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Abstract: Air pollution contributes to a large fraction of the total mortality estimated under the global
burden of disease project (GBD) of the World Health Organization (WHO). This paper discusses an
integrated study to obtain the spatiotemporal characteristics of particulate matter (PM10 and PM2.5)
and trace gases (O3, SO2, NO2, and CO) pollutants in Hangzhou City (China) for the years 2014–2016.
Our detailed analysis shows a relationship between air pollutants and land-use/land-cover change.
Air quality parameters (PM2.5 and PM10) and trace gases (SO2, NO2, and CO) show strong monthly
variations in the months of January (higher values) and July (lower values). During monsoon and
summer seasons, air quality and trace gases show low values, whereas ozone (O3) is higher in the
summer and lower in the winter. The spatial distribution of air pollutants is retrieved using the
kriging method at the monitoring sites in Hangzhou City. We have considered normalized difference
vegetation index (NDVI) and land surface temperature (LST) from the Landsat 8 data. The correlation
between air pollutants and land use at the street-town unit suggests that areas with low NDVI, high
road density, large built-up density, and LST are consistent with high concentrations of particulate
matter and SO2, NO2, and CO. Among the trace gases, NO2 is found to be the most sensitive element
affected by land use patterns, and O3 shows weak correlation with land use. SO2 shows a strong
positive correlation with road density and LST, whereas CO shows positive correlation with the
built-up density, LST, and population density.
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1. Introduction

Air pollution in general in Asia, especially in China and India has increased since the Industrial
Revolution, i.e., during the Anthropocene epoch [1,2]. The Global Burden of Disease (GBD) study
was first published by the World Health Organization (WHO) in 1990 and the report is updated every
10 years. According to the GBD study of 2010, outdoor air pollution, especially fine particles, is a
serious health risk [3]. Among the 20 leading risk factor causes of death in 2010 globally, outdoor air
pollution ranked ninth in the world and fourth in China. Outdoor pollution in the form of fine particles
causes 3.2 million premature deaths globally, and 1.2 million premature deaths occurred in China in
2010. Outdoor air pollution is considered as slow poison, affecting health slowly so that people suffer
for a long period, and also affecting day-to-day weather conditions. During the winter, air pollutants
(concentrations of air particulate matter and trace gases) play an important role in the formation of
dense fog and haze [4–8], affecting the daily lives of people in Hangzhou and the surrounding regions.
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Land-use/land-cover (LULC) are important factors in global environment and climate change.
Land use has rapidly changed in Asian countries in general, in particular in China. Land-use change
has dramatically altered the Earth’s landscape, chemical fluxes, and radiation budget. The rapid
land-use change is due to the population growth, which is related to the urban sprawl, farmland
displacement, and deforestation, leading to a loss of arable land and habitat destruction. These
losses have also contributed to growing atmospheric pollution at the local, regional, and global scales.
Changes in land cover, responding to both human forcing and natural factors, play a key role in
modulating air quality and changing climate [9]. Land-use change contributes to the change in the
composition of gases in the atmosphere, as well as changes in atmospheric chemical properties and
processes, resulting in pronounced changes in the concentrations of greenhouse gases including carbon
dioxide and methane [6,10]. An analysis of the carbon dioxide flux, releasing to or removed from the
atmosphere, results from land-use change and is related to the amounts of organic carbon within an
ecosystem associated with the changes in forest cover. There has been a net release of carbon from
terrestrial ecosystems worldwide since 1860, and the annual release was greater compared to the
release of carbon from fossil fuels in the past 150 years [11]. There is clear evidence from the analysis of
gases trapped in dated cores due to industrial and agricultural production activities, and atmospheric
methane concentrations have more than doubled in the last 200 years [12,13]. The major methane
sources include enteric fermentation of carbohydrates by ruminants, anaerobic decomposition of
organic material in natural wetlands, landfills, and rice paddies. The amount of methane released from
wetlands accounts for 20% of the total amount of methane in the atmosphere. Meanwhile, methane
can be oxidized to carbon monoxide. Model-based estimates show 60% of carbon monoxide attributes
to land-use change [14]. Taha [15] analyzed the effects of increased urban vegetation on the ozone
and found that the net effect of increased urban vegetation shows decrease in ozone concentrations if
the additional vegetation is low emitters. Tree species release appreciable quantities of hydrocarbons
to the atmosphere, thus contributing to air pollution. Urban air quality is related to nitrogen oxides
(NO2), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3), and carbon dioxide (CO2) as well
as the anthropogenic and biogenic particulate matter (PM2.5, PM10). Urban land-use change has a
significant impact on the concentrations of these atmospheric pollutants. Peng et al. [16] analyzed
the relationship between land-use change and its urban air environmental impacts, and found an
impact of land use on urban air quality. The NO2 change results from woodland are obvious, and
the impact on the highest concentration of total suspended particulate matter from the urban land
use is pronounced. By applying the land-use regression model, outdoor air pollution (NO2, PM2.5)
based on land-use parameters was estimated at a high spatial resolution [17–21]. The satellite aerosol
data, in conjunction with comprehensive meteorological and geographical data, are used to improve
the estimation of PM2.5 concentration [22]. In addition, the layout of an urban area can impact air
pollution via changes in emission and their spatial distribution based on cross-sectional observations
for 111 U.S. urban areas. Aspects of urban form evaluated include city shape, road density, population
density, and the jobs–housing imbalance [23]. Bechle et al. [24] have investigated the relationship
between satellite-derived NO2 and 83 urban city areas globally, and found that urban cities with highly
contiguous built-up areas have, on average, lower NO2 concentrations; more populous cities tend to
exhibit poor air quality. Earlier studies mainly focus on the qualitative impact of land-use change on
limited atmospheric pollutants without giving details of the physical process.

