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Abstract: The multi-wavelength absorption analyzer model (MWAA model) was recently proposed
to provide a source (fossil fuel combustion vs. wood burning) and a component (black carbon BC
vs. brown carbon BrC) apportionment of babs measured at different wavelengths, and to provide
the BrC Ångström Absorption exponent (αBrC). This paper shows MWAA model performances
and issues when applied to samples impacted by different sources. To this aim, the MWAA model
was run on samples collected at a rural (Propata) and an urban (Milan) site in Italy during the
winter period. Lower uncertainties on αBrC and a better correlation of the BrC absorption coefficient
(babs

BrC) with levoglucosan (tracer for wood burning) were obtained in Propata (compared to Milan).
Nevertheless, the correlation previously mentioned improved, especially in Milan, when providing
a priori information on αBrC to MWAA. Possible reasons for this improvement could be the more
complex mixture of sources present in Milan and the aging processes, which can affect aerosol
composition, particle mixing, and size distribution. OC and EC source apportionment showed that
wood burning was the dominating contributor to the carbonaceous fractions in Propata, whereas
a more complex situation was detected in Milan. Simultaneous babs(BC) apportionment and EC
measurements allowed MAC determination, which gave analogous results at the two sites.

Keywords: Multi-Wavelength Absorption Analyzer model; optical component apportionment;
optical source apportionment; aerosol absorption coefficient; polar photometer; brown carbon;
black carbon; Ångström Absorption exponent; light absorption; optical measurements of
particle-loaded filters

1. Introduction

Scattering and absorption properties of atmospheric aerosol are directly responsible for
aerosol-radiation interactions. In particular, aerosol light absorption provides a positive contribution
to the Earth radiation balance. In addition to the aerosol-radiation effects, absorbing aerosol
immersed in cloud droplets absorbs light and facilitates water evaporation and cloud dispersion,
an additional indirect effect that counteracts the cooling effect of cloud droplet nucleation [1]. Among
absorbing species, the black carbon (BC) is the main global-warming contributor in atmospheric
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aerosol. Nevertheless, great uncertainties (about 1 order of magnitude) are still associated with the
estimates of its radiative forcing contribution. They are mainly related to difficulties in assessing BC
spatial-temporal distribution and in the evaluation of the effects of the mixing state on BC optical
properties [1,2].

Pure BC is assumed to have an imaginary part of the refractive index independent of the
wavelength (λ). Thus, for pure BC small spheres the expected λ-dependence of the BC absorption
coefficient is babs

BC(λ)~λ−1 (e.g., [3]). In the past, BC and mineral dust were considered as the
only light-absorbing components in the atmospheric aerosol. In the last decade, another aerosol
component—the brown carbon (BrC) [4]—has been evidenced as a further contributor to absorption.
BrC is composed of organic material that weakly absorbs radiation at long visible wavelengths but
with enhanced absorption behavior towards short wavelengths. Its absorption characteristics can,
in principle, provide a positive contribution to the Earth radiation balance both as pure material and
modifying BC absorption characteristics by mixing effects (see e.g., [5,6]), but the extent of these effects
is still under debate [7,8]. Indeed, inconsistencies between theoretical/laboratory tests and in-field
observations were reported ([9] and therein cited literature). For this reason, most climate modeling
approaches currently do not include possible effects related to BC and BrC mixing [9,10].

BrC is still poorly characterized due to its chemical complexity (affecting also optical properties) and
unclear emission sources and formation processes. Compounds contributing to BrC were reported to span
from extremely low volatility compounds (ELVOC)—e.g., Humic-Like Substances (HULIS)—to much
more volatile compounds related to secondary organic aerosol (SOA) ([9] and therein-cited literature),
even if the contribution to absorption seems to be dominated by ELVOC [11,12]. Also, BrC source
emissions merit further investigation: wood burning has been identified as an important primary BrC
source (e.g., [11,13–15]). Recently, other possible sources of BrC have been reported, e.g., biogenic
contributions, BrC formation due to secondary processes [9], and possible BrC emissions by gasoline
vehicles [16] or coal combustion [17]. Nevertheless, BrC sources other than wood burning are generally
neglected in optical source apportionment approaches (e.g., [18–21]). Also BrC light-absorption
properties need further investigation. Indeed, the chemical complexity of BrC affects its optical
behavior. For example, an increase of light absorption potential at increasing molecular weight was
reported [12,22]. Furthermore, the combustion efficiency and photochemical or aging processes affect
BrC optical properties [23]. Despite all these issues, attempts of including BrC in climate models are
developing in recent years ([24] and therein-cited literature).

It is noteworthy that several studies on BrC absorption properties and mass absorption coefficient
were carried out after BrC extraction in water or solvents (see e.g., [15,25–31]). Nevertheless, particle
optical properties—even for homogeneous particles—depend on particle size and shape in the
atmosphere (see e.g., [32]), which can be different from the properties of bulk or extracted material.
To provide more robust information on the properties of BrC-containing particles, studies carried out on
bulk/extracted material can be coupled to optical models (e.g., by Mie theory or the core-shell model),
but also in this case assumptions, e.g., on particle size and mixing state, are needed (see, e.g., [31]). Thus,
it is important to carry out studies aimed at providing information on BrC absorption characteristics
minimizing the sample pre-treatment.

