Profiling Radar Observations and Numerical Simulations of a Downslope Wind Storm and Rotor on the Lee of the Medicine Bow Mountains in Wyoming
Abstract
:1. Introduction
2. Observational and Modeling Design
2.1. Instruments
2.2. Numerical Model Setup
3. Atmospheric Conditions
3.1. Synoptic Conditions
3.2. Upstream Vertical Profile
3.3. Modeled Flow Field across the Mountain
4. Radar Observations of the Downslope Wind Storm and Turbulence
4.1. Reflectivity
4.2. Flight-Level Measurements
4.3. Vertical and Horizontal Wind below Flight Level
4.4. Observation of a Rotor
5. Discussion
6. Conclusions
- Even though the simulated vertical profiles of wind and stability departed somewhat from observed ones just upwind of the mountain range, with no critical level in the simulated wind profile, the model did produce supercritical wind in the lee, followed by a strong updraft flanked by counter-rotating vortices. This updraft had the appearance of a hydraulic jump and was followed by a decaying series of trapped lee waves. Intense turbulence was simulated near the plunging jet and the wave breaking area surrounding the hydraulic jump.
- WCR observations reveal persistent, intense cross-crest acceleration of the low-level flow, a plunging leeside jet separating from the boundary layer some 25 km downwind of the crest to produce a deep hydraulic jump (with updrafts up to 10 m·s−1) flanked by counter-rotating vortices, and (at least in one transect) a shallow rotor with reverse flow near the surface.
- Flight-level and WCR observations indicate persistent moderate to severe turbulence in the vicinity of the plunging jet and the wave breaking area.
- Upstream conditions were generally conducive to downslope windstorm formation, at least early on, before flight measurements. During the flight the critical level and the suitable stratification (more stable below, less stable above mountaintop) vanished upwind, suggesting that a self-induced critical level may have sustained the downslope windstorm.
- A sampling of 19 other winter storms over the same mountain range suggests that the predictability of downslope windstorms based on coincident upstream conditions alone is poor.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lee, T.J.; Weaver, J.F.; Pielke, R.A. Numerical predictions and nowcasting of downslope windstorms along the Colorado Front Range, Preprints. In Proceedings of Fifth Conference on Mountain Meteorology, Boulder, CO, USA, 25–29 June 1990.
- Cotton, W.R.; Weaver, J.F.; Beitler, B.A. An unusual summertime downslope wind event in Fort Collins, Colorado, on 3 July 1993. Weather Forecast. 1995, 10, 786–797. [Google Scholar] [CrossRef]
- Clark, T.L.; Hall, W.D.; Kerr, R.M.; Middleton, D.; Radke, L.; Ralph, F.M.; Neiman, P.J.; Levinson, D. Origins of aircraft-damaging clear-air turbulence during the 9 December 1992 Colorado downslope windstorm: Numerical simulations and comparison with observations. J. Atmos. Sci. 2000, 57, 1105–1131. [Google Scholar] [CrossRef]
- Ralph, F.M.; Neiman, P.J.; Levinson, T.L.; Fedor, L. Observations, simulations, and analysis of nonstationary trapped lee waves. J. Atmos. Sci. 1997, 54, 1308–1333. [Google Scholar] [CrossRef]
- Smith, R.B. On severe downslope winds. J. Atmos. Sci. 1985, 42, 2597–2603. [Google Scholar] [CrossRef]
- Van der Mescht, D.; Eloff, P.J. Mountain wave-induced rotors in the lee of the Hex River Mountains. S. Afr. Geogr. J. 2013, 95, 117–131. [Google Scholar] [CrossRef]
- Kaplan, M.L.; Huffman, A.W.; Lux, K.M.; Charney, J.J.; Riordan, A.J.; Lin, Y.-L. Characterizing the severe turbulence environments associated with commercial aviation accidents. Part 1: A 44-case study synoptic observational analysis. Meteorol. Atmos. Phys. 2005, 88, 129–152. [Google Scholar] [CrossRef]
