Interpreting Mobile and Handheld Air Sensor Readings in Relation to Air Quality Standards and Health Effect Reference Values: Tackling the Challenges
Abstract
:1. Introduction
Formation of the Air Sensors Health Group (ASHG)
2. Challenges
2.1. Relevance of Sensor Measurements
2.1.1. Interpreting Sensor Readings
2.1.2. Occupational Versus Environmental Exposures
2.1.3. Global/International Perspectives
2.2. Communicating Across Audiences
2.2.1. Citizen Scientists and Communities
2.2.2. State, Local and Tribal Agencies
2.2.3. Sensor Manufacturers
2.3. Calibration and Validation
3. Related Projects and Programs
3.1. Village Green
3.2. The E-Enterprise Advanced Monitoring Team (EEAMT)
3.3. Homeland Security Applications
3.4. Indoor Air–Non-Industrial
4. Maximizing the Usefulness of Sensor Readings
4.1. Transitioning Sensors into Dosimeters and Future of Exposure Science
4.1.1. Dosimeters in the Workplace
4.1.2. Dosimetry for NAAQS Air Pollutants
4.1.3. Dosimeters for Hazardous Air Pollutants (HAPs)
4.2. Adopting a Life-Cycle Approach
4.2.1. A Working Definition of Air Quality Sensors and Health Informatics
4.2.2. Roles and Responsibilities of Sensor and Data Customers, Creators, Curators, and Analysts
5. Forecast of Advancing Technologies
5.1. Infrastructure Needs
5.1.1. Forecast and Statement of Needed Investment
5.1.2. Scientific Literature Collection and Coordination
5.2. Miniaturization
6. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
A.1. Published
Europe:
- EN 45544:2000 Workplace atmospheres. Electrical apparatus used for the direct detection and direct concentration measurement of toxic gases and vapours. Part 1: General requirements and test methods; Part 2: Performance requirements for apparatus used for measuring concentrations in the region of limit values; Part 3: Performance requirements for apparatus used for measuring concentrations well above limit values; Part 4: Guide for selection, installation, use and maintenance.
USA:
- Underwriters Laboratory: UL 2075 Gas and Vapor Detectors and Sensors
- American National Standards Institute/International Safety Association: ANSI/ISA-92.00.01-2010 Performance Requirements for Toxic Gas Detectors; ANSI/ISA 92.00.02-2013 Installation, Operation, and Maintenance of Toxic Gas-Detection Instruments
- American Society for Testing and Materials: ASTM E2885-13 Standard Specification for Handheld Point Chemical Vapor Detectors (HPCVD) for Homeland Security Application
International Electrotechnical Commission:
- IEC 60079-29-1:2007 Explosive atmospheres—Part 29-1: Gas detectors—Performance requirements of detectors for flammable gases
- IEC 60079-29-2:2007 Explosive atmospheres—Part 29-2: Gas detectors—Selection, installation, use and maintenance of detectors for flammable gases and oxygen
Other:
- Australian/New Zealand Standard: AS/NZS 4641:2007 Electrical apparatus for the detection of oxygen and other gases and vapours at toxic levels—General requirements and test methods.
A.2. Standards Proceeding through Process
- ISO/IEC (IEC 62990-1) Workplace Atmospheres—Part 1: Gas detectors—Performance requirements of detectors for toxic gases
- ISO/IEC (IEC 62990-2) Work-place Atmospheres—Part 2: Gas detectors—Selection, installation, use and maintenance of detectors for toxic gases and vapours and oxygen sensors.
References
- Williams, R. Findings from the 2013 EPA Sensors Workshop. Available online: https://www.epa.gov/air-research/findings-2013-epa-air-sensors-workshop (accessed on 5 May 2017).
- Williams, R.; Long, R.; Beaver, M.; Kaufman, A.; Zeiger, F.; Heimbinder, M.; Hang, I.; Yap, R.; Acharya, B.; Ginwald, B.; et al. Sensor Evaluation Report; U.S. Environmental Protection Agency: Washington, DC, USA, 2014.
- U.S. Environmental Protection Agency. Graphical Arrays of Chemical-Specific Health Effect Reference Values for Inhalation Exposures; U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 2009; EPA/600/R-09/061. Available online: http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=211003 (accessed on 5 May 2017).
