Characterization and Sources of Aromatic Hydrocarbons (BTEX) in the Atmosphere of Two Urban Sites Located in Yucatan Peninsula in Mexico
Abstract
:1. Introduction
2. Methods
2.1. Study Site Description
2.2. Sampling and Analytical Method
2.3. Measurements of Criteria Air Pollutants and Meteorological Parameters
2.4. Statistical Analysis
2.5. Health Risk Assessment
3. Results
3.1. Diurnal and Seasonal Variation of BTEX (Benzene, Toluene, Ethylbenzene and Xylene) in Study Area
3.2. BTEX and Meteorological Conditions
3.3. BTEX Correlations, Ratios and Principal Component Analysis Results
Pearson Correlation Analysis
3.4. Health Risk Assessment
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Health Organization (WHO). Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide; Global Update 2005, Summary of Risk Assessment, WHO/SDE/PHE/OEH/06.02; WHO Press: Copenhagen, Denmark, 2006. [Google Scholar]
- Marć, M.; Namieśnik, J.; Zabiegała, B. BTEX concentration levels in urban air in the area of the Tri-City agglomeration (Gdansk, Gdynia, Sopot), Poland. Air Qual. Atmos. Health 2014, 7, 489–504. [Google Scholar] [CrossRef]
- Yurdakul, S.; Civan, M.; Tuncel, G. Volatile organic compounds in suburban Ankara atmosphere, Turkey: Sources and variability. Atmos. Res. 2013, 120–121, 298–311. [Google Scholar] [CrossRef]
- Sierra, A.; Vanoye, A.Y.; Mendoza, A. Ozone sensitivity to its precursor emissions in Northeastern Mexico for a summer air pollution episode. J. Air Waste Manag. Assoc. 2013, 63, 1221–1233. [Google Scholar] [CrossRef] [PubMed]
- SEMARNAT. National Emissions Inventory 2005-Inventario Nacional de Emisiones 2005 (NEI). Available online: http://sinea.semarnat.gob.mx/sinae.php?process=UkVQT1JURUFET1I=&categ=1 (accessed on 26 October 2016).
- Harper, C.C.; Faroon, O.; Mehlman, M.A. Carcinogenic effects of benzene as a major component of gasoline and jet fuels. In Hydrocarbon Contaminated Soils, Volume III; Calabrese, E.J., Kostecki, P.T., Eds.; Lewis Publishers: Atlanta, GA, USA, 1993; Volume III, pp. 215–241. [Google Scholar]
- Mendoza, A.; León, M.A.; Caballero, P. Emisiones de compuestos orgánicos volátiles durante arranques en frío de automóviles ligeros (Volatile Organic Compound Emissions from Light-Duty Vehicles During Cold-Starts). Ing. Investig. Tecnol. 2010, 11, 333–347. [Google Scholar]
- Jian, L.; Zhong, M.S.; Liang, J.; Yao, J.J.; Xia, T.X.; Fan, Y.L.; Li, J.D.; Tang, Z.Q. Application and benefit evaluation of tiered health risk assessment approach on site contamined by benzene. Huan Jing Ke Xue 2013, 34, 1034–1043. [Google Scholar]
- Hogstedt, C.; Lundberg, L. Epidemiology of occupational neurobehavioural hazards. Methodological experiences from organic solvent research. Rev. Epidemiol. Sante Publique 1992, 40, S7–S16. [Google Scholar] [PubMed]
- Chen, R.; Semple, S.; Dick, F.; Seaton, A. Nasal, eye and skin irritation in dockyard painters. Occup. Environ. Med. 2001, 58, 542–543. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency (US EPA) IRIS. Integrated Risk Information System. Benzene; National Center for Environmental Asessment, Office of Research and Development: Washington, DC, USA, 2013. Available online: http://www.epa.gov/iris/subst/0276.htm (accessed on 15 March 2017).
- United States Environmental Protection Agency (US EPA). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment); Final EPA Report (EPA/540/-R-070/002); United States Environmental Protection Agency (US EPA): Washington, DC, USA, 2014. Available online: http://www.epa.gov/oswer/riskassessment/ragsf/index.htm (accessed on 14 March 2017).