Moving in the previous frame, source apportionment models based on multi-λmeasurements of
the aerosol absorption coefficient (babs(λ)), determined on aerosol collected on filter with no further
treatments, were proposed in the literature (i.e., the Aethalometer model [18] and the Multi-Wavelength
Absorption Analyzer model (MWAA model) [20]). The Aethalometer model is a widespread model
providing information on source contributions by fossil fuel combustion (FF) and wood burning (WB).
It is based on assumptions about the Ångström absorption exponent (α) of the two sources. As a step
forward, Massabò et al. [20] proposed the MWAA model to provide not only a source (FF and WB)
but also a component (BC and BrC) apportionment of babs(λ). Furthermore, the MWAA model can
provide information on α for BrC (αBrC).
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Massabò et al. [20] applied the MWAA model to multi-λ babs(λ) data measured off-line by
laboratory instrumentation (Multi-Wavelength Absorption Analyzer [20,33]). Nevertheless, the model
can be applied to any babs(λ) data, provided that at least 4-λmeasurements are performed. For example,
off-line measurements performed by the polar photometer PP_UniMI [34,35] or on-line Aethalometer
measurements (properly corrected) [36] can be other possible inputs to the MWAA model. The babs(λ)
measurements carried out by such instruments do not require any sample treatment after particle
collection. Thus, it is expected that the αBrC information provided by the MWAA model on such data
represents the BrC optical absorption behavior in atmosphere better than measurements carried out
after BrC water/solvent extraction – even if re-arrangement of BrC material on filter fibers cannot be
excluded [37].

In this work, a comparison is performed between the MWAA model performances on PM10
(i.e., particles with an aerodynamic diameter lower than 10 µm) datasets collected at sites with different
characteristics. The first dataset was collected at a rural background site in the Italian Appennines.
The second dataset was collected at an urban background site in Milan (Italy). In the paper, we evidence
merits and issues of the application of the MWAA model at the two sites.

2. Experiments

2.1. Sites and Sampling

The data reported in this manuscript are referred to two different campaigns.
The first campaign was performed in Propata, a rural site in Italy. Propata is a small village (less

than 150 inhabitants) at 990 m a.s.l. in the Ligurian Appennines. During wintertime, low temperatures
are usually reached and wood burning is extensively used for domestic heating and cooking [20,33,38].
PM10 samples were collected on pre-fired (700 ◦C, 1-h) quartz-fiber filters (47 mm diameter,
2500QAO-UP, Pall) using a low-volume sampler (flow-rate 2.3 m3/h, European inlet compliant with
the EN-12341 norm). Sampling duration was 48-h from midnight to midnight. Aerosol sampling
was performed between 7th November 2014 and 7th January 2015. Twenty-eight PM10 samples were
available in total.

The second sampling campaign was performed in Milan (Italy) at an urban background site placed
on the roof (about 10 m a.g.l.) of the Department of Physics of the University of Milan. Milan is situated
in the Po Valley, which is one of the main hot-spot pollution areas in Europe. For this reason, different
source apportionment studies by receptor models based on chemical characterization were carried out
in the last decade on integrated aerosol size-fractions (e.g., [39–42]) and on suitably characterized [43]
size-segregated samples [44]. These works evidenced that the site is impacted by a complex mixture
of sources; traffic (both exhaust and non-exhaust), wood burning, re-suspended dust, and industry
were identified as the main primary sources, but secondary compounds play a key role in explaining
the total measured mass. The influence of particle aging processes and the impact of both local and
regional contributions were identified in the size-segregated study [44]. PM10 samples were collected
on pre-fired quartz fiber filters (same filter type and treatment as in Propata) using an EPA inlet
operating at 1 m3/h. Twenty-eight samples with 12-h resolution (9–21 or 21–9) were collected in the
period 21 November–21 December 2016.

2.2. Aerosol Absorption Coefficient Measurements by the MWAA Instrument and PP_UniMI

The Multi-Wavelength Absorption Analyzer (MWAA) instrument [20,33] and the polar
photometer PP_UniMI [34,35] are multi-wavelength devices providing babs(λ) measurements of aerosol
collected on filters. The babs(λ) measurements are performed at 375, 407, 532, 635, and 850 nm by
MWAA [20], and at 405, 532, 635, 780 nm by PP_UniMI [35].

The MWAA and PP_UniMI instruments measure the total light transmitted and diffused in the
front and back hemispheres by blank and loaded filters. To obtain babs(λ) from these measurements,
multiple scattering between the layer containing the aerosol and the filter has to be properly considered.
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To this aim, the radiative transfer model proposed by Hänel [45,46] for polycarbonate filters and
extended by Petzold and Schönlinner [47] to fiber filters was applied. Briefly, the model inputs are
the total light scattered in the front and back hemispheres by blank and loaded filters. The sample is
modelled into two layers, one containing aerosol (aerosol-filter layer) and the other composed by the
filter matrix only. All interactions between the aerosol-filter layer and the filter matrix are considered.
The model outputs are the single scattering albedo (ω) and the optical depth (τ) of the aerosol-filter
layer. As the absorption contribution is related to aerosol only, the absorbance (ABS) of the deposited
aerosol can be evaluated as ABS = (1 − ω)·τ. Sampling volume (V) and deposit area (A) can be
then exploited to retrieve the aerosol absorption coefficient in air. It is noteworthy that—opposite to
instrumentation based on transmitted light only—the simultaneous measurements of transmitted and
scattered light avoid the need for correction algorithms to account for the scattering properties of the
aerosol and/or of parallel measurements of the scattering coefficient.

