Modeling the Spatial and Temporal Variability of Precipitation in Northwest Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Rainfall Data
2.2. Rainfall Distribution Analysis
2.3. Trend Analysis and Mapping
2.4. Principal Component Analysis
3. Results and Discussion
3.1. Statistical Characteristics of Rainfall
3.2. Spatial Variability of Rainfall
3.3. PCI Variability
3.4. Trends in Annual Precipitation and PCI
3.5. PC Analysis
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Sivakumar, M.; Gommes, R.; Baier, W. Agrometeorology and sustainable agriculture. Agric. Forest Meteorol. 2000, 103, 11–26. [Google Scholar] [CrossRef]
- Alexander, L.; Zhang, X.; Peterson, T.; Caesar, J.; Gleason, B.; Klein Tank, A.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Dinpashoh, Y.; Fakheri-Fard, A.; Moghaddam, M.; Jahanbakhsh, S.; Mirnia, M. Selection of variables for the purpose of regionalization of Iran’s precipitation climate using multivariate methods. J. Hydrol. 2004, 297, 109–123. [Google Scholar] [CrossRef]
- Raziei, T.; Bordi, I.; Pereira, L. A precipitation-based regionalization for Western Iran and regional drought variability. Hydrol. Earth Syst. Sci. 2008, 12, 1309–1321. [Google Scholar] [CrossRef]
- Zoljoodi, M.; Didevarasl, A. Evaluation of spatial-temporal variability of drought events in Iran using palmer drought severity index and its principal factors (through 1951–2005). Atmos. Clim. Sci. 2013, 3, 193–207. [Google Scholar] [CrossRef]
- Arab Amiri, M.; Amerian, Y.; Mesgari, M.S. Spatial and temporal monthly precipitation forecasting using wavelet transform and neural networks, Qara-Qum catchment, Iran. Arab. J. Geosci. 2016, 9. [Google Scholar] [CrossRef]
- Tabari, H.; Somee, B.S.; Zadeh, M.R. Testing for long-term trends in climatic variables in Iran. Atmos. Res. 2011, 100, 132–140. [Google Scholar] [CrossRef]
- Ahani, H.; Kherad, M.; Kousari, M.R.; Rezaeian-Zadeh, M.; Karampour, M.A.; Ejraee, F.; Kamali, S. An investigation of trends in precipitation volume for the last three decades in different regions of Fars province, Iran. Theor. Appl. Climatol. 2012, 109, 361–382. [Google Scholar] [CrossRef]
- Tabari, H.; Abghari, H.; Hosseinzadeh Talaee, P. Temporal trends and spatial characteristics of drought and rainfall in arid and semiarid regions of Iran. Hydrol. Process. 2012, 26, 3351–3361. [Google Scholar] [CrossRef]
- Abolverdi, J.; Ferdosifar, G.; Khalili, D.; Kamgar-Haghighi, A.A. Spatial and temporal changes of precipitation concentration in Fars province, southwestern Iran. Meteorol. Atmos. Phys. 2016, 128, 181–196. [Google Scholar] [CrossRef]
- Arab Amiri, M.; Conoscenti, C. Landslide susceptibility mapping using precipitation data, Mazandaran Province, north of Iran. Nat. Hazards 2017, 89, 255–273. [Google Scholar] [CrossRef]
- Arab Amiri, M.; Mesgari, M.S.; Conoscenti, C. Detection of homogeneous precipitation regions at seasonal and annual time scales, northwest Iran. J. Water Clim. Chang. 2017. [Google Scholar] [CrossRef]
- Darand, M.; Daneshvar, M.R.M. Regionalization of precipitation regimes in iran using principal component analysis and hierarchical clustering analysis. Environ. Process. 2014, 1, 517–532. [Google Scholar] [CrossRef]
- Raziei, T. A precipitation regionalization and regime for Iran based on multivariate analysis. Theor. Appl. Climatol. 2017, 1–20. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, T. The statistical extended-range (10–30-day) forecast of summer rainfall anomalies over the entire China. Clim. Dyn. 2017, 48, 209–224. [Google Scholar] [CrossRef]
- Sirangelo, B.; Ferrari, E.; De Luca, D. Occurrence analysis of daily rainfalls through non-homogeneous Poissonian processes. Nat. Hazard. Earth. Syst. Sci. 2011, 11, 1657–1668. [Google Scholar] [CrossRef]