- Glass, D.C.; Gary, C.N.; Jolley, D.J.; Gibbons, C.; Sim, M.R.; Fritschi, L.; Adams, G.G.; Bisby, J.A.Y.; Manuel, R. Leukemia risk associated with low-level benzene exposure. Epidemiology 2013, 14, 569–577. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, M.A.; Singh, O.; Reddy, G.K. Health consequences of involuntary exposure to benzene following a flaring incident at British Petroleum refinery in Texas City. Am. J. Disaster Med. 2013, 8, 169–179. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, M.A.; Reddy, G.K. Health effects of benzene exposure among children following a flaring incident at the British Petroleum refinery in Texas City. Pediatr. Hematol. Oncol. 2014, 31, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Schnatter, A.R.; Rosamilia, K.; Wojcik, N.C. Review of the literature on benzene exposure and leukemia subtypes. Chem. Biol. Interact 2005, 153–154, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Mugica, V.; Vega, H.; Ruiz, G.; Sanchez, G.; Reyes, E.; Cervantes, A. Photochemical Reactivity and Sources of Individual VOCs in Mexico City. In Air Pollution; Brebbia, C.A., Martin-Duque, J.F., Eds.; WIT Press: Ashurst Lodge, Southampton, UK, 2002; Volume 10, pp. 209–217. [Google Scholar]
- Mugica, V.; Ruiz, M.E.; Watson, J.; Chow, J. Volatile Organic Compounds in México City Atmosphere: Levels and Sources Apportionment. Atmósfera 2003, 16, 15–27. [Google Scholar]
- Mendoza, A.; Gutiérrez, A.A.; Pardo, E.I. Volatile Organic Compounds in the Downtown Area of Mexicali, Mexico during the spring of 2005: Analysis of Ambient Data and Source–Receptor Modeling. Atmósfera 2008, 22, 95–217. [Google Scholar]
- Vega, E.; Sánchez-Reyna, G.; Mora-Perdomo, V.; Iglesias, G.S.; Arriaga, J.L.; Limón-Sánchez, T.; Escalona-Segura, S.; Gonzalez-Avalos, E. Air Quality Assessment in a Highly Industrialized Area of Mexico: Concentrations and Sources of Volatile Organic Compounds. Fuel 2011, 90, 3509–3520. [Google Scholar] [CrossRef]
- Zheng, J.; Garzon, J.P.; Huertas, M.E.; Zhang, R.Y.; Levy, M.; Ma, Y.; Huertas, H.I.; Jardon, R.T.; Ruiz, L.G.; Tan, H.B.; et al. Volatile organic compounds in Tijuana during the Cal–Mex 2010 campaign: Measurements and source apportionment. Atmos. Environ. 2013, 70, 521–531. [Google Scholar] [CrossRef]
- Cerón Bretón, J.G.; Cerón Bretón, R.M.; Aguilar Ucán, C.A.; Montalvo Romero, C.; Ramírez Lara, E.; Rustrián Portilla, E.; Houbron, E.P.; Cima Mukul, C.; Anguebes Franseschi, F.; Ramírez Elías, M.A.; et al. Levels of BTEX in ambient air in two urban sites located in the center zone of Orizaba Veracruz, Mexico during autumn 2014 and assessment of the carcinogenic risk levels of benzene. Int. J. Energy Environ. 2015, 9, 90–101. [Google Scholar]
- Cerón-Bretón, J.G.; Cerón-Bretón, R.M.; Kahl, J.D.W.; Ramírez-Lara, E.; Guarnaccia, C.; Aguilar-Ucán, C.A.; Montalvo-Romero, C.; López-Chuken, U. Diurnal and seasonal variation of BTEX in the air of Monterrey, Mexico: Preliminary study of sources and photochemical ozone pollution. Air Qual. Atmos. Health 2014, 8, 469–482. [Google Scholar] [CrossRef]
- Cerón-Bretón, J.G.; Cerón-Bretón, R.M.; Rangel-Marrón, M.; Carballo-Pat, C.G.; Villarreal-Sanchez, G.X.; Uresti-Gómez, A.Y. Diurnal variation of BTX levels in ambient air of one urban site located at the southwest of Mexico City during two seasons in 2013. Int. J. Energy Environ. 2013, 7, 261–271. [Google Scholar]
- INSHT Method MTA/MA-030/A92. Aromatic Hydrocarbons Determination in Air (Benzene, Toluene, Ethylbenzene, p-Xylene, 1,2,4-Trimethyl-Benzene): Adsorption in Activated Carbon/Gas Chromatography Method; INSHT Method MTA/MA-030/A92; Social and Occupational Affairs Office: Madrid, Spain, 1992; Available online: http://www.insht.es/InshtWeb/Contenidos/Documentacion/FichasTecnicas/MetodosAnalisis/Ficheros/MA/MA_032_A98.pdf (accessed on 15 March 2016).
- National Institute of Statistics and Geography (INEGI). Altitude and Annual Average Rainfall Maps; Yucatan State Government: Yucatan, Mexico, 2010. Available online: http://www.cuentame.inegi.org.mx/monografias/informacion/yuc/territorio/clima.aspx?tema=me&e=31 (accessed on 10 April 2016).
- Lakes Environmental. WRPLOT View Version 7.0: Wind Rose Plots for Meteorological Data. 2011. Available online: http://www.weblakes.com/products/wrplot/index.html (accessed on 15 January 2017).
- Statistical Software and Data Analysis Add-on for Excel (XLSTAT). 2016. Available online: https://www.xlstat.com/en/ (accessed on 7 November 2016).