The MWAA instrument and PP_UniMI differ in their ways of assessing the total light scattered in
the front and back hemispheres. Indeed, the MWAA instrument applies the same approach presented
in Petzold and Schönlinner [47]: information on light diffused at fixed angles is used—together with
assumptions on the shape of the phase function for aerosol collected on fiber filters—to provide the
total scattered light by analytical functions. On the contrary, PP_UniMI performs angular-resolved
measurements with about 0.4◦ resolution in the range 0–173◦. Then, the total amounts of the light
diffused in the forward and back hemispheres are evaluated by solid angle integration. This allows
PP_UniMI to operate also on aerosol collected on other filter matrices (e.g., membrane filters, see [35])
with no need for external information on the phase function shape. Assumptions on the phase function
shape are needed only for extrapolating values in the range 173–180◦.

The Milan dataset was analyzed both by the MWAA instrument and PP_UniMI for sake of
comparison. Scatterplots of MWAA and PP_UniMI measurements at comparable wavelengths
(i.e., 635 nm, 532 nm, and 407/405 nm) are reported in Figure 1. Deming regression was performed as
measurement uncertainties are comparable between the two instruments (about 10%). It is noteworthy
that all regression line slopes were compatible to 1 and intercepts were compatible to 0 for significant
level of 0.02. Furthermore, measurements were very well correlated with correlation coefficient R > 0.98
at all wavelengths.
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Figure 1. Scatterplot of the polar photometer PP_UniMI vs. Multi-Wavelength Absorption Analyzer
(MWAA) measurements at comparable wavelengths. Deming regression lines are also represented.
R > 0.98 was found in all cases. Please note that the MWAA instrument operates at 407 nm, whereas
PP_UniMI operates at 405 nm for what concerns the blue light.

2.3. Chemical Characterization

After being analyzed with the MWAA instrument (and PP_UniMI in the case of Milan samples
only), one punch (1.5 cm2) of each filter was extracted by sonication (1-h) using 5 mL ultrapure (Milli-Q)
water. The extract was analyzed to determine levoglucosan concentration by High-Performance Anion
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Liquid Chromatography coupled with Pulsed Amperometric Detection (HPAEC-PAD) following the
procedure described in [48]. Minimum detection limit is about 2 ng/mL (i.e., 0.7 ng/m3 in Propata
and 6.6 ng/m3 in Milan, due to different sampling conditions) and uncertainties are about 11%.

For the determination of the carbonaceous fraction, a second filter punch (1.0 cm2) of each
filter was analyzed by a Thermal Optical transmittance (TOT) instrument (Sunset Laboratory Inc.).
Propata samples were analyzed following the EUSAAR_2 protocol [49], while a NIOSH-like protocol
(He_870) [50] has been used in the case of the Milan samples. This choice has been taken to have
continuity with previous respective measurement campaigns. Minimum detection limit is 0.15 µg
carbon, corresponding to 0.02 µg/m3 in Propata and 0.15 µg/m3 in Milan due to different sampling
conditions. Analytical uncertainties were about 10–15% depending on the carbon fraction.

2.4. Optical Source and Component Apportionment: The Multi-Wavelength Absorption Analyzer Model

In this work, the optical approach known as Multi-Wavelength Absorption Analyzer model
(MWAA model) was applied to perform source and component apportionment of babs(λ) and
carbonaceous fractions (OC and EC). The detailed description of the model bases can be found
elsewhere [20]. In the following paragraphs, only the summary of the main steps necessary for the
apportionment will be recalled.

2.4.1. Aerosol Absorption Coefficient Apportionment

The MWAA model requires babs(λ) as input, at least at 4 λs. The final outputs are the babs(λ)
contributions due to BC by fossil fuel combustion, BC by wood burning, and BrC (i.e., babs,FF

BC(λ),
babs,WB

BC(λ), and babs
BrC(λ), respectively), as well as information on αBrC.

The model starts from the following assumptions for component apportionment:

(a) BC and BrC are the only light-absorbing species in the aerosol sample, i.e., babs(λ) = babs
BC(λ) +

babs
BrC(λ), where babs

BC(λ) is the absorption coefficient due to the whole BC in the sample—with
no regard to its emission sources;

(b) for each component, the wavelength dependence of the absorption coefficient is proportional to
λ−α, where α is component-dependent;

(c) the Ångström absorption exponent of BC (αBC) is assumed a priori. In this work αBC = 1 was set
according to expectancies for pure, small BC spheres (e.g., [3]) as often applied in the literature
(e.g., [51]). Nevertheless, different choices can be in principle be performed due to the possible
effect of BC core and coating sizes on the Ångström absorption exponent (e.g., [52]).

Under the previous assumptions, the total aerosol absorption coefficient can be represented as:

babs(λ) = babs
BC(λ) + babs

BrC(λ) = Aλ−αBC + Bλ−αBrC (1)

Provided that data of babs(λ) are available for at least 4 λs, the data can be fitted as a function
of λ to determine A, B, and αBrC in Equation (1). The result of the fit directly allows calculating
component-apportionment of babs(λ) and provides information on αBrC, which is still rare in
the literature for what concerns measurements on not pre-treated samples. Pokhrel et al. [6]
performed measurements by multi-λ photoacoustic devices on air sampled as-is and after passing
through a thermo-denuder, and used different approaches to apportion the BrC contribution to
the total babs, but no indication of αBrC was explicitly reported.