- Grubišić, V.; Doyle, J.D.; Kuettner, J.; Dirks, R.; Cohn, S.A.; Pan, L.L.; Mobbs, S.; Smith, R.B.; Whiteman, C.D.; Czyzyk, S.; et al. The terrain-induced rotor experiment: A field campaign overview including observational highlights. Bull. Am. Meteorol. Soc. 2008, 93, 653–668. [Google Scholar] [CrossRef]
- Lin, Y.-L. Mesoscale. Dynamics; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- Markowski, P.; Richardson, Y. Mesoscale Meteorology in Midlatitudes; Wiley-Blackwell: San Francisco, CA, USA, 2010. [Google Scholar]
- Long, R.R. Some aspects of the flow of stratified fluids. Part I: A theoretical investigation. Tellus 1953, 5, 42–58. [Google Scholar] [CrossRef]
- Durran, D.R. Another look at downslope windstorms. Part I: The development of analogs of supercritical flow in an infinitely deep, continuously stratified fluid. J. Atmos. Sci. 1986, 43, 2527–2543. [Google Scholar] [CrossRef]
- Clark, T.L.; Peltier, W.R. Critical level reflection and the resonant growth of nonlinear mountain waves. J. Atmos. Sci. 1984, 41, 3122–3134. [Google Scholar] [CrossRef]
- Scinocca, J.F.; Peltier, W.R. The instability of long’s stationary solution and the evolution toward severe downslope windstorm flow. Part I: Nested grid numerical simulations. J. Atmos. Sci. 1993, 50, 2245–2263. [Google Scholar] [CrossRef]
- Wang, T.-A.; Lin, Y.-L. Wave Ducting in a stratified shear flow over a two-dimensional mountain. Part I: General linear criteria. J. Atmos. Sci. 1999, 56, 412–436. [Google Scholar] [CrossRef]
- Dörnbrack, A. Turbulent mixing by breaking gravity waves. J. Fluid Mech. 1998, 375, 113–141. [Google Scholar] [CrossRef]
- Doyle, J.D.; Durran, D.R. Rotor and subrotor dynamics in the lee of three-dimensional terrain. J. Atmos. Sci. 2007, 64, 4202–4221. [Google Scholar] [CrossRef]
- Vosper, S.B. Inversion effects on mountain lee waves. Q. J. R. Meteorol. Soc. 2004, 130, 1723–1748. [Google Scholar] [CrossRef]
- Hertenstein, R.F.; Kuettner, J.P. Rotor types associated with steep lee topography: Influence of the wind profile. Tellus 2005, 57, 117–135. [Google Scholar] [CrossRef]
- Hertenstein, R.F. The influence of inversions on rotors. Mon. Weather Rev. 2009, 137, 433–446. [Google Scholar] [CrossRef]
- French, J.R.; Haimov, S.J.; Oolman, L.D.; Grubišić, V.; Serafin, S.; Strauss, L. Wave-induced boundary-layer separation in the lee of the Medicine Bow Mountains. Part I: Observations. J. Atmos. Sci. 2015, 72, 4845–4863. [Google Scholar] [CrossRef]
- Grubišić, V.; Serafin, S.; Strauss, L.; Haimov, S.J.; French, J.R.; Oolman, L.D. Wave-induced boundary layer separation in the lee of the medicine bow mountains. Part II: Numerical modeling. J. Atmos. Sci. 2015, 72, 4865–4884. [Google Scholar] [CrossRef]
- Strauss, L.; Serafin, S.; Haimov, S.; Grubišić, V. Turbulence in breaking mountain waves and atmospheric rotors estimated from airborne in situ and Doppler radar measurements. Q. J. R. Meteorol. Soc. 2015, 141, 3207–3225. [Google Scholar] [CrossRef] [PubMed]
- Pokharel, B.; Geerts, B. A multi-sensor study of the impact of ground-based glaciogenic seeding on clouds and precipitation over mountains in Wyoming. Part I: Project description. Atmos. Res. 2016, 182, 269–281. [Google Scholar] [CrossRef]
- Geerts, B.; Pokharel, B.; Kristovich, D. Blowing snow as a natural glaciogenic cloud seeding mechanism. Mon. Weather Rev. 2015a, 143, 5017–5033. [Google Scholar] [CrossRef]
- Locatelli, J.D.; Hobbs, P.V. Fall speeds and masses of solid precipitation particles. J. Geophys. Res. 1974, 79, 2185–2197. [Google Scholar] [CrossRef]