- Abdul-Wahab, S.A.; Bakheit, C.S.; Al-Alawi, S.M. Principal component and multiple regression analysis in modeling of ground-level ozone and factors affecting its concentrations. Environ. Model. Softw. 2005, 20, 1263–1271. [Google Scholar] [CrossRef]
- Guo, H.; Wang, T.; Louie, P.K.K. Source apportionment of ambient non-methane hydrocarbons in Hong Kong: Aplication of a Principal Component Analysis/Absolute Principal Component Scores (PCA/APCS) receptor model. Environ. Pollut. 2004, 129, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Einax, J.W.; Zwanziger, H.W.; Greiss, S. Chemometrics in Environmental Analysis; Wiley: New York, NY, USA, 2008; p. 45. [Google Scholar]
- Zhang, Z.; Wang, X.; Zhang, Y.; Lü, S.; Huang, Z.; Huang, X.; Wang, X. Ambient air benzene at background sites in China’s most developed coastal regions: Exposure levels, source implications and health risks. Sci. Total Environ. 2015, 511, 792–800. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency (US EPA). Integrated Risk Information System (IRIS) Carcinogenic Effects of Benzene: An Update (EPA/600/P-97/001F); United States Environmental Protection Agency (US EPA): Washington, DC, USA, 1998. Available online: http://www.epa.gov/iris/supdocs/0276index.html (accessed on 7 February 2017).
- United States Environmental Protection Agency (US EPA). Air Risk Assessment Work Plan; Air and Radiation Division, Tristate; United States Environmental Protection Agency (US EPA): Washington, DC, USA, 1997. Available online: https://www.epa.gov/risk/risk-assessment-guidelines (accessed on 14 March 2017).
- Monod, A.; Sive, B.C.; Avino, P.; Chen, T.; Blake, D.R.; Rowland, F.S. Monoaromatic compounds in ambient air of various cities: A focus on correlations between the xylenes and ethylbenzene. Atmos. Environ. 2001, 35, 135–149. [Google Scholar] [CrossRef]
- Khoder, M.I. Ambient levels of volatile organic compounds in the atmosphere of Greater Cairo. Atmos. Environ. 2007, 41, 554–566. [Google Scholar] [CrossRef]
- Elbir, T.; Cetin, B.; Cetin, E; Bayram, A.; Odabasi, M. Characterization of volatile organic compounds (VOCs) and their sources in the air of Izmir, Turkey. Environ. Monit. Assess. 2007, 133, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Yurdakul, S.; Civan, M.; Kuntasal, O.O.; TunceL, K. Temporal variations of BTX compounds in Bursa/Turkey atmosphere. Int. J. Glob. Warm. 2013, 5, 326–344. [Google Scholar] [CrossRef]
- Kuntasal, Ö.O. Organic Composition of Particles and Gases in the Ankara Atmosphere. Ph.D. Thesis, Middle East Technical University (METU), Ankara, Turkey, 2017, unpublished thesis. [Google Scholar]
- Chan, C.Y.; Chan, L.Y.; Wang, X.M.; Liu, Y.M.; Lee, S.C.; Zou, S.C.; Sheng, G.Y.; Fu, J.F. Volatile organic compounds in roadside microenvironments of Metropolitan Hong Kong. Atmos. Environ. 2002, 36, 2039–2047. [Google Scholar] [CrossRef]
- Galindo, N.; Varea, M.; Gil-Moltó, J.; Yubero, E. BTX in urban areas of eastern Spain: A focus on time variations and sources. Environ. Sci. Pollut. Res. 2016, 23, 18267–18276. [Google Scholar] [CrossRef] [PubMed]
- Rappengluck, B.; Fabian, P.; Kalakobas, P.; Vivas, I.; Ziomas, I. Quasi-continuous measurements of non-methane hydrocarbons (NMHC) in the greater Athens area during Medcaphot-Trace. Atmos. Environ. 1998, 36, 2039–2047. [Google Scholar] [CrossRef]
- Menchaca-Torre, H.L.; Mercado-Hernandez, R.; Mendoza-Dominguez, A. Diurnal and seasonal variation of volatile organic compounds in the atmosphere of Monterrey, Mexico. Atmos. Pollut. Res. 2015, 6, 1073–1081. [Google Scholar] [CrossRef]
- Kerbachi, R.; Boughedaoui, M.; Bounoua, L.; Keddam, M. Ambient air pollution by aromatic hydrocarbons in Algiers. Atmos. Environ. 2006, 40, 3995–4003. [Google Scholar] [CrossRef]
- Tan, J.; Guo, S.; Ma, Y.; He, K.; Yang, F.; Yu, Y.; Wang, J. Characteristics of atmospheric non-methane hydrocarbons in Foshan City, China. Environ. Monit. Assess. 2011, 183, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Franco, J.F.; Pacheco, J. Characterization and source identification of VOC species in Bogotá, Colombia. Atmosfera 2015, 28, 1–11. [Google Scholar] [CrossRef]
- National Research Council (NRC). Rethinking the Ozone Problem in Urban and Regional Air Pollution; National Academic Press: Washington, DC, USA, 1991; p. 524. [Google Scholar]
- Jacob, D.J.; Winner, D.A. Effect of climate change on air quality. Atmos. Environ. 2009, 43, 51–63. [Google Scholar] [CrossRef]
- US Environmental Protection Agency (US EPA). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment); Final EPA Report, EPA/540/-R-070/002; US Environmental Protection Agency (US EPA): Washington, DC, USA, 2009. Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part-f (accessed on 10 April 2017).