Further insights can be obtained exploiting results of the Aethalometer model [18,19,53].
The Aethalometer model provides babs(λ) source apportionment under the following assumptions:

(d) fossil fuels combustion (FF) and wood burning (WB) are the only aerosol sources producing
light-absorbing aerosol;

(e) for each source, the absorption coefficient is proportional to λ−α, where α is source-dependent;
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(f) α for fossil fuel combustion (αFF) aerosol is assumed a priori to be the same as αBC—i.e., in this
work αFF=1, as is often found in several works from the literature (e.g., [54–56]);

(g) α for wood-burning aerosol (αWB) is assumed a priori.

Under the previous assumptions, it holds:

babs(λ) = babs
FF(λ) + babs

WB(λ) = A′λ−αFF + B′λ−αWB (2)

It is noteworthy that in the Aethalometer model babs
FF(λ) and babs

WB(λ) are obtained. Unlike the
Aethalometer model which derives A’ and B’ starting from information at two λs only, with the
MWAA model A’ and B’ are obtained by fitting babs(λ) data at all available λs using Equation (2).

To perform source and component apportionment of babs(λ), the MWAA model combines
Equation (1) and Equation (2) under the following assumptions:

(h) αFF = αBC,
(i) BrC is emitted by wood burning only.

From these assumptions, once A, B, αBrC, A′, and B′ are obtained by the two fit procedures,
babs,FF

BC(λ), babs,WB
BC(λ), and babs

BrC(λ) can be derived as presented in Equation (3) (details for
calculation can be found in Massabò et al. [20] and a sketch of the procedure is present in the
supplemental material (1)): 

babs,FF
BC(λ) = A′λ−αBC

babs,WB
BC(λ) = (A−A′)λ−αBC

babs
BrC(λ) = Bλ−αBrC

(3)

Among the several parameters needed for running the MWAA model, the choice of the value to
be attributed to αWB is the most critical, since it depends, at least, on the kind of wood burnt and on
meteorology. In the literature, values between 1.6 and 2 have been reported when performing optical
source apportionment of ambient aerosol [18–20,33,57,58]. For this reason, we decided to support our
choice exploiting previous information available at each site. In a previous study in Propata, source
apportionment was carried out both from 14C and optical measurements. Input αWB for optical source
apportionment was varied and αWB = 1.8 gave the best agreement with 14C source apportionment
results [20]. Thus, αWB = 1.8 was used also in this work for the Propata dataset. In the case of Milan,
performing the same choice led to an unreasonably high contribution from wood burning compared to
previous studies based on 14C measurements [41] or Positive Matrix Factorization on well chemically
characterized samples [40,42]. So, we finally chose αWB = 2 in Milan.

2.4.2. Determination of Equivalent Black Carbon Mass-Absorption Coefficient

Equivalent black carbon (EBC) in atmosphere is generally calculated from babs measurements,
assuming that babs is due to black carbon absorption contribution only and using a suitable λ-dependent
mass absorption coefficient MAC(λ).

EBC =
babs(λ)

MAC(λ)
(4)

The MAC of atmospheric EBC spans a relatively wide range of values in the literature (e.g., [2,54])
and it is recognized to be site- and season-dependent. Among the reasons for this variability, it is
worth mentioning the different methodologies used for EBC determination [59] and the neglect of
possible components of other BC contributing to babs(λ) (e.g. mineral dust [60]), together with possible
mixing effects (see e.g., [6,61]). As no direct measurement of BC mass is possible [59], the EC measured
by thermal-optical transmittance method (par. 2.3) was assumed as a proxy for EBC in this work.
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This allowed providing the EBC MAC (MACEBC) at different λs. Indeed, Equation (4) can be re-written
as follows, exploiting babs

BC(λ) obtained by the MWAA model to determine MAC(λ) (Equation (5)):

MACEBC (λ)
babs

BC(λ)

EC
(5)

2.4.3. EC Source Apportionment

Assuming EC as a proxy for EBC, as previously mentioned, the babs
BC source apportionment

performed using Equation (3) can be directly exploited to provide EC source apportionment. Total
EC can be apportioned into EC from fossil fuel combustion (ECFF) and from wood burning (ECWB),
as reported in Equation (6):

ECFF =
babs,FF

BC

babs
BC EC and ECWB = EC− ECFF (6)

In principle, any wavelength can be chosen as reference for babs
BC and babs,FF

BC. Nevertheless,
it is expected that lower uncertainty affects optical apportionment at long wavelengths, due to the
lower contribution to the total babs from BrC. Further detail on the methodology can be found in [20].

2.4.4. OC Source Apportionment

OC source apportionment is less straightforward. Indeed, non-absorbing OC by combustion
sources and OC by non-combustion sources (OCNC) can contribute to OC. The methodology used in
the MWAA model for OC source apportionment stems from tracer approaches. These methods assume
that a component emitted by the source can be clearly apportioned (the tracer) and that another is
emitted with constant ratio with the tracer. In this way, the second component can be obtained by the
tracer using a suitable emission ratio. The approach is widely used in the literature for OC source
apportionment, e.g., based on 14C measurements [41,62]. The approach has already been extended in
source apportionment studies based on optical properties, with further assumptions on proportionality
between species and optical properties [18–20].

