Numerical Simulations of the Impacts of Mountain on Oasis Effects in Arid Central Asia
Abstract
:1. Introduction
2. Experiments
2.1. Study Area
2.2. Model Description and Configuration
2.3. Data
2.3.1. Forcing Data and In Situ Measurements
2.3.2. Actual Land Surface Parameters
2.4. Experimental Design
3. Results and Analysis
3.1. Comparison of Actual LC, Albedo, LAI and GVF Data and the Corresponding Default Datasets
3.2. Simulation Evaluation
3.3. Impacts of Mountains on Oases Effects in MODS
3.3.1. Spatial Patterns of Air Temperature
3.3.2. Spatial Patterns of Humidity
3.3.3. Spatial Patterns of the 10-m Horizontal Circulation
4. Comparison with Previous Studies and an Assessment of Model Uncertainties
5. Conclusions
Supplementary Materials
Acknowledgments
Author contribution
Conflicts of Interest
Abbreviations
AVHRR | Advanced Very High Resolution Radiometer |
BRDF | Bidirectional reflectance distribution function |
CA | Central Asia |
LAI | Leaf area index |
LE | Latent heat flux |
LC | Land cover |
MBE | Mean bias error |
MM5 | Fifth-generation Penn State/NCAR Mesoscale Model |
MODIS | MODerate Resolution Imaging Spectroradiometer |
MODS | Mountain-oasis-desert System |
NCAR | National Center for Atmospheric Research |
NCEP | National Centers for Environmental Prediction |
NTM | North Tianshan Mountains |
OBC | Oasis breeze circulation |
Q2 | Specific humidity at 2 m |
r | Pearson correlation coefficient |
RMSE | Root mean squared error |
RH | 2-m relative humidity |
T2 | 2-m air temperature |
TIL | Temperature inversion layer |
USGS | U.S. Geological Survey |
GVF | Green vegetation fraction |
WRF | Weather Research and Forecasting model |
WS | Wind speed |
WD | Wind direction |
Appendix A
References
- Souza, V.; Espinosa-Asuar, L.; Escalante, A.E.; Eguiarte, L.E.; Farmer, J.; Forney, L.; Lloret, L.; Rodríguez-Martínez, J.M.; Soberón, X.; Dirzo, R. An Endangered Oasis of Aquatic Microbial Biodiversity in the Chihuahuan Desert. Proc. Natl. Acad. Sci. USA 2006, 103, 6565–6570. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.R.; Hawkins, A.L.; Asmerom, Y.; Polyak, V.; Giegengack, R. New Age Constraints on the Middle Stone Age Occupations of Kharga Oasis, Western Desert, Egypt. J. Hum. Evol. 2007, 52, 690–701. [Google Scholar] [CrossRef] [PubMed]
- Soltan, M. Evaluation of Ground Water Quality in Dakhla Oasis (Egyptian Western Desert). Environ. Monit. Assess. 1999, 57, 157–168. [Google Scholar] [CrossRef]
- Li, J.; Zhao, C.; Zhu, H.; Li, Y.; Wang, F. Effect of plant species on shrub fertile island at an oasis–desert ecotone in the south junggar basin, china. J. Arid Environ. 2007, 71, 350–361. [Google Scholar] [CrossRef]
- Luo, G.P.; Feng, Y.X.; Zhang, B.P.; Cheng, W.M. Sustainable Land-Use Patterns for Arid Lands: A Case Study in the Northern Slope Areas of the Tianshan Mountains. J. Geogr. Sci. 2010, 20, 510–524. [Google Scholar] [CrossRef]