- World Health Organization (WHO). Air quality guidelines for Europe. In WHO Regional Publications. European Series, 2nd ed.; WHO Press: Copenhagen, Denmark, 2000; p. 91. Available online: http://www.euro.who.int/__data/assets/pdf_file/0005/74732/E71922.pdf (accessed on 11 February 2017).
- Sexton, K.; Linder, S.H.; Marko, D.; Bethel, H.; Lupo, P.J. Comparative assessment of air pollution-related health risks in Houston. Environ. Health Perspect. 2007, 115, 1388–1393. [Google Scholar] [CrossRef] [PubMed]
- US Department of Health and Human Services (US DHHS). Public Health Service. In Toxicological Profile for Benzene; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2007. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp3.pdf (accessed on 15 March 2017).
- US Environmental Protection Agency (US EPA). Risk Assessment Guidance for Superfund: Volume I, Human Health Evaluation Manual (Part D, Standardized Planning, Reporting, and Review of Superfund Risk Assessments); Interim Final Report, No. EPA/540/1-89/002; Office of Emergency and Remedial Responses: Washington, DC, USA, 1998. Available online: https://rais.ornl.gov/documents/RAGSD_EPA540R97033.pdf (accessed on 15 March 2017).
Parameter | Benzene | Toluene | Ethylbenzene | p-Xylene |
---|---|---|---|---|
MDL (µg/mL) | 0.05 | 0.06 | 0.06 | 0.05 |
% RSD | 8.04 | 7.38 | 9.76 | 9.25 |
Accuracy and Exactness (0.1–100 µg/mL) | ||||
average | 1.03 | 1.01 | 1.05 | 1.10 |
% RSD | 3.20 | 8.10 | 6.70 | 5.30 |
% average error | 2.50 | 5.20 | 2.10 | 4.70 |
Linearity (0.1–100 µg/mL) | ||||
R2 | 0.9998 | 0.9952 | 0.9999 | 0.9988 |
Criteria Air Pollutant | Instrument Details (SEDUMA Site) | Instrument Details (Cholul Site) |
---|---|---|
Ozone (O3) | UV Photometric O3 analyzer model 49i; Thermo Fisher Scientific Inc., Waltham, MA, USA , 50–1000 ppb; lower detectable limit: 1 ppb; sample flow rate: 1–3 LPM. | UV absorption O3 analyzer; Teledyne, model T400; range: 0–20,000 ppb; lower detectable limit <0.4 ppb; sample flow rate: 800 cc/min + 10%. |
Sulfur dioxide (SO2) | Pulsed fluorescence SO2 analyzer model 43i; Thermo Fisher Scientific Inc., custom range: 0–0.05 to 100 ppm; lower detectable limit <0.5 ppb; sample flow rate: 0.5 L/min (standard). | UV Fluorescence SO2 analyzer; Teledyne, model T100; range: 0–20,000 ppb; lower detectable limit: 0.4 ppb; sample flow rate: 650 cc/min + 10%. |
Carbon monoxide (CO) | Gas filter correlation CO analyzer (infrared light); model 48i; Thermo Fisher Scientific Inc., range: 0–1 to 100 ppm; flow rate: 0.5 to 2 L/min. | Gas filter correlation CO analyzer; Teledyne, model T-300; range: 0–1000 ppb; lower detectable limit: 0.04 ppm; sample flow rate: 800 cc/min + 10%. |
Nitrogen dioxide (NO2) | Chemiluminescence NO-NO2-NOx analyzer; model 42i; Thermo Fisher Scientific Inc., range: 50 to 1000 ppb; flow rate: 0.5 to 1 LPM. | Chemiluminescence NO/NO2/NOx analyzer; Teledyne; range: 0–20,000 ppb; lower detectable limit <0.4 ppb; sample flow rate: 500 cc/min + 10%. |