- U.S. Environmental Protection Agency. Guidance on Systematic Planning Using the Data Quality Objectives Process. Available online: https://www.epa.gov/fedfac/guidance-systematic-planning-using-data-quality-objectives-process (accessed on 5 May 2017).
- U.S. Environmental Protection Agency. Air Sensor Toolbox: What Do My Sensor Readings Mean? Sensor Scale Pilot Project. Available online: https://www.epa.gov/air-sensor-toolbox/what-do-my-sensor-readings-mean-sensor-scale-pilot-project (accessed on 2 May 2017).
- U.S. Environmental Protection Agency. Air Sensor Toolbox for Citizen Scientists, Researchers and Developers. Available online: https://www.epa.gov/air-sensor-toolbox (accessed on 2 May 2017).
- ATSDR. Agency for Toxic Substances and Disease Registry Minimal Risk Levels (MRLs) 2016. Available online: https://www.atsdr.cdc.gov/mrls/index.asp (accessed on 12 June 2017).
- Woodall, G.; Lipscomb, J.; Taylor, M. Review of health-based reference values for inhalation exposures. 2017; in preparation. [Google Scholar]
- U.S. Environmental Protection Agency. Inhalation Health Effect Reference Values for Toluene (CASRN 108-88-3); U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 2012. Available online: http://oaspub.epa.gov/eims/eims-comm.getfile?p_download_id=512650 (accessed on 2 May 2017).
- U.S. Environmental Protection Agency. Chemical-Specific Reference Values for Benzene (CASRN 71-43-2); U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 2012; EPA/600/R-12/047F1. Available online: http://oaspub.epa.gov/eims/eimscomm.getfile?p_download_id=512648 (accessed on 2 May 2017).
- U.S. Environmental Protection Agency. Inhalation Health Effect Reference Values for Ethylbenzene (CASRN 100-41-4); U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 2012; EPA/600/R-12/047F2. Available online: http://oaspub.epa.gov/eims/eimscomm.getfile?p_download_id=512649 (accessed on 2 May 2017).
- U.S. Environmental Protection Agency. Inhalation Health Effect Reference Values for Xylene—All Isomers (CASRNs Mixed Isomers—1330-20-7; m-xylene—95-47-6; o-xylene—108-38-3; p-xylene—106-42-3); U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 2012; EPA/600/R-12/047F4. Available online: http://oaspub.epa.gov/eims/eimscomm.getfile?p_download_id=512651 (accessed on 2 May 2017).
- U.S. Environmental Protection Agency. Inhalation Health Effect Reference Values for Manganese (CASRN 7439-96-5—Manganese) and Compounds (CASRN 1344-43-0; 1317-35-7; and 1129-60-5); U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 2012; EPA/600/R-12/047F5. Available online: http://oaspub.epa.gov/eims/eimscomm.getfile?p_download_id=512652 (accessed on 2 May 2017).
- Harper, M.; Weis, C.; Pleil, J.D.; Blount, B.C.; Miller, A.; Hoover, M.D.; Jahn, S. Commentary on the contributions and future role of occupational exposure science in a vision and strategy for the discipline of exposure science. J. Expo. Sci. Environ. Epidemiol. 2015, 25, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Fishbain, B.; Lerner, U.; Castell, N.; Cole-Hunter, T.; Popoola, O.; Broday, D.M.; Iñiguez, T.M.; Nieuwenhuijsen, M.; Jovasevic-Stojanovic, M.; Topalovic, D.; et al. An evaluation tool kit of air quality micro-sensing units. Sci. Total Environ. 2017, 575, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Bart, M.; Williams, D.E.; Ainslie, B.; McKendry, I.; Salmond, J.; Grange, S.K.; Alavi-Shoshtari, M.; Steyn, D.; Henshaw, G.S. High density ozone monitoring using gas sensitive semi-conductor sensors in the lower Fraser Valley, British Columbia. Environ. Sci. Technol. 2014, 48, 3970–3977. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.L.; Cao, J.J.; Seto, E. A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in Xi’an, China. Environ. Pollut. 2015, 199, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Mead, M.I.; Popoola, O.A.M.; Stewart, G.B.; Landshoff, P.; Calleja, M.; Hayes, M.; Baldovi, J.J.; McLeod, M.W.; Hodgson, T.F.; Dicks, J.; et al. The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks. Atmos. Environ. 2013, 70, 186–203. [Google Scholar] [CrossRef]
- Jovasevic-Stojanovic, M. CITI-SENSE Development of Sensor-Based Citizens’ Observatory Community for Improving Quality of Life in Cities. Available online: http://www.citi-sense.eu/Portals/106/Documents/Dissemination%20material/CITI-SENSE_Newsletter%20No4.pdf (accessed on 19 September 2017).