OC source apportionment by the MWAA model assumes that:

(j) OC from fossil fuel combustion (OCFF) is proportional to ECFF and—assuming that the MAC for
BC has limited variability in the considered dataset—to babs,FF

BC. It is preferable to perform OC
source apportionment starting from optical measurements to reduce uncertainty propagation;

(k) OC from wood burning combustion (OCWB) is proportional to BrC and—assuming that the MAC
for BrC has limited variability in the considered dataset—to babs

BrC; in this case, it is suggested
to exploit information on babs

BrC at the shortest available wavelength to maximize the relative
contribution of BrC to the total babs.

Summarizing, as 5-λ measurements are available for both the considered datasets, OC source
apportionment will be performed using Equation (7):

OC = OCFF + OCWB + OCNC = k1·babs
BC(850 nm) + k2·babs

BrC (375 nm)+ OCNC (7)

Massabò et al. [20] proposed to determine k1 on samples where little wood burning impact was
expected, so that Equation (7) reduces to OC = k1·babs

BC (850 nm) + OCNC. Nevertheless, such approach
is hardly applicable when only winter samples are available, especially at sites where high contribution
due to wood burning for domestic heating is expected. So, in this work we propose to obtain k1 and k2

by multiple linear regression of OC vs. babs
BC(850 nm) and babs

BrC(375 nm), under the assumption
that OCNC can be assumed nearly constant or provides a minor contribution to total OC.

The main limitation of the method is related to possible difficulties in apportioning secondary
OC. Nevertheless, k1 and k2 are derived by multiple linear regression of real-world measurements.
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Real-world profiles have already been proven to have the potential to account for rapidly formed
secondary compounds, thus limiting the problem of secondary OC apportionment only to secondary
OC formed with great time-delay from precursor emissions (which can provide contribution
to OCNC) [44,63].

3. Results

3.1. Results from the Propata Dataset

The 5-λ temporal trend of babs measured in Propata using the MWAA instrument is shown in
Figure 2, together with the apparent Ångström absorption coefficient (αexp, determined by fitting each
set of 5-λ data by a λ−αexp function). It should be noted that αexp was in the range 1.31–1.85, providing
a first indication of important contributions by sources other than fossils during the whole period.Atmosphere 2017, 8, 218  8 of 18 
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vs. photochemical contribution) can have different features. 
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Figure 2. 5-λ aerosol absorption coefficient (babs) and the Ångström absorption coefficient (αexp)

determined on the Propata dataset. Date referring to the beginning of the sampling is reported on
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The MWAA model was run on the Propata dataset, as explained in par. 2.4. In Figure 3, results
obtained for αBrC and fit error are represented. It is noteworthy that in 79% cases, the fit error was lower
than 3%. In these cases, very close αBrC values were found in different samples: αBrC = 3.79 ± 0.10 (i.e.,
2.5% standard deviation) with a minimum-maximum range of 3.58–3.99.

Atmosphere 2017, 8, 218  8 of 18 

 

 

Figure 2. 5-λ aerosol absorption coefficient (babs) and the Ångström absorption coefficient (αexp) 
determined on the Propata dataset. Date referring to the beginning of the sampling is reported on the 
x-axis. 

The MWAA model was run on the Propata dataset, as explained in par. 2.4. In Figure 3, results 
obtained for αBrC and fit error are represented. It is noteworthy that in 79% cases, the fit error was 
lower than 3%. In these cases, very close αBrC values were found in different samples: αBrC = 3.79 ± 0.10 
(i.e., 2.5% standard deviation) with a minimum-maximum range of 3.58–3.99.  

 
Figure 3. BrC Ångström Absorption exponent (αBrC) and associated fit uncertainty for the Propata 
dataset. Date referring to the beginning of the sampling is reported on the x-axis. 

Assuming wood burning as the main source of BrC, we analyzed the correlation between 
babsBrC(λ) and levoglucosan (tracer for wood burning). It was noticed that the correlation decreased at 
increasing wavelengths (see as an example the scatterplots of babsBrC(λ) at 375 nm and 850 nm vs. 
levoglucosan concentration shown in Figure 4a). Furthermore, the most scattered points were those 
showing high uncertainties for αBrC.  

Two hypotheses were performed concerning these points: 

(a) The two-component model was not applicable. This can occur, e.g., in case of Saharan dust 
events when a non-negligible absorption contribution from dust can be, in principle, observed. 
Furthermore, it should be recalled that BrC refers to a complex mixture of organic compounds 
still poorly characterized. It cannot be excluded that BrC of various origins (e.g., wood burning 
vs. photochemical contribution) can have different features. 

(b) Numerical tests showed that quality of the MWAA model fit is quite sensitive to input data, 
even for input data variations within uncertainties. Random combination of data uncertainties 
can lead to configurations in the 5-λ babs measurements, badly affecting the fit: e.g., numerical 
tests performed by shifting (within uncertainties) towards higher values babs at short-λ and 
towards lower values babs at long-λ showed important variations in αBrC results and an increase 
in the associated uncertainties.  

Figure 3. BrC Ångström Absorption exponent (αBrC) and associated fit uncertainty for the Propata
dataset. Date referring to the beginning of the sampling is reported on the x-axis.

Assuming wood burning as the main source of BrC, we analyzed the correlation between babs
BrC(λ)
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concentration shown in Figure 4a). Furthermore, the most scattered points were those showing high
uncertainties for αBrC.

