Stratospheric Aerosols from Major Volcanic Eruptions: A Composition-Climate Model Study of the Aerosol Cloud Dispersal and e-folding Time
Abstract
:1. Introduction
2. Experimental Section
2.1. University of L’Aquila−Composition-Climate Coupled Model (ULAQ-CCM)
2.2. Numerical Experiment Setup
3. Results and Discussion
3.1. Lower Stratospheric Dynamical Anomalies
3.2. Equatorial Winds Quasi-Biennial Oscillation (QBO) and Aerosol Transport
3.3. Aerosol Cloud Dispersal and e-folding Time
3.4. Aerosol Radiative Flux Changes
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Robock, A.; Mao, J. The Volcanic Signal in Surface Temperature Observations. J. Clim. 1995, 8, 1086–1103. [Google Scholar] [CrossRef]
- Kremser, S.; Thomason, L.W.; von Hobe, M.; Hermann, M.; Deshler, T.; Timmreck, C.; Toohey, M.; Stenke, A.; Schwarz, J.P.; Weigel, R.; et al. Stratospheric aerosol—Observations, processes, and impact on climate. Rev. Geophys. 2016. [Google Scholar] [CrossRef]
- Solomon, S.; Daniel, J.S.; Neely, R.R., III; Vernier, J.-P.; Dutton, E.G.; Thomason, L.W. The Persistently variable “background” stratospheric aerosol layer and global climate change. Science 2011, 333, 866–870. [Google Scholar] [CrossRef] [PubMed]
- Vernier, J.-P.; Thomason, L.W.; Pommerau, J.-P.; Bourassa, A.; Pelon, J.; Garnier, A.; Hauchecorne, A.; Blanot, L.; Trepte, C.; Degenstein, D.; et al. Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade. Geophys. Res. Lett. 2011, 38, L12807. [Google Scholar] [CrossRef]
- Hofmann, D.; Barnes, J.; O’Neill, M.; Trudeau, M.; Neely, R. Increase in background stratospheric aerosol observed with lidar at Mauna Loa Observatory and Boulder, Colorado. Geophys. Res. Lett. 2009, 36, L15808. [Google Scholar] [CrossRef]
- Trickl, T.; Giehl, H.; Jäger, H.; Vogelmann, H. 35 year of stratospheric aerosol measurements at Garmisch-Partenkirchen: From Fuego to Eyjafjallajökull, and beyond. Atmos. Chem. Phys. 2013, 13, 5205–5225. [Google Scholar] [CrossRef]
- Ridley, D.A.; Solomon, S.; Barnes, J.E.; Burlakov, V.D.; Deshler, T.; Dolgii, S.D.; Herber, A.B.; Nagai, T.; Neely, R.R., III; Nevzorov, A.V.; et al. Total volcanic stratospheric aerosol optical depths and implications for global climate change. J. Geophys. Res. 2014, 41, 7763–7769. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.E.; Lacis, A.; Ruedy, R.; Sato, M. Potential climate impact of Mount Pinatubo eruption. Geophys. Res. Lett. 1992, 19, 215–218. [Google Scholar] [CrossRef]
- Lacis, A.; Hansen, J.E.; Sato, M. Climate forcing by stratospheric aerosols. Geophys. Res. Lett. 1992, 19, 1607–1610. [Google Scholar] [CrossRef]
- Shindell, D.T.; Schmidt, G.A.; Mann, M.E.; Faluvegi, G. Dynamic winter climate response to large tropical volcanic eruptions since 1600. J. Geophys. Res. 2004, 109, D05104. [Google Scholar] [CrossRef]
- Schauffler, S.M.; Daniel, J.S. On the effects of stratospheric circulation changes on trace gas trends. J. Geophys. Res. 1994, 99, 25747. [Google Scholar] [CrossRef]
- Dlugokencky, E.J.; Masarie, K.A.; Lang, P.M.; Tans, P.P.; Steele, L.P.; Nisbet, E.G. A dramatic decrease in the growth rate of atmospheric methane in the northern hemisphere during 1992. Geophys. Res. Lett. 1994, 21, 45–48. [Google Scholar] [CrossRef]
- Bāndă, N.; Krol, M.; van Weele, M.; van Noije, T.; Röckmann, T. Analysis of global methane changes after the 1991 Pinatubo volcanic eruption. Atmos. Chem. Phys. 2013, 13, 2267–2281. [Google Scholar] [CrossRef]