- Meng, X.H.; Lü, S.H.; Zhang, T.T.; Guo, J.X.; Gao, Y.H.; Bao, Y.; Wen, L.J.; Luo, S.Q.; Liu, Y.P. Zy-Numerical Simulations of the Atmospheric and Land Conditions over the Jinta Oasis in Northwestern China with Satellite-Derived Land Surface Parameters. Int. J. Climatol. 2009, 114. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, J.-W.; Zheng, Q.-H.; Yu, Y.-J. A Preliminary Study of Oasis Evolution in the Tarim Basin, Xinjiang, China. J. Arid Environ. 2003, 55, 545–553. [Google Scholar]
- Zhang, Q.; Luo, G.; Li, L.; Zhang, M.; Lv, N.; Wang, X. An Analysis of Oasis Evolution Based on Land Use and Land Cover Change: A Case Study in the Sangong River Basin on the Northern Slope of the Tianshan Mountains. J. Geogr. Sci. 2017, 27, 223–239. [Google Scholar] [CrossRef]
- Jia, B.; Zhang, Z.; Ci, L.; Ren, Y.; Pan, B.; Zhang, Z. Oasis Land-Use Dynamics and Its Influence on the Oasis Environment in Xinjiang, China. J. Arid Environ. 2004, 56, 11–26. [Google Scholar] [CrossRef]
- Sun, D.; Zhao, C.; Wei, H.; Peng, D. Simulation of the Relationship between Land Use and Groundwater Level in Tailan River Basin, Xinjiang, China. Quat. Int. 2011, 244, 254–263. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, D.; Li, Y.; Li, X. Soil Salinity Evolution and Its Relationship with Dynamics of Groundwater in the Oasis of Inland River Basins: Case Study from the Fubei Region of Xinjiang Province, China. Environ. Monit. Assess. 2008, 140, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cheng, G.D.; Liu, S.M.; Xiao, Q.; Ma, M.G.; Jin, R.; Che, T.; Liu, Q.H.; Wang, W.Z.; Qi, Y. Heihe Watershed Allied Telemetry Experimental Research (Hiwater): Scientific Objectives and Experimental Design. Bull. Am. Meteor. Soc. 2013, 94, 1145–1160. [Google Scholar] [CrossRef]
- Li, X.W.; Jin, M.G.; Zhou, N.Q.; Huang, J.; Jiang, S.; Telesphore, H. Evaluation of Evapotranspiration and Deep Percolation Under Mulched Drip Irrigation in an Oasis of Tarim Basin, China. J. Hydrol. 2016, 538, 677–688. [Google Scholar] [CrossRef]
- Ling, H.B.; Xu, H.L.; Fu, J.Y.; Fan, Z.L.; Xu, X.W. Suitable Oasis Scale in a Typical Continental River Basin in an Arid Region of China: A Case Study of the Manas River Basin. Quat. Int. 2013, 286, 116–125. [Google Scholar] [CrossRef]
- Wang, P.; Li, X.Y.; Huang, Y.M.; Liu, S.M.; Xu, Z.W.; Wu, X.C.; Ma, Y.J. Numerical Modeling the Isotopic Composition of Evapotranspiration in an Arid Artificial Oasis Cropland Ecosystem with High-Frequency Water Vapor Isotope Measurement. Agric. For. Meteorol. 2016, 230, 79–88. [Google Scholar] [CrossRef]
- Li, X.; Yang, K.; Zhou, Y. Progress in the Study of Oasis-Desert Interactions. Agric. For. Meteorol. 2016, 230, 1–7. [Google Scholar] [CrossRef]
- Liu, S.H.; Liu, H.P.; Hu, Y.; Zhang, C.Y.; Liang, F.M.; Wang, J.H. Numerical Simulations of Land Surface Physical Processes and Land-Atmosphere Interactions over Oasis-Desert/Gobi Region. Sci. China Ser. D Earth Sci. 2007, 50, 290–295. [Google Scholar] [CrossRef]
- Su, C.X.; Hu, Y.Q. The Structure of the Oasis Cold Island in the Planetary Boundary Layer. Acta Meteorol. Sin. 1987, 45, 322–328. [Google Scholar]