- CITI-SENSE. Deliverable D9.16 Project Overview for the Lay People. 2016. Available online: http://co.citi-sense.eu/TheProject/Publications/Deliverables.aspx (accessed on 2 May 2017).
- CITI-SENSE. Development of Sensor-Based Citizens’ Observatory Community for Improving Quality of Life in Cities. Available online: http://www.citi-sense.eu/ (accessed on 2 May 2017).
- Aspuru, I.; García, I.; Herranz, K.; Santander, A. Citi-Sense: Methods and tools for empowering citizens to observe acoustic comfort in outdoor public spaces. Noise Mapp. 2016, 3, 37–48. [Google Scholar] [CrossRef]
- European Commission. Air Quality Standards. 8/6/16. Available online: http://ec.europa.eu/environment/air/quality/standards.htm (accessed on 2 May 2017).
- Borrego, C.; Costa, A.M.; Ginja, J.; Amorim, M.; Coutinho, M.; Karatzas, K.; Sioumis, T.; Katsifarakis, N.; Konstantinidis, K.; De Vito, S.; et al. Assessment of air quality microsensors versus reference methods: The EuNetAir joint exercise. Atmos. Environ. 2016, 147, 246–263. [Google Scholar] [CrossRef]
- Penza, M.; Consortium, E. COST Action TD1105: Overview of sensor-systems for air-quality monitoring. Procedia Eng. 2014, 87, 1370–1377. [Google Scholar] [CrossRef]
- Clean Air Asia. Clean Air Asia India. Available online: http://cleanairasia.org/india/ (accessed on 2 May 2017).
- Lewis, A.; Edwards, P. Validate personal air-pollution sensors. Nature 2016, 535, 29–31. [Google Scholar] [CrossRef] [PubMed]
- BreezoMeter. BreezoMeter: Hyperlocal Air Quality Data, Available Globally. Available online: https://breezometer.com/ (accessed on 2 May 2017).
- WHO. Ambient (Outdoor) Air Quality and Health. Fact Sheet; WHO: Geneva, Switzerland, 2016; Available online: http://www.who.int/mediacentre/factsheets/fs313/en/ (accessed on 2 May 2017).
- ATSDR. Health Consultation: Evaluation of Particulate Matter, Bennett Landfill Fire, Chester, South Carolina; ATSDR: Atlanta, GA, USA, 2015.
- ATSDR. Health Consultation: Assessing the Public Health Implications of the Criteria (NAAQS) Air Pollutants and Hydrogen Sulfide as Part of the Midlothian Area Air Quality Petition Response, Midlothian, Ellis County, Texas; ATSDR: Atlanta, GA, USA, 2016. Available online: https://www.atsdr.cdc.gov/sites/midlothian/health_consultations.html (accessed on 2 May 2017).
- ATSDR. Health consultation: Brooklyn Township PM2.5, Brooklyn Township, Susquehanna County, Pennsylvania; ATSDR: Atlanta, GA, USA, 2016; Cost Recovery Number: 3A4K00. Available online: https://www.atsdr.cdc.gov/HAC/pha/BrooklynTownship/BrooklynTwnsp_pm2-5_HC_Final_04-22-2016_508.pdf (accessed on 2 May 2017).
- ATSDR. Health Consultation: Review of Analysis of Particulate Matter and Metal Exposures in Air, KCBX (AKA, Chicago Petroleum Coke sites), Cook County, IL, USA; ATSDR: Atlanta, GA, USA, 2016.