- Bāndă, N.; Krol, M.; van Noije, T.; van Weele, M.; Williams, J.E.; Le Sager, P.; Niemeier, U.; Thomason, L.; Röckmann, T. The effect of stratospheric sulfur from Mount Pinatubo on tropospheric oxidizing capacity and methane. J. Geophys. Res. Atmos. 2015, 120, 1202–1220. [Google Scholar] [CrossRef]
- Pitari, G.; Mancini, E. Short-term climatic impact of the 1991 volcanic eruption of Mt. Pinatubo and effects on atmospheric tracers. Nat. Haz. Earth Syst. Sci. 2002, 2, 91–108. [Google Scholar] [CrossRef]
- Bluth, G.J.S.; Doiron, S.D.; Schnetzler, C.C.; Krueger, A.J.; Walter, L.S. Global tracking of the SO2 clouds from the June, 1991 Mount Pinatubo eruptions. Geophys. Res. Lett. 1992, 19, 151–154. [Google Scholar] [CrossRef]
- Read, W.G.; Froidevaux, L.; Waters, J.W. Microwave limb sounder measurements of stratospheric SO2 from the Mt. Pinatubo volcano. Geophys. Res. Lett. 1993, 20, 1299–1302. [Google Scholar] [CrossRef]
- Russell, P.B.; Livingston, J.M.; Pueschel, R.F.; Bauman, J.J.; Pollack, J.B.; Brooks, S.L.; Hamill, P.; Thomason, L.W.; Stowe, L.L.; Deshler, T.; et al. Global to microscale evolution of the Pinatubo volcanic aerosol derived from diverse measurements and analyses. J. Geophys. Res. 1996, 101, 18745–18763. [Google Scholar] [CrossRef]
- Dhomse, S.S.; Emmerson, K.M.; Mann, G.W.; Bellouin, N.; Carslaw, K.S.; Chipperfield, M.P.; Hommel, R.; Abraham, N.L.; Telford, P.; Braesicke, P.; et al. Aerosol microphysics simulations of the Mt. Pinatubo eruption with the UM-UKCA composition-climate model. Atmos. Chem. Phys. 2014, 14, 11221–11246. [Google Scholar] [CrossRef]
- Hofmann, D.J.; Rosen, J.M. Sulfuric acid droplet formation and growth in the stratosphere after the 1982 eruption of El Chichón. Science 1983, 222, 325–327. [Google Scholar] [CrossRef] [PubMed]
- McCormick, M.P.; Veiga, R.E. SAGE II measurements of early Pinatubo aerosols. Geophys. Res. Lett. 1992, 19, 155–158. [Google Scholar] [CrossRef]
- Lambert, A.; Grainger, R.G.; Remedios, J.J.; Rodgers, C.D.; Corney, M.; Taylor, F.W. Measurements of the evolution of the Mt. Pinatubo aerosol cloud by ISAMS. Geophys. Res. Lett. 1993, 20, 1287–1290. [Google Scholar] [CrossRef]
- Long, C.S.; Stowe, L.L. Using the NOAA/AVHRR to study stratospheric aerosol optical thickness following the Mt. Pinatubo eruption. Geophys. Res. Lett. 1994, 21, 2215–2218. [Google Scholar] [CrossRef]
- Trepte, C.R.; Hitchman, M.H. Tropical stratospheric circulation deduced from satellite aerosol data. Nature 1992, 355, 626–628. [Google Scholar] [CrossRef]
- McCormick, M.P.; Thomason, L.W.; Trepte, C.R. Atmospheric effects of the Mt. Pinatubo eruption. Nature 1995, 373, 399–404. [Google Scholar] [CrossRef]
- Pitari, G. A numerical study of the possible perturbation of stratospheric dynamics due to Pinatubo aerosols: Implications for tracer transport. J. Atmos. Sci. 1993, 50, 2443–2461. [Google Scholar] [CrossRef]
- Prather, M.J. Catastrophic loss of stratospheric ozone in dense volcanic clouds. J. Geophys. Res. 1992, 97, 10187–10191. [Google Scholar] [CrossRef]
- Fahey, D.W.; Kawa, S.R.; Woodbridge, E.L.; Tin, P.; Wilson, J.C.; Jonsson, H.H.; Dye, J.E.; Baumgardner, D.; Borrmann, S.; Toohey, D.W.; et al. In-situ measurements constraining the role of sulphate aerosols in mid-latitude ozone depletion. Nature 1993, 363, 509–514. [Google Scholar] [CrossRef]
- Pitari, G.; Rizi, V. An estimate of the chemical and radiative perturbation of stratospheric ozone following the eruption of Mt. Pinatubo. J. Atmos. Sci. 1993, 50, 3260–3276. [Google Scholar] [CrossRef]