- Rosenberg, N.J. Seasonal Patterns in Evapotranspiration by Irrigated Alfalfa in the Central Great Plains. Agron. J. 1969, 61, 879–886. [Google Scholar] [CrossRef]
- Wang, J.; Sahashi, K.; Ohtaki, E.; Maitani, T.; Tsukamoto, O.; Mistsuta, Y.; Kobayashi, T.; Zhang, H.; Li, Q.; Xie, Z. Energy and Mass Transfer Characteristics of Soil-Vegetationatmosphere System in Oasis Area-Outline of the Bio Meteorological Observation Period (Bop). In Proceedings of the International Symposium on HEIFE, Kyoto University, Kyoto, Japan, 8–11 November 1993; pp. 507–514. [Google Scholar]
- Chu, P.; Liv, S.H.; Chen, Y.C. A Numerical Modeling Study on Desert Oasis Self-Supporting Mechanisms. J. Hydrol. 2005, 312, 256–276. [Google Scholar] [CrossRef]
- Gao, Y.H.; Chen, Y.C.; Lv, S.H. Numerical Simulation of the Critical Scale of Oasis Maintenance and Development in the Arid Regions of Northwest China. Adv. Atmos. Sci. 2004, 21, 113–124. [Google Scholar] [CrossRef]
- Han, B.; Lv, S.; Ao, Y. Analysis on the Interaction between Turbulence and Secondary Circulation of the Surface Layer at Jinta Oasis in Summer. Adv. Atmos. Sci. 2010, 27, 605. [Google Scholar] [CrossRef]
- Lv, S.H.; Shang, L.Y.; Liang, L.; Luo, S.Q. Numerical Simulation of Microclimate Effect in Jinta Oasis. Plateau Meteorol. 2005, 24, 649–655. [Google Scholar]
- Meng, X.; Lu, S.; Gao, Y.; Guo, J. Simulated Effects of Soil Moisture on Oasis Self-Maintenance in a Surrounding Desert Environment in Northwest China. Int. J. Climatol. 2015, 35, 4116–4125. [Google Scholar] [CrossRef]
- Meng, X.H.; Lu, S.; Zhang, T.; Ao, Y.; Li, S.; Bao, Y.; Wen, L.; Luo, S. Impacts of Inhomogeneous Landscapes in Oasis Interior on the Oasis Self-Maintenance Mechanism by Integrating Numerical Model with Satellite Data. Hydrol. Earth Syst. Sci. 2012, 16, 3729–3738. [Google Scholar] [CrossRef] [Green Version]
- Nnamchi, H.C. Numerical Simulation of Fluxes Generated by Inhomogeneities of the Underlying Surface over the Jinta Oasis in Northwestern China. Adv. Atmos. Sci. 2011, 28, 887–906. [Google Scholar]
- Wen, X.H.; Lu, S.H.; Jin, J.M. Integrating Remote Sensing Data With Wrf for Improved Simulations of Oasis Effects on Local Weather Processes Over an Arid Region in Northwestern China. J. Hydrol. 2012, 13, 573–587. [Google Scholar] [CrossRef]
- Zardi, D.; Whiteman, C.D. Diurnal Mountain Wind Systems. Bull. Am. Meteorol. Soc. 2013, 35–119. [Google Scholar] [CrossRef]
- Helgason, W.; Pomeroy, J.W. Characteristics of the Near-Surface Boundary Layer within a Mountain Valley During Winter. J. Appl. Meteorol. 2012, 51, 583–597. [Google Scholar] [CrossRef]
- Yan, J.W.; Liu, J.Y.; Chen, B.Z.; Feng, M.; Fang, S.F.; Xu, G.; Zhang, H.F.; Che, M.L.; Liang, W.; Hu, Y.F. Changes in the Land Surface Energy Budget in Eastern China over the Past Three Decades: Contributions of Land-Cover Change and Climate Change. J. Clim. 2014, 27, 9233–9252. [Google Scholar] [CrossRef]
- Lenderink, G.; Van Ulden, A.; Van den Hurk, B.; Van Meijgaard, E. Summertime Inter-Annual Temperature Variability in an Ensemble of Regional Model Simulations: Analysis of the Surface Energy Budget. Clim. Chang. 2007, 81, 233–247. [Google Scholar] [CrossRef]