The Yangtze River Delta (YRD) region has experienced a rapid urbanization process accompanied by
economic development during the last few decades. The conversion of vegetated and irrigated cropland
into an urban area significantly changes the temperature and wind speed [25]. The YRD and surrounding
areas are affected by the dense haze [26,27]. Hangzhou is one of the central cities in the YRD economic
circle, and due to the major and rapid land-use change, environmental quality has changed rapidly
in the last 30 years. Efforts have been made to study the air quality in Hangzhou, China [7,28–32].
Local vehicle emissions in Hangzhou City were considered a major contributor to PM2.5 pollution,
and local emissions rather than regional transport were the major source contributing to pollution
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episodes [32]. Eliminating substandard vehicles, upgrading vehicle standards, supplying low-sulfur
oil, and introducing alternative fuel vehicles could simultaneously reduce the four key pollutants (CO,
volatile organic compounds, nitrogen oxides, and particulate matter) [28]. The impact of urbanization
on air pollution diffusion in Hangzhou City has been investigated. The present results show that
the changes in the meteorological environment decreased the urban atmosphere’s diffusion capability,
and therefore increased urban pollutant concentrations [30]. However, few quantitative studies of the
relationship between land use and air quality have been carried out in Hangzhou, China. In the present
study, the spatiotemporal characteristics of air pollution in the Hangzhou area are discussed for the years
2014–2016. We mainly focus on the characteristics of trace gases (SO2, NO2, CO, O3) and particulate matter
(PM2.5 and PM10). The relationship between air pollutants and land-use change including vegetation,
land surface temperature, and urban settings is analyzed for Hangzhou City.

2. Study Area

Hangzhou City is the capital and most populous city of Zhejiang Province in East China. It is
located in northwestern Zhejiang province, in the south-central portion of the Yangtze River Delta.
It covers an area of 16,596 km2, with population density of 536 persons/km2 (as of 2014). Hangzhou
experiences a humid subtropical climate with four distinctive seasons, characterized by long, hot
humid summers and chilly, cloudy winters. The average annual precipitation is 1438 mm, abundant
during the summer and relatively low during the winter. In late summer, Hangzhou suffers from
typhoon storms. The prevailing wind direction is mainly southerly during the summer and northerly
during the winter. The atmospheric structure is relatively stable, and temperature inversion often
occurs in late autumn and winter. Hangzhou City comprises nine municipal districts. Among the nine
districts, six central urban districts (Shangcheng, Xiacheng, Jianggan, Gongshu, Xihu, and Binjiang)
cover an area of 683 km2 with a population of 3.6 million for the year 2013 [33,34].