- Kinne, S.; Toon, O.B.; Prather, M.J. Buffering of stratospheric circulation by changing amounts of tropical ozone: A Pinatubo case study. Geophys. Res. Lett. 1992, 19, 1927–1930. [Google Scholar] [CrossRef]
- Labitzke, K.; McCormick, M.P. Stratospheric temperature increases due to Pinatubo aerosols. Geophys. Res. Lett. 1992, 19, 207–210. [Google Scholar] [CrossRef]
- Grant, W.B.; Fishman, J.; Browell, E.V.; Brackett, V.G.; Nganga, D.; Minga, A.; Cros, B.; Veiga, R.E.; Butler, C.F.; Fenn, M.A.; et al. Observations of reduced ozone concentrations in the tropical stratosphere after the eruption of Mt. Pinatubo. Geophys. Res. Lett. 1992, 19, 1109–1112. [Google Scholar] [CrossRef]
- Schoeberl, M.R.; Bhartia, P.K.; Hilsenrath, E. Tropical ozone loss following the eruption of Mt. Pinatubo. Geophys. Res. Lett. 1993, 20, 29–32. [Google Scholar] [CrossRef]
- Telford, P.; Braesicke, P.; Morgenstern, O.; Pyle, J. Reassessment of causes of ozone column variability following the eruption of Mount Pinatubo using a nudged CCM. Atmos. Chem. Phys. 2009, 9, 4251–4260. [Google Scholar] [CrossRef]
- Soden, B.J.; Wetherald, R.T.; Stenchikov, G.L.; Robock, A. Global cooling after the eruption of Mount Pinatubo: A test of climate feedback by water vapor. Science 2002, 296, 727–730. [Google Scholar] [CrossRef] [PubMed]
- Dunkerton, T.J.; Delisi, D.P. Anomalous temperature and zonal wind in the tropical upper stratosphere, 1982/83. J. Geophys. Res. 1991, 96, 22631–22641. [Google Scholar] [CrossRef]
- Stenchikov, G.L.; Kirchner, I.; Robock, A.; Graf, H.-F.; Antuna, J.C.; Grainger, R.; Lambert, A.; Thomason, L. Radiative forcing from the 1991 Mt. Pinatubo volcanic eruption. Geophys. Res. 1998, 103, 13837–13858. [Google Scholar] [CrossRef]
- Kirchner, I.; Stenchikov, G.L.; Graf, H.-F.; Robock, A.; Antuna, J.C. Climate model simulation of winter warming and summer cooling following the 1991 Mount Pinatubo volcanic eruption. J. Geophys. Res. 1999, 104, 19039–19055. [Google Scholar] [CrossRef]
- Young, R.E.; Houben, H.; Toon, O.B. Radiatively forced dispersion of the Mt. Pinatubo volcanic cloud and induced temperature perturbations in the stratosphere during the first few months following the eruption. Geophys. Res. Lett. 1994, 21, 369–372. [Google Scholar] [CrossRef]
- Fairlie, T.D.A. Three-dimensional transport simulations of the dispersal of volcanic aerosol from Mount Pinatubo. Q.J.R. Meteorol. Soc. 1995, 121, 1943–1980. [Google Scholar] [CrossRef]
- Timmreck, C.; Graf, H.-F.; Kirchner, I. A one and half year interactive MA/ECHAM4 simulation of Mt. Pinatubo aerosol. J. Geophys. Res. 1999, 104, 9337–9359. [Google Scholar] [CrossRef]
- Niemeier, U.; Timmreck, C.; Graf, H.-F.; Kinne, S.; Rast, S.; Self, S. Initial fate of fine ash and sulfur from large volcanic eruptions. Atmos. Chem. Phys. 2009, 9, 9043–9057. [Google Scholar] [CrossRef]
- Aquila, V.; Oman, L.D.; Stolarski, R.S.; Colarco, P.R.; Newman, P.A. Dispersion of the volcanic sulfate cloud from a Mount Pinatubo-like eruption. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Aquila, V.; Oman, L.D.; Stolarski, R.S.; Douglass, A.R.; Newman, P.A. The response of ozone and nitrogen dioxide to the eruption of Mount Pinatubo at southern and northern midlatitudes. J. Atmos. Sci. 2013, 70, 894–900. [Google Scholar] [CrossRef]
- Aquila, V.; Garfinkel, C.; Oman, L.D.; Waugh, D. Modifications of the QBO by perturbations of the stratospheric aerosol layer. Geophys. Res. Lett. 2014, 41, 1738–1744. [Google Scholar] [CrossRef]