- Vidale, P.L.; Lüthi, D.; Wegmann, R.; Schär, C. European Summer Climate Variability in a Heterogeneous Multi-Model Ensemble. Clim. Chang. 2007, 81, 209–232. [Google Scholar] [CrossRef]
- Müller, O.V.; Berbery, E.H.; Alcaraz-Segura, D.; Ek, M.B. Regional Model Simulations of the 2008 Drought in Southern South America Using a Consistent Set of Land Surface Properties. J. Clim. 2014, 27, 6754–6778. [Google Scholar] [CrossRef]
- Cowan, P.J. Geographic Usage of the Terms Middle Asia and Central Asia. J. Arid Environ. 2007, 69, 359–363. [Google Scholar] [CrossRef]
- Li, C.F.; Zhang, C.; Luo, G.P.; Chen, X.; Maisupova, B.; Madaminov, A.A.; Han, Q.F.; Djenbaev, B.M. Carbon Stock and Its Responses to Climate Change in Central Asia. Glob. Chang. Biol. 2015, 21, 1951–1967. [Google Scholar] [CrossRef] [PubMed]
- Bothe, O.; Fraedrich, K.; Zhu, X.H. Precipitation Climate of Central Asia and the Large-Scale Atmospheric Circulation. Theor. Appl. Climatol. 2012, 108, 345–354. [Google Scholar] [CrossRef]
- Sorg, A.; Bolch, T.; Stoffel, M.; Solomina, O.; Beniston, M. Climate Change Impacts on Glaciers and Runoff in Tien Shan (Central Asia). Nat. Clim. Chang. 2012, 2, 725–731. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Cole, R.; Adams, J.M.; Kapustin, G. Impacts of Climate and Land-Cover Changes in Arid Lands of Central Asia. J. Arid Environ. 2005, 62, 285–308. [Google Scholar] [CrossRef]
- Yao, Y.H.; Zhang, B.P. A Preliminary Study of the Heating Effect of the Tibetan Plateau. PLoS ONE 2013, 8, e68750. [Google Scholar] [CrossRef] [PubMed]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research Wrf; Version 2; DTIC Document: Fort Belvoir, VA, USA, 2005. [Google Scholar]
- Yin, J.F.; Zhan, X.W.; Zheng, Y.F.; Hain, C.R.; Ek, M.; Wen, J.; Fang, L.; Liu, J.C. Improving Noah Land Surface Model Performance Using Near Real Time Surface Albedo and Green Vegetation Fraction. Agric. For. Meteorol. 2016, 218, 171–183. [Google Scholar] [CrossRef]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and verification of the unified noah land surface model in the WRF model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 10–15 January 2004; pp. 11–15. [Google Scholar]
- Chen, F.; Mitchell, K.; Schaake, J.; Xue, Y.K.; Pan, H.L.; Koren, V.; Duan, Q.Y.; Ek, M.; Betts, A. Modeling of Land Surface Evaporation by Four Schemes and Comparison with Fife Observations. Int. J. Climatol. 1996, 101, 7251–7268. [Google Scholar] [CrossRef]
- Seungbum, H.; Lakshmi, V.; Small, E.E.; Chen, F.; Tewari, M.; Manning, K.W. Effects of Vegetation and Soil Moisture on the Simulated Land Surface Processes from the Coupled WRF/Noah Model. Int. J. Climatol. 2009, 114. [Google Scholar]
- Branch, O.; Warrach-Sagi, K.; Wulfmeyer, V.; Cohen, S. Simulation of Semi-Arid Biomass Plantations and Irrigation Using the WRF-Noah Model–a Comparison with Observations from Israel. Hydrol. Earth Syst. Sci. 2014, 18, 1761–1783. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an Advanced Land Surface-Hydrology Model with the Penn State-Ncar mm5 Modeling System. Part I: Model Implementation and Sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Qiu, Y.; Hu, Q.; Zhang, C. WRF Simulation and Downscaling of Local Climate in Central Asia. Int. J. Climatol. 2017, 37, 513–528. [Google Scholar] [CrossRef]