There are 11 state-controlled air pollution monitoring sites located in Hangzhou City. For the
present study, we have considered monitoring sites in and near the urban central urban districts to
study the impact of urban land-use/land-cover change. The location of Hangzhou in China and
the spatial distribution of the 10 state-controlled monitoring sites in the eight districts of Hangzhou
are shown in Figure 1a,b. The names of the monitoring sites corresponding to the site numbers in
Figure 1b are listed in Table 1. Figure 1c shows the street-town boundary, West Lake (a tourist spot),
and the center of the urban area. Street towns, also called sub-districts, are the smallest geographic
unit at which census data are released to the public [35]. It is also the spatial unit where many
municipal policies are made and implemented. The urban core area is designated as the downtown
area including street-towns of Qingbo, Hubin, Xiaoying, Wulin, Tianshui, Changqing, and Chaoming,
and it is surrounded by the city ring road, which includes the main central business district.

Table 1. List of monitoring sites in Hangzhou, China.

Sites Name of Site Sites Name of Site

Site 1 Linpinzhen Site 6 Zhejiangnongda
Site 2 Xiasha Site 7 Wolongqiao
Site 3 Hemuxiaoxue Site 8 Binjiang
Site 4 Chaohuiwuqu Site 9 Chengxiangzhen
Site 5 Xixi Site 10 Yunqi
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Figure 1. (a) Location of Hangzhou in China; (b) the spatial distribution of the 10 state-controlled 
monitoring sites in the eight districts of Hangzhou; (c) the street-town boundary, West Lake, and the 
urban core of the study area. 

3. Data Sources and Factors Selection 

3.1. Data Sources 

The hourly mass concentrations of trace gases (SO2, NO2, CO, O3) and particulate matter (PM2.5 
and PM10) in the 10 state-controlled monitoring sites of Hangzhou in 2015 are taken from the China 
National Environmental Monitoring Centre (CNEMC, http://www.cnemc.cn/). Landsat satellite data 
are recorded for land-use classification and normalized difference vegetation index (NDVI), and land 
surface temperature (LST) inversion.  

3.2. Factor Selection 

The concentrations of trace gases and particulate matter are affected by industrial activities, 
human activities, and traffic emissions. Urban areas are associated with a number of air pollutants 
and regional pollution problems. Both stationary and mobile sources (vehicles) are major pollution 
sources in the urban area. Local pollution patterns in cities are mainly related to the different land 
use and land cover, the layout of transportation network, building and population densities, and the 
division of functional districts. Pollution levels rise with land-use density, which tends to increase 
towards a city center [36]. In addition, heat pollution is another type of pollution in urban areas. In 
this study, population density, road density, built-up density, NDVI, and LST are considered to 
analyze their relationship with PM2.5, PM10, SO2, NO2, CO, and O3.  

Figure 1. (a) Location of Hangzhou in China; (b) the spatial distribution of the 10 state-controlled
monitoring sites in the eight districts of Hangzhou; (c) the street-town boundary, West Lake, and the
urban core of the study area.

3. Data Sources and Factors Selection

3.1. Data Sources

The hourly mass concentrations of trace gases (SO2, NO2, CO, O3) and particulate matter (PM2.5

and PM10) in the 10 state-controlled monitoring sites of Hangzhou in 2015 are taken from the China
National Environmental Monitoring Centre (CNEMC, http://www.cnemc.cn/). Landsat satellite data
are recorded for land-use classification and normalized difference vegetation index (NDVI), and land
surface temperature (LST) inversion.