- De Luca, D. Analysis and modelling of rainfall fields at different resolutions in southern Italy. Hydrol. Sci. J. 2014, 59, 1536–1558. [Google Scholar] [CrossRef]
- Shahid, S. Spatio-temporal variability of rainfall over Bangladesh during the time period 1969–2003. Asia-Pac. J. Atmos. Sci. 2009, 45, 375–389. [Google Scholar]
- Openshaw, S.; Openshaw, C. Artificial Intelligence in Geography, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 1997; p. 348. [Google Scholar]
- Kajornrit, J.; Wong, K.W.; Fung, C.C. Estimation of missing precipitation records using modular artificial neural networks. In Proceedings of the International Conference on Neural Information Processing, Doha, Qatar, 12–15 November 2012; Huang, T., Zeng, Z., Li, C., Leung, C.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 52–59. [Google Scholar]
- Paraskevas, T.; Dimitrios, R.; Andreas, B. Use of artificial neural network for spatial rainfall analysis. J. Earth Syst. Sci. 2014, 123, 457–465. [Google Scholar] [CrossRef]
- Shamshirband, S.; Gocić, M.; Petković, D.; Saboohi, H.; Herawan, T.; Kiah, M.L.M.; Akib, S. Soft-computing methodologies for precipitation estimation: A case study. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1353–1358. [Google Scholar] [CrossRef]
- Shenify, M.; Danesh, A.S.; Gocić, M.; Taher, R.S.; Wahab, A.W.A.; Gani, A.; Shamshirband, S.; Petković, D. Precipitation estimation using support vector machine with discrete wavelet transform. Water Resour. Manag. 2016, 30, 641–652. [Google Scholar] [CrossRef]
- Richman, M.B. Rotation of principal components. Int. J. Climatol. 1986, 6, 293–335. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.; Chura, O.; López-Moreno, J.; Azorin-Molina, C.; Sanchez-Lorenzo, A.; Aguilar, E.; Moran-Tejeda, E.; Trujillo, F.; Martínez, R.; Nieto, J. Spatio-temporal variability of droughts in Bolivia: 1955–2012. Int. J. Climatol. 2014, 35, 3024–3040. [Google Scholar] [CrossRef]
- Serrano, A.; García, J.; Mateos, V.L.; Cancillo, M.L.; Garrido, J. Monthly modes of variation of precipitation over the Iberian Peninsula. J. Clim. 1999, 12, 2894–2919. [Google Scholar] [CrossRef]
- Martins, D.; Raziei, T.; Paulo, A.; Pereira, L. Spatial and temporal variability of precipitation and drought in Portugal. Nat. Hazards Earth Syst. Sci. 2012, 12, 1493–1501. [Google Scholar] [CrossRef] [Green Version]
- Tisseuil, C.; Roshan, G.R.; Nasrabadi, T.; Asadpour, G. Statistical modeling of future lake level under climatic conditions, case study of Urmia Lake (Iran). Int. J. Environ. Res. 2012, 7, 69–80. [Google Scholar]
- Alexandersson, H. A homogeneity test applied to precipitation data. Int. J. Climatol. 1986, 6, 661–675. [Google Scholar] [CrossRef]
- Von Neumann, J. Distribution of the ratio of the mean square successive difference to the variance. Ann. Math. Stat. 1941, 12, 367–395. [Google Scholar] [CrossRef]
- Pettit, A.N. A non-parametric approach to the change-point detection. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Buishand, T.A. Some methods for testing the homogeneity of rainfall records. J. Hydrol. 1982, 58, 11–27. [Google Scholar] [CrossRef]
- Oliver, J.E. Monthly precipitation distribution: A comparative index. Prof. Geogr. 1980, 32, 300–309. [Google Scholar] [CrossRef]
- Luis, M.D.; Gonzalez-Hidalgo, J.; Brunetti, M.; Longares, L. Precipitation concentration changes in Spain 1946–2005. Nat. Hazards Earth Syst. Sci. 2011, 11, 1259–1265. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.F.; Pulido-Calvo, I.; Portela, M.M. Spatial and temporal variability of droughts in Portugal. Water Resour. Res. 2010, 46, 1–13. [Google Scholar] [CrossRef]
Station Name | Annual Rainfall | Seasonal Precipitation | ||||
---|---|---|---|---|---|---|
Mean (mm) | Standard Deviation (mm) | Winter Precipitation (mm) | Spring Precipitation (mm) | Summer Precipitation (mm) | Autumn Precipitation (mm) | |
1. Aahar | 283.44 | 58.11 | 70.18 | 119.55 | 24.02 | 69.69 |