- Song, Y.H.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar]
- Song, Y.H.; Dudhia, J.; Chen, S.H. A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation. Mon. Weather Rev. 2004, 132, 103–120. [Google Scholar]
- Bretherton, C.S.; McCaa, J.R.; Grenier, H. A New Parameterization for Shallow Cumulus Convection and Its Application to Marine Subtropical Cloud-Topped Boundary Layers. Part i: Description and 1d Results. Mon. Weather Rev. 2004, 132, 864–882. [Google Scholar] [CrossRef]
- Collins, W.; Rasch, P.; Boville, B.A.; Hack, J.J.; McCaa, J.R.; Williamson, D.L.; Kiehl, J.T.; Briegleb, B.; Bitz, C.; Lin, S.J. Description of the Ncar Community Atmosphere Model (cam 3.0). NCAR Tech. Note NCAR/TN-464 STR 2004, 226, 1–200. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P. The Era-Interim Reanalysis: Configuration and Performance of the Data Assimilation System. Quart. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Rydsaa, J.; Stordal, F.; Tallaksen, L. Sensitivity of the Regional European Boreal Climate to Changes in Surface Properties Resulting from Structural Vegetation Perturbations. Biogeosciences 2015, 12, 3071–3087. [Google Scholar] [CrossRef]
- Cao, Q.; Yu, D.Y.; Georgescu, M.; Han, Z.; Wu, J.G. Zy-Impacts of Land Use and Land Cover Change on Regional Climate: A Case Study in the Agro-Pastoral Transitional Zone of China. Environ. Res. Lett. 2015, 10, 124025. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, M.; De Maeyer, P.; Kurban, A. Uncertainties in Classification System Conversion and an Analysis of Inconsistencies in Global Land Cover Products. ISPRS Int. J. Geo-Inf. 2017, 6, 112. [Google Scholar] [CrossRef]
- Chen, X. Land Use/Cover Change in Arid Area in China; Ke Xue Chu Ban She: Beijing, China, 2008. [Google Scholar]
- Miller, J.; Barlage, M.; Zeng, X.; Wei, H.; Mitchell, K.; Tarpley, D. Sensitivity of the Ncep/Noah Land Surface Model to the Modis Green Vegetation Fraction Data Set. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Lim, Y.-J.; Hong, J.; Lee, T.-Y. Spin-up Behavior of Soil Moisture Content over East Asia in a Land Surface Model. Meteorol. Atmos. Phys. 2012, 118, 151–161. [Google Scholar] [CrossRef]
- Kumar, A.; Chen, F.; Barlage, M.; Ek, M.B.; Niyogi, D. Assessing Impacts of Integrating Modis Vegetation Data in the Weather Research and Forecasting (WRF) Model Coupled to Two Different Canopy-Resistance Approaches. J. Appl. Meteorol. 2014, 53, 1362–1380. [Google Scholar] [CrossRef]
- Zhang, C.; Fan, G.; Ma, Z.; Cheng, B.; Zhao, B.; Feng, J.; Wang, H. Characteristics of Albedo over Different Underlying Surface in the Semi-Arid Area. Plateau Meteorol. 2015, 34, 11. [Google Scholar]