- Mitchell, D.L. Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci. 1996, 53, 1710–1723. [Google Scholar] [CrossRef]
- Damiani, R.; Haimov, S. A high-resolution dual-Doppler technique for fixed multiantenna airborne radar. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3475–3489. [Google Scholar] [CrossRef]
- Geerts, B.; Damiani, R.; Haimov, S. Finescale vertical structure of a cold front as revealed by an airborne Doppler radar. Mon. Weather Rev. 2006, 134, 251–271. [Google Scholar] [CrossRef]
- Geerts, B.; Miao, Q.; Yang, Y. Boundary layer turbulence and orographic precipitation growth in cold clouds: Evidence from profiling airborne radar data. J. Atmos. Sci. 2011, 68, 2344–2365. [Google Scholar] [CrossRef]
- Geerts, B.; Yang, Y.; Rasmussen, R.; Haimov, S.; Pokharel, B. Snow growth and transport patterns in orographic storms as estimated from airborne vertical-plane dual-doppler radar data. Mon. Weather Rev. 2015, 143, 644–665. [Google Scholar] [CrossRef]
- Yang, Q.; Geerts, B. Horizontal convective rolls in cold air over water: Buoyancy characteristics of coherent plumes detected by an airborne radar. Mon. Weather Rev. 2006, 134, 2373–2396. [Google Scholar] [CrossRef]
- Miao, Q.; Geerts, B. Finescale vertical structure and dynamics of some dryline boundaries observed in IHOP. Mon. Weather Rev. 2007, 135, 4161–4184. [Google Scholar] [CrossRef]
- Sipprell, B.D.; Geerts, B. Finescale vertical structure and evolution of a preconvective dryline on 19 June 2002. Mon. Weather Rev. 2007, 135, 2111–2134. [Google Scholar] [CrossRef]
- Damiani, R.; Geerts, B.; Demko, J.; Haimov, S.; French, J.; Zehnder, J.; Razdan, A.; Hu, J.; Petti, J.; Leuthold, M.; et al. The Cumulus, Photogrammetric, In Situ, and Doppler Observations Experiment of 2006. Bull. Am. Meteorol. Soc. 2008, 89, 57–73. [Google Scholar] [CrossRef]
- Bergmaier, P.; Geerts, B. Airborne radar observations of lake-effect snowbands over the New York Finger Lakes. Mon. Weather Rev. 2016, 144, 3895–3914. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A description of the Advanced Research WRF Version 3; NCAR Technical Note, NCAR/TN-475+STR; Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Janjic, Z.I. Nonsingular Implementation of the Mellor–Yamada Level 2.5 Scheme in the NCEP Meso model. NCEP Off. Note 2002, 437, 61. [Google Scholar]
- Lim, J.-O.J.; Hong, S.-Y. Development of an effective double-moment cloud microphysics scheme with prognostic Cloud Condensation Nuclei (CCN) for weather and climate models. Mon. Weather Rev. 2010, 138, 1587–1612. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model of the longwave. J. Geophys. Res. 1997, 102, 16636–16682. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale tow-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Sharman, R.D.; Trier, S.B.; Lane, T.P.; Doyle, J.D. Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: A review. Geophys. Res. Lett. 2012, 39, L12803. [Google Scholar] [CrossRef]
- Jing, X.; Geerts, B.; Friedrich, K.; Pokharel, B. Dual-polarization radar data analysis of the impact of ground-based glaciogenic seeding on winter orographic clouds. Part I: Mostly Stratif. Clouds J. Appl. Meteorol. Climatol. 2015, 54, 1944–1969. [Google Scholar]
- Kirshbaum, D.J.; Durran, D.R. Factors governing cellular convection in orographic precipitation. J. Atmos. Sci. 2004, 61, 682–698. [Google Scholar] [CrossRef]
- Baines, P.G. Topographic Effects in Stratified Flows; Cambridge University Press: Cambridge University, UK, 1995. [Google Scholar]
- Regmi, R.; Kitada, T.; Dudhia, J.; Maharjan, S. Large-scale gravity current over the middle hills of Nepal Himalaya: Implications for aircraft accident. J. Appl. Meteor. Climatol. 2017. [Google Scholar] [CrossRef]