- Pitari, G.; Aquila, V.; Kravitz, B.; Robock, A.; Watanabe, S.; Cionni, I.; De Luca, N.; Di Genova, G.; Mancini, E.; Tilmes, S. Stratospheric Ozone Response to Sulfate Geoengineering: Results from the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. 2014, 119, 2629–2653. [Google Scholar] [CrossRef]
- Pitari, G.; Mancini, E.; Rizi, V.; Shindell, D.T. Impact of future climate and emission changes on stratospheric aerosols and ozone. J. Atmos. Sci. 2002, 59, 414–440. [Google Scholar] [CrossRef]
- Eyring, V.; Butchart, N.; Waugh, D.W.; Akiyoshi, H.; Austin, J.; Bekki, S.; Bodeker, G.E.; Boville, B.A.; Bruhl, C.; Chipperfield, M.P.; et al. Assessment of temperature, trace species, and ozone in chemistry-climate model simulation of the recent past. J. Geophys. Res. 2006, 111, D22308. [Google Scholar] [CrossRef]
- Sander, S.P.; Friedl, R.R.; Barker, J.R.; Golden, D.M.; Kurylo, M.J.; Wine, P.H.; Abbatt, J.P.D.; Burkholder, J.B.; Kolb, C.E.; Moortgat, G.K.; et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17; JPL Publication 10-6; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 10 June 2011. [Google Scholar]
- Chipperfield, M.P.; Liang, Q.; Strahan, S.E.; Morgenstern, O.; Dhomse, S.S.; Abraham, N.L.; Archibald, A.T.; Bekki, S.; Braesicke, P.; Di Genova, G.; et al. Multi-model Estimates of Atmospheric Lifetimes of Long-lived Ozone-Depleting Substances: Present and Future. J. Geophys. Res. 2014, 119, 2555–2573. [Google Scholar] [CrossRef]
- Randles, C.A.; Kinne, S.; Myhre, G.; Schulz, M.; Stier, P.; Fischer, J.; Doppler, L.; Highwood, E.; Ryder, C.; Harris, B.; et al. Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: Results from the AeroCom Radiative Transfer Experiment. Atmos. Chem. Phys. 2013, 13, 2347–2379. [Google Scholar] [CrossRef] [Green Version]
- Morgenstern, O.; Giorgetta, M.A.; Shibata, K.; Eyring, V.; Waugh, D.; Shepherd, T.G.; Akiyoshi, H.; Austin, J.; Baumgärtner, A.; Bekki, S.; et al. A review of CCMVal-2 models and simulations. J. Geophys. Res. 2010, 115, D00M02. [Google Scholar] [CrossRef]
- Pitari, G.; Di Genova, G.; De Luca, N. A modelling study of the impact of on-road diesel emissions on Arctic black carbon and solar radiation transfer. Atmosphere 2015, 6, 318–340. [Google Scholar] [CrossRef]
- Pitari, G.; Di Genova, G.; Coppari, E.; De Luca, N.; Di Carlo, P.; Iarlori, M.; Rizi, V. Desert dust transported over Europe: Lidar observations and model evaluation of the radiative impact. J. Geophys. Res. 2015, 120, 2881–2898. [Google Scholar] [CrossRef]
- Eyring, V.; Lamarque, J.-F.; Hess, P.; Arfeuille, F.; Bowman, K.; Chipperfield, M.P.; Duncan, B.; Fiore, A.; Gettelman, A.; Giorgetta, M.A.; et al. Overview of IGAC/SPARC Chemistry-Climate Model Initiative (CCMI) Community Simulations in Support of Upcoming Ozone and Climate Assessments. SPARC Newsl. 2013, 40, 48–66. [Google Scholar]
- Sato, M.; Hansen, J.E.; McCormick, M.P.; Pollack, J.B. Stratospheric aerosol optical depth, 1850–1990. J. Geophys. Res. 1993, 98, 22987–22994. [Google Scholar] [CrossRef]
- McCormick, M.P.; Thomason, L. Collection of Global Profiles of Aerosol Extinction, Temperature, Ozone, Nitrogen Dioxide and Water Vapour as part of the Stratospheric Aerosol and Gas Experiment II (SAGE II). NCAS British Atmospheric Data Centre 2006. Available online: http://catalogue.ceda.ac.uk/uuid/bd5e5f99d8f789324698379efba64502 (accessed on 21 January 2016).