Particulate matter (PM2.5) | Continuous ambient particulate monitor (beta monitor); model 5014i; Thermo Fisher Scientific Inc., range: 0–5000 µg/m3; minimum detection limit: <4 µg/m3 (1 h) and <1 µg/m3 (24-h); nominal flow rate: 16.67 L/min | Particulate monitor, Teledyne API, model T640 PM Mass Monitor; range: 0–10,000 µg/m3; lower detectable limit: <0.1 µg/m3 (1 h); sample flow rate: 5 LPM. |
CHOLUL SITE | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SPRING | ||||||||||||
μg/m3 | Benzene | Toluene | Ethylbenzene | p-Xylene | ||||||||
SP-1 | SP-2 | SP-3 | SP-1 | SP-2 | SP-3 | SP-1 | SP-2 | SP-3 | SP-1 | SP-2 | SP-3 | |
Mean | 53.12 | 52.94 | 50.57 | 7.63 | 3.42 | 7.29 | 8.18 | 6.98 | 10.81 | 25.75 | 17.58 | 26.43 |
Maximum | 69.32 | 77.36 | 75.87 | 15.48 | 12.63 | 17.69 | 16.96 | 17.7 | 33.34 | 78.98 | 81.29 | 80.96 |
Minimum | 42.72 | 27.22 | 36.63 | 0.77 | 1.74 | 0.03 * | 4.01 | 3.69 | 3.73 | 4.31 | 1.65 | 4.55 |
Standard Deviation | 8.76 | 17.08 | 12.23 | 5.35 | 4.13 | 7.06 | 4.87 | 4.45 | 10.07 | 25.98 | 24.54 | 27.65 |
Median | 51.91 | 47.19 | 48.99 | 5.77 | 2.43 | 7.18 | 6.09 | 5.51 | 7.06 | 12.03 | 8.87 | 12.62 |
SUMMER | ||||||||||||
μg/m³ | Benzene | Toluene | Ethylbenzene | p-Xylene | ||||||||
SP-1 | SP-2 | SP-3 | SP-1 | SP-2 | SP-3 | SP-1 | SP-2 | SP-3 | SP-1 | SP-2 | SP-3 | |
Mean | 57.67 | 58.64 | 61.10 | 10.87 | 9.04 | 15.06 | 10.22 | 11.62 | 12.74 | 16.57 | 15.90 | 28.30 |
Maximum | 86.86 | 73.58 | 88.71 | 56.06 | 36.65 | 55.63 | 46.02 | 55.99 | 31.50 | 66.99 | 61.43 | 84.67 |
Minimum | 44.87 | 44.87 | 42.94 | 0.23 | 0.04 * | 1.14 | 4.08 | 4.18 | 3.78 | 4.76 | 4.78 | 3.66 |
Standard Deviation | 12.27 | 8.93 | 18.14 | 17.73 | 10.90 | 21.24 | 13.60 | 16.79 | 10.71 | 19.82 | 17.53 | 28.82 |
Median | 54.13 | 59.22 | 52.82 | 3.58 | 6.44 | 3.70 | 4.43 | 5.41 | 6.07 | 6.62 | 9.8 | 10.91 |
AUTUMN | ||||||||||||
μg/m³ | Benzene | Toluene | Ethylbenzene | p-Xylene | ||||||||
SP-1 | SP-2 | SP-3 | SP-1 | SP-2 | SP-3 | SP-1 | SP-2 | SP-3 | SP-1 | SP-2 | SP-3 | |
Mean | 26.57 | 24.97 | 22.35 | 7.08 | 7.26 | 6.19 | 2.58 | 2.96 | 2.64 | 7.12 | 8.07 | 8.27 |
Maximum | 36.25 | 31.66 | 27.63 | 25.30 | 11.84 | 9.87 | 4.40 | 5.06 | 4.65 | 9.71 | 10.24 | 12.50 |
Minimum | 12.17 | 11.04 | 14.89 | 0.52 | 1.64 | 2.83 | 1.52 | 1.98 | 1.25 | 4.85 | 6.62 | 5.85 |
Standard Deviation | 7.94 | 6.55 | 4.93 | 8.21 | 3.64 | 2.88 | 1.00 | 0.96 | 0.97 | 2.06 | 1.27 | 2.23 |
Median | 27.45 | 26.34 | 24.72 | 3.45 | 8.23 | 5.84 | 2.08 | 2.58 | 2.60 | 6.15 | 7.95 | 8.18 |
WINTER | ||||||||||||
μg/m³ | Benzene | Toluene | Ethylbenzene | p-Xylene | ||||||||
SP-1 | SP-2 | SP-3 | SP-1 | SP-2 | SP-3 | SP-1 | SP-2 | SP-3 | SP-1 | SP-2 | SP-3 | |
Mean | 25.51 | 28.64 | 28.85 | 3.12 | 3.04 | 2.40 | 1.81 | 1.95 | 2.24 | 4.20 | 4.18 | 4.12 |
Maximum | 32.88 | 41.35 | 54.21 | 11.74 | 11.07 | 4.89 | 2.31 | 3.17 | 4.34 | 9.20 | 10.41 | 7.33 |
Minimum | 20.10 | 17.84 | 18.05 | 0.79 | 0.46 | 0.30 | 1.32 | 1.39 | 1.37 | 2.74 | 2.28 | 2.65 |