- NACEPT. NACEPT 2016 Report: Environmental Protection belongs to the Public, a Vision for Citizen Science at EPA; U.S. Environmental Protection Agency: Washington, DC, USA, 2016; EPA 219-R-16-001. Available online: https://www.epa.gov/faca/nacept-2016-report-environmental-protection-belongs-public-vision-citizen-science-epa (accessed on 2 May 2017).
- Dosemagen, S.; Gehrke, G. Civic Technology and Community Science: A New Model for Public Participation in Environmental Decisions in Confronting the Challenges of Public Participation: Issues in Environmental, Planning, and Health Decision-Making. In Proceedings of the Iowa State University Summer Symposia on Science Communication, Ames, IA, USA, 30 May–1 June 2013. [Google Scholar]
- Williams, R.; Kilaru, V.; Snyder, E.; Kaufman, A.; Dye, T.; Rutter, A.; Russell, A.; Hafner, H. Air Sensor Guidebook; U.S. Enviromental Protection Agency: Research Triangle Park, NC, USA, 2016; EPA/600/R-14/159. Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=277996 (accessed on 2 May 2017).
- U.S. Environmental Protection Agency. Citizen Science in Newark, New Jersey. 2015. Available online: https://www.epa.gov/sciencematters/citizen-science-newark-new-jersey (accessed on 12 July 2017).
- U.S. Environmental Protection Agency. Air sensor toolbox: Resources and funding. 2016. Available online: https://www.epa.gov/air-sensor-toolbox/air-sensor-toolbox-resources-and-funding#TER (accessed on 5 June 2017).
- Heimbinder, M. Apps & Sensors for Air Pollution. Taking Space: The HabitatMap & AirCasting Blog 2012 4/9/2012. Available online: http://www.takingspace.org/epa-apps-sensors-for-air-pollution-workshop/ (accessed on 2 May 2017).
- Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.S.; Shelow, D.; Hindin, D.A.; Kilaru, V.J.; Preuss, P.W. The changing paradigm of air pollution monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. [Google Scholar] [CrossRef] [PubMed]
- MacDonnell, M.; Raymond, M.; Wyker, D.; Finster, M.; Chang, Y.; Raymond, T.; Temple, B.; Scofield, M.; Vallano, D. Mobile Sensors and Applications for Air Pollutants; U.S. Environmental Protection Agency: Washington, DC, USA, 2013.
- Jiao, W.; Hagler, G.; Williams, R.; Sharpe, R.; Brown, R.; Garver, D.; Judge, R.; Caudill, M.; Rickard, J.; Davis, M.; et al. Community Air Sensor Network (CAIRSENSE) project: Evaluation of low-cost sensor performance in a suburban environment in the southeastern United States. Atmos. Meas. Tech. 2016, 9, 5281–5292. [Google Scholar] [CrossRef]
- Smith, K.; Edwards, P.M.; Evans, M.J.J.; Lee, J.D.; Shaw, M.D.; Squires, F.; Wilde, S.; Lewis, A.C. Clustering approaches that improve the reproducibility of low-cost air pollution sensors. Faraday Discuss. 2017, 200, 621–637. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, A.; Brown, A.; Barzyk, T.; Williams, R. The Citizen Science Toolbox: A One-Stop Resources for Air Sensor Technology. In EM: Air and Waste Management Association’s Magazine for Environmental Managers; Air & Waste Management Association: Pittsburgh, PA, USA, 2014. [Google Scholar]
- Spinelle, L.; Gerboles, M.; Aleixandre, M.; Bonavitacola, F. Evaluation of metal oxides sensors for the monitoring of O3 in ambient air at Ppb level. Chem. Eng. Trans. 2016, 54, 319–324. [Google Scholar]
- Williams, R. Evaluation of Elm and Speck Sensors; U.S. Environmental Protection Agency: Washington, DC, USA, 2015.
- Air Quality Sensor Performance Evaluation Center (AQ-SPEC). South Coast Air Quality Management District. Available online: http://www.aqmd.gov/aq-spec/ (accessed on 2 May 2017).