2. Ardabil | 286.72 | 58.92 | 83.73 | 99.53 | 22.83 | 80.62 |
3. Astara | 1357.61 | 235.20 | 293.17 | 205.40 | 353.30 | 505.73 |
4. Bandar Anzali | 1662.00 | 260.27 | 335.82 | 142.32 | 428.93 | 754.92 |
5. Bijar | 335.43 | 74.17 | 118.06 | 106.92 | 9.66 | 100.79 |
6. Ghorveh | 347.26 | 74.09 | 134.41 | 99.22 | 8.23 | 105.39 |
7. Jolfa | 210.01 | 67.87 | 42.89 | 98.83 | 24.33 | 43.96 |
8. Khalkhal | 367.70 | 58.34 | 106.85 | 136.77 | 24.38 | 99.69 |
9. Khoramdareh | 300.40 | 82.27 | 113.27 | 88.64 | 7.16 | 91.32 |
10. khoy | 255.31 | 54.47 | 58.93 | 114.29 | 27.48 | 54.61 |
11. Mahabad | 411.17 | 114.05 | 161.13 | 114.15 | 7.70 | 128.18 |
12. Makoo | 303.60 | 70.72 | 63.58 | 140.85 | 43.37 | 55.80 |
13. Maragheh | 292.47 | 91.06 | 99.73 | 99.97 | 9.76 | 83.00 |
14. Mianeh | 274.04 | 67.14 | 91.50 | 91.75 | 14.34 | 76.45 |
15. Urmia | 308.60 | 105.74 | 100.80 | 109.99 | 14.32 | 83.47 |
16. Parsabad Moghan | 267.93 | 63.65 | 64.31 | 82.02 | 42.62 | 78.97 |
17. Rasht | 1306.47 | 268.16 | 339.43 | 169.24 | 261.88 | 535.91 |
18. Saghez | 458.34 | 142.39 | 189.04 | 116.41 | 8.96 | 143.92 |
19. Sanandaj | 397.56 | 97.98 | 162.93 | 100.84 | 2.91 | 130.87 |
20. Sarab | 249.52 | 42.06 | 54.10 | 112.08 | 29.00 | 54.33 |
21. Sardasht | 874.25 | 199.48 | 395.25 | 195.50 | 6.50 | 278.82 |
22. Tabriz | 245.95 | 57.10 | 67.76 | 101.46 | 15.04 | 61.69 |
23. Takab | 318.42 | 90.41 | 106.49 | 107.41 | 9.50 | 95.02 |
24. Zanjan | 290.42 | 65.10 | 92.25 | 102.49 | 16.88 | 78.79 |
Station Name | Annual Rainfall Trend | PCI Trend |
---|---|---|
1. Aahar | −4.418 *** | 0.204 *** |
2. Ardabil | −5.015 *** | −0.052 |
3. Astara | −5.648 | 0.056 |
4. Bandar Anzali | 0.430 | −0.072 |
5. Bijar | −5.863 *** | −0.036 |
6. Ghorveh | −3.031 | −0.070 |
7. Jolfa | 4.491 **** | −0.007 |
8. Khalkhal | 0.202 | 0.059 |
9. Khoramdareh | −5.342 **** | −0.006 |
10. Khoy | 0.488 | 0.077 |
11. Mahabad | −8.721 *** | 0.180 ** |
12. Makoo | 3.354 | −0.001 |
13. Maragheh | −8.971 * | 0.255 ** |
14. Mianeh | −2.909 | 0.070 |
15. Urmia | −5.392 | 0.076 |
16. Parsabad Moghan | 1.293 | −0.082 |
17. Rasht | −17.404 **** | 0.046 |
18. Saghez | −13.340 ** | −0.136 |
19. Sanandaj | −7.003 **** | −0.073 |
20. Sarab | −1.889 | 0.113 |
21. Sardasht | −11.920 | −0.027 |
22. Tabriz | −3.392 | 0.200 *** |
23. Takab | −5.271 | 0.040 |
24. Zanjan | −2.510 | 0.071 |
Model No. | Output Variables | Activation Function | Neurons in Hidden Layer | Learning Rate | Epoch | The Average of ME | |
---|---|---|---|---|---|---|---|
Hidden Layer | Output Layer | ||||||
1 | Annual rainfall trend | Logarithmic sigmoidal | Pure linear | 6 | 0.01 | 11 | 0.69 |
2 | PCI trend | Logarithmic sigmoidal | Pure linear | 6 | 0.01 | 14 | 0.073 |
Mode of PCA | Explained Variance (%) | Principal Components | Cumulative Percentage of Total Variation | |||
---|---|---|---|---|---|---|
PC-1 | PC-2 | PC-3 | PC-4 | |||
T-mode PCA | Un-rotated (%) | 50.34 | 13.24 | 9.34 | 5.60 | 78.51 |
Varimax rotated (%) | 34.55 | 12.15 | 14.75 | 17.06 | 78.51 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arab Amiri, M.; Mesgari, M.S. Modeling the Spatial and Temporal Variability of Precipitation in Northwest Iran. Atmosphere 2017, 8, 254. https://doi.org/10.3390/atmos8120254
Arab Amiri M, Mesgari MS. Modeling the Spatial and Temporal Variability of Precipitation in Northwest Iran. Atmosphere. 2017; 8(12):254. https://doi.org/10.3390/atmos8120254
Chicago/Turabian StyleArab Amiri, Mohammad, and Mohammad Saadi Mesgari. 2017. "Modeling the Spatial and Temporal Variability of Precipitation in Northwest Iran" Atmosphere 8, no. 12: 254. https://doi.org/10.3390/atmos8120254
APA StyleArab Amiri, M., & Mesgari, M. S. (2017). Modeling the Spatial and Temporal Variability of Precipitation in Northwest Iran. Atmosphere, 8(12), 254. https://doi.org/10.3390/atmos8120254