Two hypotheses were performed concerning these points:

(a) The two-component model was not applicable. This can occur, e.g., in case of Saharan dust
events when a non-negligible absorption contribution from dust can be, in principle, observed.
Furthermore, it should be recalled that BrC refers to a complex mixture of organic compounds
still poorly characterized. It cannot be excluded that BrC of various origins (e.g., wood burning
vs. photochemical contribution) can have different features.

(b) Numerical tests showed that quality of the MWAA model fit is quite sensitive to input data, even
for input data variations within uncertainties. Random combination of data uncertainties can
lead to configurations in the 5-λ babs measurements, badly affecting the fit: e.g., numerical tests
performed by shifting (within uncertainties) towards higher values babs at short-λ and towards
lower values babs at long-λ showed important variations in αBrC results and an increase in the
associated uncertainties.

Trying to understand which of these hypotheses affected the points with high uncertainties on
αBrC, the MWAA model was re-run in a different way: fit of Equation (1) was performed by fixing
αBrC = 3.79. This value has been calculated by averaging the αBrC values, considering only samples
where the relative uncertainty was lower than 3%. This approach will henceforth be named “MWAA
model with fixed αBrC”. The results obtained in this case for babs

BrC(λ) at 375 nm and 850 nm vs.
levoglucosan concentration are reported in Figure 4b. It is noteworthy that correlation at 850 nm
strongly improved (R2 = 0.96). This suggested that numerical instability was responsible for the few
samples with αBrC affected by high uncertainties in Figure 3. Indeed, if a third absorbing component
independent of wood burning was present in the dataset, no improving correlation with levoglucosan
could be expected, even when imposing a αBrC characteristic for wood burning at the sampling site.
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Total carbon (TC) absolute concentration in the Propata dataset was 1.7 ± 0.7 µg/m3

(average ± standard deviation). OC represented, on average, 82% of TC, the remaining 18% being EC.
Levoglucosan average concentration in Propata was 0.3 ± 0.2 µg/m3.

EC source apportionment was performed as explained in par. 2.4.3, starting from babs source
apportionment obtained by the MWAA model with fixed αBrC. The relative contribution of ECFF

(Equation (6)) to EC in Propata was 37% ± 22% (average ± standard deviation). Very good correlation
was found between ECWB and levoglucosan (R2 = 0.90, see Figure 5). The average levoglucosan/ECWB

ratio in these samples was 1.6 ± 0.4. It is within the range obtained combining information on
levoglucosan/OC and EC/OC ratios for wood burning emissions reported in [62] and the literature
therein (0.9 ± 0.6).
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Multiple linear regression was carried out for OC source apportionment as explained in
Section 2.4.4. Regression parameters were k1 = 0.24 ± 0.06, k2 = 0.35 ± 0.02, and OCNC = 0.30 ± 0.08,
in which uncertainties represent the standard error of the regression. Scatterplot of reconstructed vs.
measured OC concentration resulted into OCrec = 0.98·OCmeas, with R2 = 0.89. OC in Propata was
dominated by OCWB (63% ± 16%) and the contribution from fossil fuel combustion was much lower
(13% ± 10%). Non-negligible contribution resulting from OCNC was present (25% ± 9%), and it is
expected to be related to secondary and/or natural contributions. OCFF/ECFF ratio was 1.4 ± 0.3,
which is in agreement with, e.g., real-world profiles for the traffic source obtained by PMF in Milan [40].
OCWB/ECWB ratio in Propata was 5.0 ± 1.2. This ratio is within the range reported for primary wood
burning emissions (ECWB/OCWB = 0.16 ± 0.05 was reported in [62] and therein-cited literature, i.e.,
OCWB /ECWB = 6.3 ± 2.0). Nevertheless, it should be noticed that literature ratios were obtained
from OC and EC measurements carried out with different thermal protocols, whose influence on the
measurements will be better discussed in par. 4.

3.2. Results from the Milan Dataset

Multi-λ babs measurements on the Milan dataset were performed both using PP_UniMI and
MWAA. As shown in par. 2.2, measurements agreed very well between the instruments. In this
paragraph, data obtained by the MWAA instrument will be presented throughout the text as they
were performed at 5-λs (compared to 4-λ measurements performed by PP_UniMI). This improves the
quality of the fits to be performed, as presented in par. 2.4.1 due to a higher number of points.

Figure 6 represents the 5-λ temporal trend of babs and αexp for the Milan dataset. In this dataset
1.19 ≤ αexp ≤ 1.69: values were lower than in Propata, providing a first indication of a higher relative
contribution from fossil fuel combustion.
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Figure 6. 5-λ babs and αexp determined on the Milan dataset. Date and time referring to the beginning
of the sampling are reported on the x-axis.

As already shown for Propata, Figure 7 represents αBrC and uncertainties obtained by the MWAA
model. For the Milan dataset, αBrC uncertainty provided by the fit is lower than 3% only in 41% of the
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samples (in 75% cases it was lower than 10%). Nevertheless, as already found in Propata, stable values
for αBrC were obtained when uncertainty was < 3%: αBrC = 3.81 ± 0.11 (i.e., 3% relative standard
deviation) with a minimum-maximum range of 3.72–4.14. These values of αBrC are fully comparable
to those obtained in Propata within variability (see Table 1).
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Table 1. Summary of values and standard error for αBrC in samples with relative uncertainties <3%, k1,
and k2.