- Lin, C.; Gillespie, J.; Schuder, M.D.; Duberstein, W.; Beverland, I.J.; Heal, M.R. Evaluation and calibration of Aeroqual series 500 portable gas sensors for accurate measurement of ambient ozone and nitrogen dioxide. Atmos. Environ. 2015, 100, 111–116. [Google Scholar] [CrossRef] [Green Version]
- NIOSH. Components for Evaluation of Direct-Reading Monitors for Gases and Vapors; NIOSH: Cincinnati, OH, USA, 2012; Publication No. 2012-12-162. Available online: https://www.cdc.gov/niosh/docket/archive/pdfs/niosh-220/2012-162.pdf (accessed on 2 May 2017).
- NIOSH. Addendum to Components for Evaluation of Direct-Reading Monitors for Gases and Vapors: Hazard Detection in First Responder Environments; NIOSH: Cincinnati, OH, USA, 2012; Publication No. 2012-163. Available online: https://www.cdc.gov/niosh/docket/archive/pdfs/niosh-220/2012-163.pdf (accessed on 2 May 2017).
- AIHA. Reporting Specifications for Electronic Real Time Gas and Vapor Detection Equipment Fact Sheet. Available online: https://www.aiha.org/governmentaffairs/PositionStatements/Reporting%20Specifica-tions%20for%20Real%20Time%20Detection_Final.pdf (accessed on 2 May 2017).
- Moltchanov, S.; Levy, I.; Etzion, Y.; Lerner, U.; Broday, D.M.; Fishbain, B. On the feasibility of measuring urban air pollution by wireless distributed sensor networks. Sci. Total Environ. 2015, 502, 537–547. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Environmental Health Science. Validation and Demonstration of Devices for Environmental Exposure Assessment (R21/R33). 2013. Available online: https://grants.nih.gov/grants/guide/rfa-files/RFA-ES-13-013.html (accessed on 2 May 2017).
- U.S. Environmental Protection Agency. Village Green Project. 4/12/17. Available online: https://www.epa.gov/air-research/village-green-project (accessed on 2 May 2017).
- U.S. Environmental Protection Agency. (2013) DRAFT Roadmap for Next Generation Air Monitoring. Available online: https://www.epa.gov/sites/production/files/2014-09/documents/roadmap-20130308.pdf (accessed on 12 July 2017).
- Wan, J.; Hagler, G.; Williams, R.; Sharpe, B.; Weinstock, L.; Rice, J. Field assessment of the Village Green Project: An autonomous community air quality monitoring system. Environ. Sci. Technol. 2015. [Google Scholar] [CrossRef]
- Hindin, D.; Grumbles, B.; Wyeth, G.; Beneditc, K.; Watkins, T.; Aburn, G., Jr.; Ulrich, M.; Lang, S.; Poole, K.; Dapolito Dunn, A. Advanced monitoring technology: Opportunities and challenges a path forward for EPA, states, and tribes. EM Environ. Manag. 2016, 11, 16–21. [Google Scholar]
- Keating, M.; Benedict, K.; Evans, R.; Jenkins, S.; Mannshardt, E.; Stone, S.L. Interpreting and communicating short-term air sensor data. EM Environ. Manag. 2016, 11, 22–25. [Google Scholar]
- Mannshardt, E.; Benedict, K.; Jenkins, S.; Keating, M.; Mintz, D.; Stone, S. Analysis of short-term ozone and PM2.5 measurements: Characteristics and relationships for air sensor messaging. J. Air Waste Manag. Assoc. 2016, 67, 462–474. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. History of Acute Exposure Guideline Levels (AEGLs). Available online: https://www.epa.gov/aegl/history-acute-exposure-guideline-levels-aegls (accessed on 12 July 2017).
- NRC. Standing Operating Procedures for Developing Acute Exposure Guideline Levels (Aegls) for Hazardous Chemicals; National Academy Press: Washington, DC, USA, 2001.
- Young, R.A.; Bast, C.B.; Wood, C.S.; Adeshina, F. Overview of the Standing Operating Procedure (SOP) for the development of Provisional Advisory Levels (PALs). Inhal. Toxicol. 2009, 21, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed]
- Ott, W. Human Activity Patterns: A Review of the Literature for Estimating Time Spent Indoors, Outdoors, and In-Transit; U.S. Environmental Protection Agency, Office of Research and Development: Las Vegas, NV, USA, 1989.