Standard Deviation | 4.18 | 7.22 | 11.39 | 3.69 | 3.47 | 1.77 | 0.32 | 0.60 | 0.89 | 2.20 | 2.62 | 1.49 |
Median | 24.82 | 29.18 | 27.3 | 1.65 | 1.88 | 2.03 | 1.77 | 1.76 | 1.96 | 3.29 | 3.43 | 3.52 |
SEDUMA SITE | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SPRING | ||||||||||||
μg/m³ | Benzene | Toluene | Ethylbenzene | p-Xylene | ||||||||
SP-1 | SP-2 | SP-3 | SP-1 | SP-2 | SP-3 | SP-1 | SP-2 | SP-3 | SP-1 | SP-2 | SP-3 | |
Mean | 43.48 | 48.65 | 41.37 | 5.36 | 5.18 | 5.49 | 6.52 | 6.39 | 6.32 | 11.71 | 12.30 | 13.23 |
Maximum | 58.85 | 70.74 | 55.03 | 9.85 | 15.75 | 11.66 | 9.61 | 7.94 | 7.84 | 18.13 | 17.54 | 16.87 |
Minimum | 31.78 | 38.10 | 25.05 | 0.92 | 0.08 | 0.01 * | 5.17 | 4.66 | 4.85 | 7.96 | 7.46 | 10.12 |
Standard Deviation | 9.26 | 9.45 | 10.40 | 2.74 | 4.41 | 3.53 | 1.41 | 0.98 | 0.93 | 3.02 | 2.78 | 2.33 |
Median | 42.3 | 46.42 | 43.55 | 5.31 | 4.82 | 5.41 | 5.85 | 6.53 | 6.43 | 10.45 | 12.29 | 13.10 |
SUMMER | ||||||||||||
μg/m³ | Benzene | Toluene | Ethylbenzene | p-Xylene | ||||||||
SP-1 | SP-2 | SP-3 | SP-1 | SP-2 | SP-3 | SP-1 | SP-2 | SP-3 | SP-1 | SP-2 | SP-3 | |
Mean | 42.38 | 47.03 | 43.80 | 4.64 | 3.11 | 4.47 | 5.77 | 5.25 | 5.70 | 11.38 | 8.89 | 11.14 |
Maximum | 49.01 | 53.18 | 51.83 | 12.28 | 8.79 | 14.90 | 11.70 | 8.64 | 8.49 | 27.54 | 18.57 | 24.10 |
Minimum | 35.88 | 36.50 | 33.30 | 0.30 | 0.34 | 0.86 | 4.19 | 4.03 | 3.83 | 4.22 | 4.63 | 4.90 |
Standard Deviation | 3.92 | 5.11 | 5.26 | 4.19 | 2.81 | 4.71 | 2.34 | 1.50 | 1.61 | 7.13 | 4.50 | 6.46 |
Median | 42.68 | 48.72 | 44.82 | 4.22 | 2.16 | 2.41 | 4.97 | 4.48 | 5.3 | 9.75 | 6.85 | 8.41 |
AUTUMN | ||||||||||||
μg/m³ | Benzene | Toluene | Ethylbenzene | p-Xylene | ||||||||
SP-1 | SP-2 | SP-3 | SP-1 | SP-2 | SP-3 | SP-1 | SP-2 | SP-3 | SP-1 | SP-2 | SP-3 | |
Mean | 20.97 | 21.52 | 21.43 | 1.68 | 1.22 | 1.83 | 3.15 | 2.52 | 3.65 | 6.50 | 2.19 | 7.22 |
Maximum | 26.03 | 24.65 | 25.28 | 4.05 | 5.02 | 4.75 | 8.67 | 3.59 | 11.25 | 44.10 | 6.10 | 40.33 |
Minimum | 15.04 | 14.73 | 18.54 | 0.11 | 0.04 * | 0.14 | 2.03 | 1.99 | 1.97 | 0.07 | 0.01 | 0.26 |
Standard Deviation | 3.67 | 3.11 | 2.24 | 1.18 | 1.61 | 1.47 | 2.10 | 0.54 | 2.89 | 14.24 | 2.09 | 12.66 |
Median | 21.91 | 23.16 | 21.44 | 1.53 | 0.33 | 1.53 | 2.4 | 2.41 | 2.76 | 1.36 | 1.88 | 2.27 |
WINTER | ||||||||||||
μg/m³ | Benzene | Toluene | Ethylbenzene | p-Xylene | ||||||||
SP-1 | SP-2 | SP-3 | SP-1 | SP-2 | SP-3 | SP-1 | SP-2 | SP-3 | SP-1 | SP-2 | SP-3 | |
Mean | 21.70 | 22.42 | 19.59 | 2.64 | 1.59 | 1.76 | 2.93 | 2.83 | 2.75 | 4.62 | 5.31 | 5.04 |
Maximum | 23.12 | 26.47 | 25.49 | 9.22 | 3.69 | 5.11 | 4.73 | 3.90 | 3.76 | 10.78 | 14.96 | 12.93 |
Minimum | 19.59 | 19.23 | 15.53 | 0.55 | 0.004 * | 0.05 | 2.20 | 1.95 | 2.16 | 1.00 | 0.02 | 0.58 |
Standard Deviation | 1.26 | 2.16 | 2.74 | 2.63 | 1.35 | 1.68 | 0.80 | 0.68 | 0.47 | 3.21 | 4.72 | 4.31 |
Median | 21.92 | 22.67 | 19.05 | 1.63 | 1.78 | 1.21 | 2.61 | 2.69 | 2.72 | 3.42 | 3.83 | 2.79 |