αBrC k1 k2
- µg/(m3 Mm-1) µg/(m3 Mm−1)

Propata 3.79 ± 0.10 0.24 ± 0.06 0.35 ± 0.02
Milan 3.81 ± 0.11 0.33 ± 0.05 0.34 ± 0.07

Table 2. Summary of values and variability for levoglucosan/ECWB ratio, OCNC, OCFF/ECFF,
OCWB/ECWB, MAC (BC), and applied thermal protocol in Propata and Milan.

levo/ECWB OCNC OCFF/ECFF OCWB/ECWB MAC TOT protocol
(µg/m3) (m2/g)

Propata 1.6 ± 0.4 0.30 ± 0.08 1.4 ± 0.3 5.0 ± 1.2 6.3 ± 1.1 EUSAAR_2
Milan 1.3 ± 0.5 1.1 ± 1.0 3.0 ± 0.7 10 ± 3 9.1 ± 1.9 NIOSH-like

In Figure 8a, the scatterplot of babs
BrC(λ) at 375 nm and 850 nm vs. levoglucosan concentration is

reported. It is noteworthy that data were more scattered than for Propata dataset (Figure 4a): R2 = 0.71
was found considering babs(375 nm), whereas no trend line was inserted considering babs(850nm) as
no correlation is found. As already performed for Propata, the MWAA model with fixed αBrC was
re-run also for the Milan dataset. In this test, αBrC = 3.81 was chosen, as it is the value obtained for the
Milan dataset in the case of good fit of the original data. It can be noticed (Figure 8b) that also in this
case the correlation between babs

BrC and levoglucosan improves in all cases (R2 = 0.93).
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TC average concentration in Milan was 13 ± 5 µg/m3. On average, 84% of TC was OC, with the
remainder being EC. Levoglucosan average concentration in Milan was 0.7 ± 0.3 µg/m3.

Also for the Milan dataset, data obtained by running the MWAA model with fixed αBrC were
used for EC and OC apportionment. From optical apportionment (Equation (6)), EC resulted mainly
of fossil origin in most cases (range 62–87%, except three cases in the range 42–44%), consistent with
14C studies in the Milan area [40] and in other cities in Europe during wintertime [62,64]. As already
found between babs

BrC and levoglucosan, very good correlation was found also between babs,WB
BC

and levoglucosan (R2 = 0.92). Nevertheless, only discrete correlation was found between ECWB and
levoglucosan (R2 = 0.56). It should be evidenced that the initial correlation between babs(850 nm)
and EC is lower than in Propata (R2 = 0.83 in Milan vs. R2 = 0.94 in Propata), and this can affect the
apportionment of absolute EC concentrations. Furthermore, it should be noticed that in four samples
ABS values higher than 0.90 were found. In these cases, shadowing effects (e.g., [36]) can occur leading
to an underestimation of the measured babs, thus increasing measurement uncertainty and possibly
impacting also the source apportionment model. By removing these points, the correlation rises to
R2 = 0.70 (Figure 9). The average levoglucosan/ECWB ratio in these samples was 1.3 ± 0.5, which is
fully comparable with the value obtained combining information on levoglucosan/OC and EC/OC
ratios for wood-burning emissions reported in [62] and therein-cited literature (0.9± 0.6). Furthermore,
the value is fully comparable to the one obtained in Propata within variabilities (see Table 2).
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Multiple linear regression for OC source apportionment (Section 2.4.4) on Milan dataset resulted
in k1 = 0.33 ± 0.05, k2 = 0.34 ± 0.07, and OCNC =1.1 ± 1.0, where uncertainties are the standard
error of the regression. It is noteworthy that OCNC is comparable to zero within 2 standard errors.
Reconstructed vs. measured OC concentration resulted into OCrec = 0.98·OCmeas, with R2 = 0.82.
Moreover, about ± 20% difference between measured and reconstructed concentration was registered,
except in two samples. These samples were the same providing the two lowest values for αBrC

(Figure 7). This suggests that these samples are impacted by different sources/processes modifying
the optical characteristics compared to the others (e.g., [52]); for this reason, they will be excluded by
the following statistics. As far as OCFF, OCWB, and OCNC are concerned, they contributed 40% ± 14%,
48%± 14%, and 12%± 4% to the OC, respectively (average± standard deviation). OCFF/ECFF average
ratio was 3.0 ± 0.7. This value was higher than the ratio expected for primary emission (e.g., [65]
and therein-cited literature), but it was compatible to the average OCFF/ECFF previously found in
Milan from 14C measurements (2.3 ± 0.8) within variability [41]. OCWB/ECWB average ratio was
10 ± 3. Also, in this case, this ratio is higher than what reported for primary wood burning emissions
(ECWB/OCWB = 0.16± 0.05 was reported in [62], i.e., OCWB/ECWB = 6.3± 2.0). Nevertheless, literature
works suggest that secondary contribution from wood burning comparable to the primary one can be
expected [66,67]. Thus, the approach seems able to associate at least part of the secondary compounds
rapidly formed in atmosphere to specific sources. This ability of receptor models has already been
evidenced in other source apportionment studies based on chemical aerosol properties carried out in
the area [44,63].
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4. Discussion

By comparing the results obtained in the two datasets, two features appeared:

(a) The MWAA model provided more robust measurements of αBrC on single samples in the Propata
dataset (in 79% vs. 41% of the cases the fit uncertainty associated with αBrC is lower than 3%).