- Robinson, J.P.; Thomas, J. Time Spent in Activities, Locations, and Microenvironments: A California National Comparison; U.S. Environmental Protection Agency: Las Vegas, NV, USA, 1992.
- U.S. Environmental Protection Agency. Child-Specific Exposure Factors Handbook (Final Report) 2008; U.S. Environmental Protection Agency: Washington, DC, USA, 2008; EPA/600/R-06/096F. Available online: http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=199243 (accessed on 12 July 2017).
- Wallace, L.A. Project Summary: The Total Exposure Assessment Methodology (TEAM) Study; U.S. Environmental Protection Agency: Washington, DC, USA, 1987.
- SAB. Integrated Human Exposure Committee Commentary on Indoor Air Strategy; U.S. Environmental Protection Agency: Washington, DC, USA, 1998.
- Nehr, S.; Hosen, E.; Tanabe, S.I. Emerging developments in the standardized chemical characterization of indoor air quality. Environ. Int. 2017, 98, 233–237. [Google Scholar] [CrossRef] [PubMed]
- NRC. Toxicity Testing in the 21st Century: A Vision and a Strategy; National Academies Press: Washington, DC, USA, 2007.
- NRC. Exposure Science in the 21st Century: A Vision and a Strategy; National Academies Press: Washington, DC, USA, 2012.
- National Academies of Sciences, Engineering, and Medicine. Using 21st Century Science to Improve Risk-Related Evaluations; National Academies Press: Washington, DC, USA, 2017. [Google Scholar]
- Mattingly, C.J.; Mckone, T.E.; Callahan, M.A.; Blake, J.A.; Hubal, E.A. Providing the missing link: The exposure science ontology ExO. Environ. Sci. Technol. 2012, 46, 3046–3053. [Google Scholar] [CrossRef] [PubMed]
- Villeneuve, D.L.; Crump, D.; Garcia-Reyero, N.; Hecker, M.; Hutchinson, T.H.; Lalone, C.A.; Landesmann, B.; Lettieri, T.; Munn, S.; Nepelska, M.; et al. Adverse outcome pathway (AOP) development I: Strategies and principles. Toxicol. Sci. 2014, 142, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Villeneuve, D.L.; Crump, D.; Garcia-Reyero, N.; Hecker, M.; Hutchinson, T.H.; Lalone, C.A.; Landesmann, B.; Lettieri, T.; Munn, S.; Nepelska, M.; et al. Adverse outcome pathway development II: Best practices. Toxicol. Sci. 2014, 142, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Teeguarden, J.G.; Tan, Y.M.; Edwards, S.W.; Leonard, J.A.; Anderson, K.A.; Corley, R.A.; Kile, M.L.; Simonich, S.M.; Stone, D.; Tanguay, R.L.; et al. Completing the link between exposure science and toxicology for improved environmental health decision making: The aggregate exposure pathway framework. Environ. Sci. Technol. 2016, 50, 4579–4586. [Google Scholar] [CrossRef] [PubMed]
- Hulla, J.; Snawder, J.E.; Proctor, S.P.; Chapman, G.D. DOD impact assessment and management of naphthalene-related risks. Toxicologist 2010, 114, 400. [Google Scholar]
- Hug, W.F.; Bhartia, R.; Reid, R.D.; Reid, M.R.; Oswal, P.; Lane, A.L.; Sijapati, K.; Sullivan, K.; Hulla, J.E.; Snawder, J.; et al. Advanced environmental, chemical, and biological sensing technologies IX. In Wearable Real-Time Direct-Reading Naphthalene and VOC Personal Exposure Monitor; Vo-Dinh, T., Lieberman, R.A., Gauglitz, G., Eds.; SPIE: Bellingham, WA, USA, 2012; Volume 8366. [Google Scholar]
- Hulla, J.; Proctor, S.; Snawder, J.E. The naphthalene dosimeter—Vanguard technology for improved health protection. Toxicologist 2015, 144, 110. [Google Scholar]
- U.S. Environmental Protection Agency. Integrated Science Assessment for Ozone and Related Photochemical Oxidants; U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment-RTP Division: Research Triangle Park, NC, USA, 2013.