- Uppala, S.M.; KÅllberg, P.W.; Simmons, A.J.; Andrae, U.; Da Costa Bechtold, V.; Fiorino, M.; Gibson, J.K.; Haseler, J.; Hernandez, A.; Kelly, G.A.; et al. The ERA-40 re-analysis. Q. J. R. Meteorol.Soc. 2005, 131, 2961–3012. [Google Scholar] [CrossRef]
- Free, M.; Seidel, D.J.; Angell, J.K.; Lanzante, J.; Durre, I.; Peterson, T.C. Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC): A new data set of large-area anomaly time series. J. Geophys. Res. 2005, 110, D22101. [Google Scholar] [CrossRef]
- Jäger, H.; Hofmann, D. Midlatitude lidar backscatter to mass, area, and extinction conversion model based on in situ aerosol measurements from 1980 to 1987. Appl. Opt. 1991, 30, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.-K.; et al. MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Ray, E.A.; Moore, F.L.; Rosenlof, K.L.; Davis, S.M.; Sweeney, C.; Tans, P.; Wang, T.; Elkins, J.W.; Bönisch, H.; Engel, A.; et al. Improving stratospheric transport trend analysis based on SF6 and CO2 measurements. J. Geophys. Res. 2014, 119. [Google Scholar] [CrossRef]
- Strahan, S.E.; Douglass, A.R.; Stolarski, R.S.; Akiyoshi, H.; Bekki, S.; Braesicke, P.; Butchart, N.; Chipperfield, M.P.; Cugnet, D.; Dhomse, S.; et al. Using transport diagnostics to understand Chemistry Climate Model ozone simulations. J. Geophys. Res. 2011, 116, D17302. [Google Scholar] [CrossRef]
- Weisenstein, D.; Bekki, S.; Pitari, G.; Timmreck, C.; Mills, M. Modeling of stratospheric aerosols. In SPARC Assessment of Stratospheric Aerosol Properties; Thomason, L., Peter, T., Eds.; WCRP-124, WMO/TD-1295, SPARC report No 4; Chapter 6.
- Thomason, L.W.; Poole, L.R.; Deshler, T. A global climatology of stratospheric aerosol surface area density deduced from Stratospheric Aerosol and Gas Experiment II measurements: 1984–1994. J. Geophys. Res. 1997, 102, 8967–8976. [Google Scholar] [CrossRef]
- Hansen, J.E.; Sato, M.; Ruedy, R.; Nazarenko, L.; Lacis, A.; Schmidt, G.A.; Russell, G.; Aleinov, I.; Bauer, M.; Bauer, S.; et al. Efficacy of climate forcings. J. Geophys. Res. 2005, 110, D18104. [Google Scholar] [CrossRef]
Eruption | Time | Tg-SO2 | QBO E/W Shear |
---|---|---|---|
Agung (8S,11E) | 16 May 1963 | 12 | W |
St. Helens (46N,122W) | 18 May 1980 | 2.1 | W |
El Chichón (17N,93W) | 4 April 1982 | 7 | W |
Nevado del Ruiz (5N,75W) | 13 November 1985 | 1.2 | E |
Pinatubo (15N,120E) | 16 June 1991 | 20 | E |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pitari, G.; Di Genova, G.; Mancini, E.; Visioni, D.; Gandolfi, I.; Cionni, I. Stratospheric Aerosols from Major Volcanic Eruptions: A Composition-Climate Model Study of the Aerosol Cloud Dispersal and e-folding Time. Atmosphere 2016, 7, 75. https://doi.org/10.3390/atmos7060075
Pitari G, Di Genova G, Mancini E, Visioni D, Gandolfi I, Cionni I. Stratospheric Aerosols from Major Volcanic Eruptions: A Composition-Climate Model Study of the Aerosol Cloud Dispersal and e-folding Time. Atmosphere. 2016; 7(6):75. https://doi.org/10.3390/atmos7060075
Chicago/Turabian StylePitari, Giovanni, Glauco Di Genova, Eva Mancini, Daniele Visioni, Ilaria Gandolfi, and Irene Cionni. 2016. "Stratospheric Aerosols from Major Volcanic Eruptions: A Composition-Climate Model Study of the Aerosol Cloud Dispersal and e-folding Time" Atmosphere 7, no. 6: 75. https://doi.org/10.3390/atmos7060075
APA StylePitari, G., Di Genova, G., Mancini, E., Visioni, D., Gandolfi, I., & Cionni, I. (2016). Stratospheric Aerosols from Major Volcanic Eruptions: A Composition-Climate Model Study of the Aerosol Cloud Dispersal and e-folding Time. Atmosphere, 7(6), 75. https://doi.org/10.3390/atmos7060075