- MacCready, P.B.J. Standardization of gustiness values from aircraft. J. Appl. Meteor. 1964, 3, 439–449. [Google Scholar] [CrossRef]
- Sharman, R.D.; Cornman, L.B.; Meymaris, G.; Pearson, J.; Farrar, T. Description and derived climatologies of automated in situ eddy-dissipation-rate reports of atmospheric turbulence. J. Appl. Meteorol. Climatol. 2014, 53, 1416–1432. [Google Scholar] [CrossRef]
- Reinecke, P.A.; Durran, D.R. Initial-condition sensitivities and the predictability of downslope winds. J. Atmos. Sci. 2009, 66, 3401–3418. [Google Scholar] [CrossRef]
- Doyle, J.D.; Gaberšek, S.; Jiang, Q.; Bernardet, L.; Brown, J.M.; Dörnbrack, A.; Filaus, E.; Grubišić, V.; Kirshbaum, D.J.; Knoth, O.; et al. An intercomparison of T-REX mountain-wave simulations and implications for mesoscale predictability. Mon. Weather Rev. 2011, 139, 2811–2831. [Google Scholar] [CrossRef]
- Smith, R.B. Aerial observations of the Yugoslavian bora. J. Atmos. Sci. 1987, 44, 269–297. [Google Scholar] [CrossRef]
- Darby, L.S.; Poulos, G.S. The evolution of lee-wave-rotor activity in the lee of Pike’s Peak under the influence of a cold frontal passage: Implications for aircraft safety. Mon. Weather Rev. 2006, 134, 2857–2876. [Google Scholar] [CrossRef]
- Brinkmann, W.A.R. Strong downslope winds at Boulder, Colorado. Mon. Weather Rev. 1974, 102, 592–602. [Google Scholar] [CrossRef]
Domains: Δx = Δy | d01: 9 km | d02: 3 km | d03: 1 km |
Simulation time | 30 h starting on 11 January 2013 at 00 UTC | ||
grid points | 241 × 121 | 181 × 181 | 181 × 181 |
time steps (seconds) | 30 | 10 | 3.3 |
driver | 12 km NAM | nested | nested |
vertical level | 60 layers | ||
PBL and Turbulence | MYJ scheme [38] and Horizontal Smagorinsky first-order closure | ||
SW radiation | Dudhia scheme [41] | ||
LW radiation | RRTM scheme [40] | ||
land surface | Noah land-surface Model | ||
microphysics | WSM 6-class graupel scheme [39] |
Sounding Launch | Average Value from Surface to Mountaintop | ||||||||
---|---|---|---|---|---|---|---|---|---|
Date | Time (UTC) | U (m/s) | Wind Dir (°) | N (0.01 s−1) | h | ||||
obs | model | obs | model | obs | model | obs | model | ||
11 January 2013 | 1700 | 16.7 | 10.1 | 240 | 277 | 1.06 | 0.54 | 1.03 | 0.85 |
11 January 2013 | 2000 | 14.9 | 10.9 | 265 | 270 | 0.57 | 0.67 | 0.57 | 0.96 |
12 January 2013 | 0300 | 14 | 8.2 | 271 | 301 | 0.55 | 1.02 | 0.59 | 1.96 |
Average | 15.2 | 9.7 | 259 | 283 | 0.73 | 0.74 | 0.68 | 1.10 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pokharel, B.; Geerts, B.; Chu, X.; Bergmaier, P. Profiling Radar Observations and Numerical Simulations of a Downslope Wind Storm and Rotor on the Lee of the Medicine Bow Mountains in Wyoming. Atmosphere 2017, 8, 39. https://doi.org/10.3390/atmos8020039
Pokharel B, Geerts B, Chu X, Bergmaier P. Profiling Radar Observations and Numerical Simulations of a Downslope Wind Storm and Rotor on the Lee of the Medicine Bow Mountains in Wyoming. Atmosphere. 2017; 8(2):39. https://doi.org/10.3390/atmos8020039
Chicago/Turabian StylePokharel, Binod, Bart Geerts, Xia Chu, and Philip Bergmaier. 2017. "Profiling Radar Observations and Numerical Simulations of a Downslope Wind Storm and Rotor on the Lee of the Medicine Bow Mountains in Wyoming" Atmosphere 8, no. 2: 39. https://doi.org/10.3390/atmos8020039
APA StylePokharel, B., Geerts, B., Chu, X., & Bergmaier, P. (2017). Profiling Radar Observations and Numerical Simulations of a Downslope Wind Storm and Rotor on the Lee of the Medicine Bow Mountains in Wyoming. Atmosphere, 8(2), 39. https://doi.org/10.3390/atmos8020039