- Mcdonnell, W.F.; Stewart, P.W.; Smith, M.V.; Kim, C.S.; Schelegle, E.S. Prediction of lung function response for populations exposed to a wide range of ozone conditions. Inhal. Toxicol. 2012, 24, 619–633. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.S.; Gordon, T.; Price, O.; Asgharian, B. Thoracic and respirable particle definitions for human health risk assessment. Part. Fibre Toxicol. 2013, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- ICRP. Human Respiratory Tract Model for Radiological Protection: A Report of a Task Group of the International Commission on Radiological Protection; Pergamon Press: New York, NY, USA, 1994; Volume 24, pp. 1–482. [Google Scholar]
- Koehler, K.A.; Clark, P.; Volckens, J. Development of a sampler for total aerosol deposition in the human respiratory tract. Ann. Occup. Hyg. 2009, 53, 731–738. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. Integrated Science Assessment for Oxides of Nitrogen-Health Criteria (Final Report); U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment: Research Triangle Park, NC, USA, 2016.
- Brown, J.S. Nitrogen dioxide exposure and airway responsiveness in individuals with asthma. Inhal. Toxicol. 2015, 27, 1–14. [Google Scholar] [CrossRef] [PubMed]
- U.S. Congress. Clean Air Act as Amended in 1990, Section 112 (b) (1) Hazardous Air Pollutants. 1990. Available online: https://www.epa.gov/history/epa-history-clean-air-act-amendments-1990 (accessed on 12 July 2017).
- Hoover, M.D.; Cox, M. Public protection from nuclear, chemical, and biological terrorism: Health Physics Society 2004 summer school. In A Life-Cycle Approach for Development and Use of Emergency Response and Health Protection Instrumentation; Brodsky, A., Johnson, R.H., Groans, R.E., Eds.; Medical Physics: Madison, WI, USA, 2004; pp. 317–324. [Google Scholar]
- Hoover, M.D.; Cox, M. Radioactive air sampling methods. In A Life-Cycle Approach to Development and Application of Air Sampling Methods and Instrumentation; Maiello, M.L., Hoover, M.D., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2011; pp. 43–52. [Google Scholar]
- NNI. Nanotechnology for Sensors and Sensors for Nanotechnology: Improving and Protecting Health, Safety, and Environment; NNI: Washington, DC, USA, 2012.
- Hoover, M.D.; Debord, D.G. Turning numbers into knowledge: Sensors for safety, health, well-being, and productivity. Synergist 2015, 26, 22–26. [Google Scholar]
- InnoCentive. My Air, My Health: An HHS/EPA Challenge. Available online: https://www.innocentive.com/ar/challenge/9932947 (accessed on 12 July 2017).
- U.S. Environmental Protection Agency. AirNow. Available online: https://www.airnow.gov/ (accessed on 12 July 2017).
- De la Iglesia, D.; Harper, S.; Hoover, M.D.; Klaessig, F.; Lippelli, P.; Maddux, B.; Morse, J.; Nel, A.; Rajan, K.; Reznik-Zellen, R.; et al. Nanoinformatics 2020 Roadmap. National Nanomanufacturing Network 2011. Available online: http://eprints.internano.org/607/ (accessed on 20 June 2017).[Green Version]
- Hoover, M.D.; Myers, D.S.; Cash, L.J.; Guilmette, R.A.; Kreyling, W.G.; Oberdörster, G.; Smith, R.; Cassata, J.R.; Boecker, B.B.; Grissom, M.P. Application of an informatics-based decision-making framework and process to the assessment of radiation safety in nanotechnology. Health Phys. 2015, 108, 179–194. [Google Scholar] [CrossRef] [PubMed]
- NNI. Nanotechnology Signature Initiative: Nanotechnology Knowledge Infrastructure (NKI) Data Readiness Levels Discussion Draft; NNI: Washington, DC, USA, 2013. Available online: https://www.nano.gov/node/1015 (accessed on 20 June 2017).