- Litan, S.; Shalamu, A.; Yu-dong, S. Effects of Drip irrigation Volume on Soil Water-Salt Transfer and Its Redistribution. Arid Zone Res. 2011, 1, 13. [Google Scholar]
- Zhang, L.; Jiang, P.; Wu, H.; Li, M. Research on Spectral Characteristics of Typical Soil in North Xinjiang. J. Soil Water Conserv. 2013, 1, 4. [Google Scholar]
- Liu, X.; Tian, C. Study on Dynamic and Balance of Salt for Cotton under Plastic Mulch in South Xinjiang. J. Soil Water Conserv. 2005, 6, 20. [Google Scholar]
- Hanna, S.R.; Yang, R.X. Evaluations of Mesoscale Models’ Simulations of Near-Surface Winds, Temperature Gradients and Mixing Depths. J. Appl. Meteorol. 2001, 40, 1095–1104. [Google Scholar] [CrossRef]
- Whiteman, C.D. Mountain Meteorology: Fundamentals and Applications; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Long, Z.P. Analysis of Dry and Wet Change in Northwest China in Recent 700 Years; Lanzhou University: Lanzhou, China, 2015. [Google Scholar]
Station | Longitude (°E) | Latitude (°N) | Altitude (m) | Land Cover Type | Time Interval | Parameters |
---|---|---|---|---|---|---|
S1 | 86.20 | 44.32 | 473.10 | Crop/Urban | Hourly | T2, RH, WS, WD |
S2 | 85.82 | 44.28 | 469.30 | Crop | Hourly | T2, RH, LE, SW, LW, WS, WD |
S3 | 85.25 | 44.85 | 338.10 | Crop/Desert | Hourly | T2, RH, WS, WD |
S4 | 86.10 | 45.02 | 347.80 | Crop | Hourly | T2, RH, WS, WD |
Land Use Type | Noah Soil Layer | Soil Moisture (cm3 cm−3) |
---|---|---|
Oasis | 0–10 cm | 0.38 (at 5 cm) |
10–40 cm | 0.47 (at 25 cm) | |
40–100 cm | 0.33 (at 70 cm) | |
100–200 cm | 0.26 (at 150 cm) | |
Desert | 0–10 cm | 0.07 (at 5 cm) |
10–40 cm | 0.10 (at 25 cm) | |
40–100 cm | 0.05 (at 70 cm) | |
100–200 cm | 0.06 (at 150 cm |
Time Periods | Statistics | Temperature (°C) | Specific Humidity (g kg−1) | ||
---|---|---|---|---|---|
mod | non-oasis | mod | non-oasis | ||
Day | Mean | 30.44 | 31.05 | 9.99 | 8.43 |
Variance | 1.67 | 1.69 | 0.78 | 0.38 | |
p-value | 3.16 × 10−10 << 0.01 * | 1.64 × 10−113 << 0.01 * | |||
Night | Mean | 23.36 | 26.73 | 10.05 | 9.97 |
Variance | 1.77 | 1.50 | 0.38 | 0.47 | |
p-value | 8.47 × 10−165 << 0.01 * | 0.075 > 0.05 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Luo, G.; Hamdi, R.; Qiu, Y.; Wang, X.; Maeyer, P.D.; Kurban, A. Numerical Simulations of the Impacts of Mountain on Oasis Effects in Arid Central Asia. Atmosphere 2017, 8, 212. https://doi.org/10.3390/atmos8110212
Zhang M, Luo G, Hamdi R, Qiu Y, Wang X, Maeyer PD, Kurban A. Numerical Simulations of the Impacts of Mountain on Oasis Effects in Arid Central Asia. Atmosphere. 2017; 8(11):212. https://doi.org/10.3390/atmos8110212
Chicago/Turabian StyleZhang, Miao, Geping Luo, Rafiq Hamdi, Yuan Qiu, Xinxin Wang, Philippe De Maeyer, and Alishir Kurban. 2017. "Numerical Simulations of the Impacts of Mountain on Oasis Effects in Arid Central Asia" Atmosphere 8, no. 11: 212. https://doi.org/10.3390/atmos8110212
APA StyleZhang, M., Luo, G., Hamdi, R., Qiu, Y., Wang, X., Maeyer, P. D., & Kurban, A. (2017). Numerical Simulations of the Impacts of Mountain on Oasis Effects in Arid Central Asia. Atmosphere, 8(11), 212. https://doi.org/10.3390/atmos8110212