Temperature (°C) | Relative Humidity (%) | Solar Radiation (W/m2) * | |||||||
---|---|---|---|---|---|---|---|---|---|
Avge | Max | Min | Avge | Max | Min | Avge | Max | Min | |
Spring | 29.5 | 36.4 | 23.9 | 57.1 | 81.7 | 27.4 | 305.6 | 811.4 | 37.2 |
Summer | 29.6 | 35.4 | 25.4 | 66.7 | 87.4 | 39.9 | 332.8 | 796.8 | 14.6 |
Autumn | 25.7 | 30.7 | 22.6 | 76.1 | 89.9 | 48.7 | 228.4 | 578.6 | 5.2 |
Winter | 22.8 | 27.1 | 19.9 | 65.0 | 80.5 | 43.5 | 220.1 | 540.5 | 7.9 |
Cholul Site | ||||||
Season | Toluene/Benzene Ratio | p-Xylene/Ethylbenzene Ratio | ||||
SP-1 | SP-2 | SP-3 | SP-1 | SP-2 | SP-3 | |
Spring | 0.14 | 0.09 | 0.15 | 2.47 | 1.87 | 2.14 |
Summer | 0.15 | 0.15 | 0.19 | 1.67 | 1.64 | 1.94 |
Autumn | 0.23 | 0.30 | 0.27 | 2.85 | 2.89 | 3.41 |
Winter | 0.12 | 0.10 | 0.09 | 2.49 | 2.27 | 1.93 |
SEDUMA Site | ||||||
Season | Toluene/Benzene Ratio | p-Xylene/Ethylbenzene Ratio | ||||
SP-1 | SP-2 | SP-3 | SP-1 | SP-2 | SP-3 | |
Spring | 0.12 | 0.09 | 0.13 | 1.79 | 1.92 | 2.09 |
Summer | 0.11 | 0.07 | 0.10 | 1.85 | 1.61 | 1.81 |
Autumn | 0.08 | 0.05 | 0.09 | 9.12 | 3.61 | 2.16 |
Winter | 0.12 | 0.07 | 0.09 | 1.46 | 1.63 | 1.66 |
Site | Benzene (µg m−3) | Toluene (µg m−3) | Ethylbenzene (µg m−3) | p-Xylene (µg m−3) |
---|---|---|---|---|
Ankara, Turkey a | 2.18 | 7.89 | 0.85 | 2.62 |
Athens, Greece b | 37.38 | 79.91 | 17.37 | 49.68 |
Hong Kong, China c | 26.70 | 77.20 | 3.10 | 12.10 |
Ramsis, Greater Cairo, Egypt d | 87.20 | 213.8 | 43.30 | 140.80 |
Foshan City, China e | 11.24 | 28.62 | - | - |
Bogotá, Colombia f | 14.69 | - | - | - |
Monterrey, Mexico g | 4.47 | 9.79 | 0.43 | 2.17 |
Alicante, Spain h | 1.2 | 3.5 | - | 2.4 |
Castellon, Spain h | 1.8 | 3.6 | - | 2.5 |
Algiers City, Argelia i | 9.6 | 15.2 | - | 3.2 |
Cholul, Yucatan, Mexico j | 40.91 | 6.87 | 13.87 | 6.23 |
Merida, Yucatan, Mexico k | 32.86 | 3.29 | 8.29 | 4.48 |
SPRING 2016 | ||||||
---|---|---|---|---|---|---|
Variables | Cholul Site | SEDUMA Site | ||||
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | |
CO | 0.55 | −0.61 | ||||
NOx | 0.60 | 0.59 | ||||
O3 | −0.77 | |||||
PM2.5 | ||||||
B | 0.57 | 0.77 | ||||
T | 0.85 | |||||
Ebz | 0.79 | 0.85 | ||||
X | 0.67 | 0.89 | ||||
WS | −0.58 | 0.52 | ||||
WD | −0.53 | |||||
RH | 0.92 | 0.92 | ||||
Tmp | −0.85 | −0.91 | ||||
Prs | 0.83 | 0.59 | ||||
SR | 0.78 |
SUMMER 2016 | ||||||
---|---|---|---|---|---|---|
Variables | Cholul Site | SEDUMA Site | ||||
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | |
CO | 0.56 | 0.46 | 0.68 | |||
NOx | 0.76 | 0.79 | ||||
O3 | −0.78 | −0.67 | ||||
PM2.5 | 0.81 | |||||
B | 0.76 | |||||
T | 0.88 | 0.63 | ||||
Ebz | 0.72 | 0.83 | ||||
X | 0.86 | 0.82 | ||||
WS | 0.57 | |||||
WD | ||||||
RH | 0.65 | 0.63 | ||||
Tmp | −0.66 | −0.63 | 0.59 | |||
Prs | 0.79 | 0.69 | ||||
SR | 0.75 | 0.71 |
AUTUMN 2016 | ||||||
---|---|---|---|---|---|---|
Variables | Cholul Site | SEDUMA Site | ||||
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | |
CO | 0.64 | 0.69 | ||||