- Hendren, C.O.; Powers, C.M.; Hoover, M.D.; Harper, S.L. The Nanomaterial Data Curation Initiative: A collaborative approach to assessing, evaluating, and advancing the state of the field. Beilstein J. Nanotechnol. 2015, 6, 1752–1762. [Google Scholar] [CrossRef] [PubMed]
- Google. Mapping the Invisible: Street View Cars Add Air Pollution Sensors. Available online: https://environment.google/projects/airview/ (accessed on 12 July 2017).
- U.S. National Library of Medicine. PubMed. Available online: https://www.ncbi.nlm.nih.gov/pubmed (accessed on 17 August 2017).
- Oltra, C.; Sala, R.; Boso, A.; Asensio, S.L. Public engagement on urban air pollution: An exploratory study of two interventions. Environ. Monit. Assess. 2017, 189, 296. [Google Scholar] [CrossRef] [PubMed]
- U.S. National Library of Medicine. Fact Sheet: MEDLINE® Journal Selection. 30 June 2017. Available online: https://www.nlm.nih.gov/pubs/factsheets/jsel.html (accessed on 17 August 2017).
- U.S. National Library of Medicine. PubMed Commons. Available online: https://www.ncbi.nlm.nih.gov/pubmedcommons/ (accessed on 17 August 2017).
- Fierz, M.; Houle, C.; Steigmeier, P.; Burtscher, H. Design, Calibration, and field performance of a miniature diffusion size classifier. Aerosol Sci. Technol. 2011, 45, 1–10. [Google Scholar] [CrossRef]
- Kulkarni, P.; Qi, C.; Fukushima, N. Miniature differential mobility analyzer for compact field-portable spectrometers. Aerosol Sci. Technol. 2016, 50, 1167–1179. [Google Scholar] [CrossRef] [PubMed]
- Fadel, T.R.; Farrell, D.F.; Friedersdorf, L.E.; Griep, M.H.; Hoover, M.D.; Meador, M.A.; Meyyappan, M. Toward the responsible development and commercialization of sensor nanotechnologies. ACS Sens. 2016, 1, 207–216. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woodall, G.M.; Hoover, M.D.; Williams, R.; Benedict, K.; Harper, M.; Soo, J.-C.; Jarabek, A.M.; Stewart, M.J.; Brown, J.S.; Hulla, J.E.; et al. Interpreting Mobile and Handheld Air Sensor Readings in Relation to Air Quality Standards and Health Effect Reference Values: Tackling the Challenges. Atmosphere 2017, 8, 182. https://doi.org/10.3390/atmos8100182
Woodall GM, Hoover MD, Williams R, Benedict K, Harper M, Soo J-C, Jarabek AM, Stewart MJ, Brown JS, Hulla JE, et al. Interpreting Mobile and Handheld Air Sensor Readings in Relation to Air Quality Standards and Health Effect Reference Values: Tackling the Challenges. Atmosphere. 2017; 8(10):182. https://doi.org/10.3390/atmos8100182
Chicago/Turabian StyleWoodall, George M., Mark D. Hoover, Ronald Williams, Kristen Benedict, Martin Harper, Jhy-Charm Soo, Annie M. Jarabek, Michael J. Stewart, James S. Brown, Janis E. Hulla, and et al. 2017. "Interpreting Mobile and Handheld Air Sensor Readings in Relation to Air Quality Standards and Health Effect Reference Values: Tackling the Challenges" Atmosphere 8, no. 10: 182. https://doi.org/10.3390/atmos8100182
APA StyleWoodall, G. M., Hoover, M. D., Williams, R., Benedict, K., Harper, M., Soo, J. -C., Jarabek, A. M., Stewart, M. J., Brown, J. S., Hulla, J. E., Caudill, M., Clements, A. L., Kaufman, A., Parker, A. J., Keating, M., Balshaw, D., Garrahan, K., Burton, L., Batka, S., ... Thompson, B. (2017). Interpreting Mobile and Handheld Air Sensor Readings in Relation to Air Quality Standards and Health Effect Reference Values: Tackling the Challenges. Atmosphere, 8(10), 182. https://doi.org/10.3390/atmos8100182