.; Cohen, R.C.; Crawfold, J.H. Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal and California forest fire emissions. Atmos. Environ. 2010, 44, 4553–4564. [Google Scholar] [CrossRef]
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Kasibhatla, P.S.; Arellano, A.F. Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys. 2006, 6, 3423–3441. [Google Scholar] [CrossRef]
- Marlier, M.E.; DeFries, R.S.; Voulgarakis, A.; Kinney, P.L.; Randerson, J.T.; Shindell, D.T.; Chen, Y.; Faluvegi, G. El Nino and health risks from landscape fire emissions in southeast Asia. Nat. Clim. Chang. 2013, 3, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xie, Y.; Cai, L.; Dong, W.; Zhang, Q.; Zhang, L. Impact of the 2011 Southern US Drought on Ground-Level Fine Aerosol Concentration in Summertime. J. Atmos. Sci. 2015, 72, 1075–1093. [Google Scholar] [CrossRef]
- Lopez, D.H.; Rabbani, M.R.; Crosbie, E.; Raman, A.; Arellano, A.F.; Sorooshian, A. Frequency and Character of Extreme Aerosol Events in the Southwestern United States: A Case Study Analysis in Arizona. Atmosphere 2016, 7, 1. [Google Scholar] [CrossRef]
- Emissions of Atmospheric Compounds and Compilation of Ancilliary Data. Available online: http://eccad.sedoo.fr (accessed on 13 November 2015).
- Air trends. Available online: http://www3.epa.gov/airtrends/pm.html (accessed on 13 November 2015).
- Tong, D.Q.; Dan, M.; Wang, T. Long-term dust climatology in the western United States reconstructed from routine aerosol ground monitoring. Atmos. Chem. Phys. 2012, 12, 5189–5205. [Google Scholar] [CrossRef]
- Storm Events Database. Available online: https://www.ncdc.noaa.gov/stormevents (accessed on 13 November 2015).
- Yu, H.; Remer, L.A.; Chin, M.; Bian, H.; Tan, Q.; Yuan, T.; Zhang, Y. Aerosols from overseas rival domestic emissions over North America. Science 2012, 337, 566–569. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Fiore, A.M.; Horowitz, L.W.; Cooper, O.R.; Naik, V.; Holloway, J.; Johnson, B.J.; Middlebrook, A.M.; Oltmans, S.J.; Pollack, I.B.; et al. Transport of Asian ozone pollution into surface air over the western United States in spring. J. Geophys. Res. Atmos. 2012, 117, D00V07. [Google Scholar] [CrossRef]
- Jin, Y.; Randerson, J.T.; Faivre, N. Contrasting controls on wildland fires in Southern California during periods with and without Santa Ana winds. J. Geophys. Res Biogeosci. 2014, 119, 432–450. [Google Scholar] [CrossRef]
- Huang, M.; Tong, D.; Lee, P.; Pan, L.; Tang, Y.; Stajner, I.; Pierce, R.B.; MacQueen, J.; Wang, J. Toward enhanced capability for detecting and predicting dust events in the western United States: The Arizona case study. Atmos. Chem. Phys., 2015, 15, 12595–12610. [Google Scholar] [CrossRef]
- Moreno-Rodríguez, V.; Del Rio-Salas, R.; Adams, D.K.; Ochoa-Landin, L.; Zepeda, J.; Gómez-Alvarez, A.; Palafox-Reyes, J.; Meza-Figueroa, D. Historical trends and sources of TSP in a Sonoran desert city: Can the North America Monsoon enhance dust emissions? Atmos. Environ. 2015, 110, 111–121. [Google Scholar] [CrossRef]
- Kondo, Y.; Matsui, H.; Moteki, N.; Sahu, L.; Takegawa, N.; Kajino, M.; Zhao, Y.; Cubison, M.J.; Jimenez, J.L.; Vay, S.; et al. Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- OMI Version 4.2x Data Quality Document. Available online: http://disc.sci.gsfc.nasa.gov/Aura/additional/documentation/Aura-MLS_DataQuality_v4-2x-rev1-0.pdf (accessed on 15 January 2016).
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raman, A.; Arellano, A.F.; Sorooshian, A. Decreasing Aerosol Loading in the North American Monsoon Region. Atmosphere 2016, 7, 24. https://doi.org/10.3390/atmos7020024
Raman A, Arellano AF, Sorooshian A. Decreasing Aerosol Loading in the North American Monsoon Region. Atmosphere. 2016; 7(2):24. https://doi.org/10.3390/atmos7020024
Chicago/Turabian StyleRaman, Aishwarya, Avelino F. Arellano, and Armin Sorooshian. 2016. "Decreasing Aerosol Loading in the North American Monsoon Region" Atmosphere 7, no. 2: 24. https://doi.org/10.3390/atmos7020024
APA StyleRaman, A., Arellano, A. F., & Sorooshian, A. (2016). Decreasing Aerosol Loading in the North American Monsoon Region. Atmosphere, 7(2), 24. https://doi.org/10.3390/atmos7020024