NOx | ||||||
O3 | −0.71 | −0.58 | ||||
B | 0.74 | |||||
T | 0.67 | −0.51 | ||||
Ebz | 0.60 | 0.69 | ||||
X | 0.64 | 0.67 | ||||
WS | 0.79 | 0.65 | ||||
WD | 0.73 | 0.56 | ||||
RH | −0.92 | 0.95 | ||||
Tmp | 0.95 | −0.92 | ||||
Prs | −0.79 | 0.70 | ||||
SR | 0.63 | −0.66 |
WINTER 2016 | ||||||
---|---|---|---|---|---|---|
Variables | Cholul Site | SEDUMA Site | ||||
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | |
CO | 0.97 | −0.94 | ||||
NOx | 0.88 | −0.85 | ||||
O3 | −0.81 | 0.86 | ||||
B | 0.57 | 0.61 | ||||
T | 0.60 | |||||
Ebz | 0.58 | 0.85 | ||||
X | 0.64 | 0.79 | ||||
WS | −0.78 | 0.76 | ||||
WD | ||||||
RH | −0.67 | −0.72 | ||||
Tmp | 0.81 | 0.80 | ||||
Prs | 0.71 | −0.68 | ||||
SR | 0.71 | 0.65 |
Toxicity Profile (US DHHS) [52] | ||||
---|---|---|---|---|
Pollutant | CAS No. | RfC a (mg m−3) | Inhalation Cancer Slope Factor (SF) b (kg day/mg) | Carcinogenicity |
Benzene | 71,432 | 3 × 10−2 | 2.89 × 10−2 | Group A |
Estimated Values for Exposure, Associated Non-Cancer hazard, and Cancer Risk | ||||
Yearly average concentration (mg m−3) | E: Daily average exposure (mg/kg per day) | HQ | ILTCR | |
Cholul site: 4.091 × 10−2 | Adult: 7.42 × 10−5 Children: 1.4 × 10−4 | 1.36 | Adult: 1.182 × 10−3 Children: 6.855 × 10−4 | |
SEDUMA site: 3.286 × 10−2 | Adult: 7.42 × 10−5 Children: 1.4 × 10−4 | 1.095 | Adult: 12.89 × 10−4 Children: 5.5 × 10−4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bretón, J.G.C.; Bretón, R.M.C.; Ucan, F.V.; Baeza, C.B.; Fuentes, M.d.l.L.E.; Lara, E.R.; Marrón, M.R.; Pacheco, J.A.M.; Guzmán, A.R.; Chi, M.P.U. Characterization and Sources of Aromatic Hydrocarbons (BTEX) in the Atmosphere of Two Urban Sites Located in Yucatan Peninsula in Mexico. Atmosphere 2017, 8, 107. https://doi.org/10.3390/atmos8060107
Bretón JGC, Bretón RMC, Ucan FV, Baeza CB, Fuentes MdlLE, Lara ER, Marrón MR, Pacheco JAM, Guzmán AR, Chi MPU. Characterization and Sources of Aromatic Hydrocarbons (BTEX) in the Atmosphere of Two Urban Sites Located in Yucatan Peninsula in Mexico. Atmosphere. 2017; 8(6):107. https://doi.org/10.3390/atmos8060107
Chicago/Turabian StyleBretón, Julia Griselda Cerón, Rosa María Cerón Bretón, Francisco Vivas Ucan, Cynthia Barceló Baeza, María de la Luz Espinosa Fuentes, Evangelina Ramírez Lara, Marcela Rangel Marrón, Jorge Alfredo Montero Pacheco, Abril Rodríguez Guzmán, and Martha Patricia Uc Chi. 2017. "Characterization and Sources of Aromatic Hydrocarbons (BTEX) in the Atmosphere of Two Urban Sites Located in Yucatan Peninsula in Mexico" Atmosphere 8, no. 6: 107. https://doi.org/10.3390/atmos8060107
APA StyleBretón, J. G. C., Bretón, R. M. C., Ucan, F. V., Baeza, C. B., Fuentes, M. d. l. L. E., Lara, E. R., Marrón, M. R., Pacheco, J. A. M., Guzmán, A. R., & Chi, M. P. U. (2017). Characterization and Sources of Aromatic Hydrocarbons (BTEX) in the Atmosphere of Two Urban Sites Located in Yucatan Peninsula in Mexico. Atmosphere, 8(6), 107. https://doi.org/10.3390/atmos8060107