(b) More samples with high uncertainty associated to αBrC lead to a lower correlation between
babs

BrC and levoglucosan concentration in Milan.

In principle, the latter observation can be related to site-specific characteristics (e.g. source mixture
or particle aging), to numeric instability, or both. The results of the test performed by fixing αBrC at each
site to the average value for αBrC low-uncertainty samples showed that correlation between babs

BrC

and levoglucosan improved. This provided an indication that wood burning (traced by levoglucosan)
dominated BrC concentration at both sites. Indeed, if contributions from other sources emitting
important absorbers or BrC species with strongly different optical properties were present in the
samples, a weaker correlation with a marker from a specific source would have been found.

Nevertheless, it can be noticed that babs
BrC vs. levoglucosan correlation is slightly worse in Milan

(R2 = 0.93) than in Propata (R2 = 0.96). Possible reasons could be the more complex mixture of sources
present in Milan and the aging processes [40,42,44], which can affect aerosol composition, particle
mixing, and size distribution. Small variations in BrC properties related to these factors could have
influenced the MWAA model results, leading to a higher percent of cases in which αBrC was affected
by high uncertainties.

Absolute TC average concentrations at the two sites were 7.7 times higher in Milan than in
Propata. This is consistent with the peculiarities of the sites: Milan is placed in the Po Valley, which
is one of the main hot-spot pollution areas, and it is often affected by strong stability conditions
during wintertime [68,69]; Propata is a small village in the Appennines; very few local sources are
present in Propata and it is only occasionally impacted by transports from the Po Valley. The high
wood-burning contributions of EC and OC in Propata are easily explained by the wide use of wood
burning for domestic heating at the site. Even if the relative contribution of OC and EC to TC seems
to be comparable at the two sites, it should be recalled (par. 2.3) that carbonaceous fractions were
measured by the EUSAAR_2 protocol in Propata and by a NIOSH-like protocol (He_870) in Milan.
In a previous study [50], it was shown that the ratio of EC measured with the two protocols was
ECEUSAAR_2/ECHe_870 = 1.49 for winter samples collected in Milan. Thus, relative EC contribution to
TC reported to the same thermal protocol is about 1.5 times higher in Milan than in Propata. The use
of different thermal protocols and their effect on EC quantification impacted also on apparent MAC
(Equation (5)) measured at the sites: the MAC was 6.3 ± 1.1 m2/g and 9.1 ± 1.9 m2/g at 850 nm
in Propata and Milan, respectively. If the influence of the thermal protocol on EC quantification is
considered, the MAC values determined at the two sites are fully comparable within variabilities and
they are in the range of results recently reported in the literature in the European boundary layer [70].

It is very interesting to note that both the constant k1 relating babs
BC(850 nm) to OCFF and k2

relating babs
BrC(375 nm) to OCWB were compatible within uncertainties between the sites (see Table 1).

Nevertheless, OC/EC ratios were much higher in Milan than in Propata for both fossil fuel combustion
and wood burning contributions, especially considering the differences in EC and OC quantification
related to the thermal protocol (see Table 2). This can be related to the peculiarity of the Milan site:
stagnation conditions may foster aging processes, increasing the OC/EC ratio [65]. As the ability of
receptor models to relate rapidly-formed secondary compounds to the primary emitted species has
been proven in the literature [44,63], rapidly-formed secondary compounds in Milan can be associated
to primary emissions by the model. This seems to occur to a lesser extent in Propata, where the relative
contribution from OCNC to OC was more than twice the one in Milan. This can be related both to less
stable meteorological conditions and to a cleaner and less reactive atmosphere.
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5. Conclusions

The MWAA model was used for optical source and component apportionment of the total aerosol
absorption coefficients measured at different wavelengths during wintertime at two sites with different
characteristics (an urban site in the Po Valley, Milan and a rural site in the Appennines, Propata),
as well as to gain information on αBrC value.

The results showed that αBrC determination was affected by lower uncertainties in Propata than in
Milan, where a more complex mixture of sources can affect model performances. Nevertheless, it was
shown that the application of the MWAA model by fixing αBrC led to an improvement in component
apportionment. The fixed αBrC corresponded to the average value obtained for the samples where
αBrC was determined with low uncertainties. A very good correlation (R2 > 0.93) was found at both
sites between babs

BrC(375 nm) and levoglucosan, identifying wood burning as the main contributor to
BrC in the investigated areas.

The simultaneous component apportionment and EC measurements allowed us to determine the
BC mass absorption coefficient. The latter was comparable within variability at the two sites when the
role of different thermal protocols on EC quantification was considered.

OC and EC source apportionment showed that wood burning was the dominating contributor
to both carbon fractions in Propata, whereas a more complex situation was detected in Milan.
A relationship between samples resulting in very low αBrC value in Milan and bad OC apportionment
was also apparent; in these samples, the impact of other sources can be assumed, and the two-sources
scheme seems not to be applicable. In other cases, good performances were detected.

As a perspective, the application of the MWAA model to sites with different characteristics will
promote the gathering of reliable information on the λ-dependence characteristics of BrC absorption
properties at different sites, as well as gaining information on MACEBC, by exploiting the ability of
the model to separate different component contributions to the total babs, together information on EC
mass obtainable by other analytical techniques.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4433/8/11/218/s1.
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