3.2. Factor Selection

The concentrations of trace gases and particulate matter are affected by industrial activities,
human activities, and traffic emissions. Urban areas are associated with a number of air pollutants
and regional pollution problems. Both stationary and mobile sources (vehicles) are major pollution
sources in the urban area. Local pollution patterns in cities are mainly related to the different land
use and land cover, the layout of transportation network, building and population densities, and the
division of functional districts. Pollution levels rise with land-use density, which tends to increase
towards a city center [36]. In addition, heat pollution is another type of pollution in urban areas. In this
study, population density, road density, built-up density, NDVI, and LST are considered to analyze
their relationship with PM2.5, PM10, SO2, NO2, CO, and O3.

http://www.cnemc.cn/
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The urban population has grown in recent years (6.88 million in 2000, 8.70 million in 2010,
and 9.00 million in 2015). With rapid urbanization, industrial and commercial activities and the
number of vehicles have increased, affecting the atmospheric pollution and poor air quality and
impacting the daily life of people living in this area. The gross domestic production was 0.14, 0.60,
and 1.01 trillion, respectively, for the years 2000, 2010, and 2015 in Hangzhou City according to the
Hangzhou statistical Information Net (http://www.hangzhou.gov.cn/). The number of vehicles was
0.4 million in 2000, 1.8 million in 2010, and 2.6 million in 2015.

In urban areas, due to traffic density and traffic congestion, NO2 concentrations have increased.
The land-use regression models have been used by many for predicting NO2 [37,38]. Total length of
road, road density and traffic density with a specified area are often used as predictor variables in
land-use regression models [17,39].

In urban settings, NOx and volatile organic compounds emissions are typically dominated by
anthropogenic sources, primarily from vehicular transport and heavy industry. SO2 and NO2 mainly
gather in the urban industrial land. In Hangzhou City, the air pollution shows characteristics of SO2

predominant industry pollution transferred to NOx predominant living pollution.
The rapid industrialization and urbanization show pronounced changes in land cover,

e.g., vegetation is replaced by non-evaporating, non-transpiring surfaces, resulting in a dramatic
alteration of the energy balance in the land surface. A higher level of latent heat exchange was found
with more vegetated areas, while sensible heat exchange was favored more by sparsely vegetated,
urban-impervious areas [40]. The thermal difference, in conjunction with waste heat released from
urban houses, industry, and transport, contributed to the development of an urban heat island. Higher
urban temperatures generally result in higher ozone levels. In addition, higher urban temperature
reflects a growing use of energy, e.g., air conditioning [41].

Vegetation in urban areas is important since it can control environmental conditions and energy
exchange by selective reflection and absorption of solar radiations. Also, it is described as an effective
factor in air pollution control as it could absorb NOx and SO2 pollutants. Here, NDVI is considered
one of the most popular indicators for estimating and mapping vegetation coverage.

4. Land-Use Factor Processing

4.1. Population Density

The population density for each street-town unit is defined as the ratio of the census-reported
population of the street-town unit to its land area using Equation (1):

PDi =
Popi
Areai

, (1)

where i is the number of street-towns, PDi refers to the population density of street-town i
(persons/km2), Popi represents the population of street-town i, Areai is the area of street-town
i. The sixth national census was conducted in 2010 at the street-town level and published by the
administrative districts of Hangzhou. The proportion of the population in each street-town in the year
2010 is based on the sixth national census. In the present study, the population of each street-town in
the year 2015 was estimated by multiplying the population in Hangzhou City by the proportion of
the population in each street-town. We estimated the population density for the year 2015 for each
street-town using Equation (1) (Figure 2). The street-towns with high population density are mainly
located in the main urban area and its surrounding areas (Figure 1c).

http://www.hangzhou.gov.cn/
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Figure 3. Normalized difference vegetation index (NDVI) retrieved from the Landsat 8 image:  
(a) inversion result with 30 m spatial resolution, and (b) average NDVI for street-town unit. 

Figure 2. Population density for the street-town unit.

4.2. NDVI and LST

Both NDVI and LST are calculated from the Landsat 8 image. Landsat 8 carries two sensors,
the Operational Land Imager (OLI) with nine bands, and the Thermal Infrared Sensor (TIRS) with
two bands. Considering the vegetation growth and satellite image quality, we finally chose the
Landsat 8 image acquired on 13 October 2015, and the local overpass time of Landsat was 10:31 am.
Good vegetation growth and data quality are beneficial for accurate inversion of NDVI and LST, and
helpful for extracting the spatial distribution of vegetation and thermal environment information for
Hangzhou City and its surroundings.

NDVI, based on spectral reflectance in the near-infrared and visible bands, is widely used for
monitoring vegetation cover and ecosystem changes. NDVI is calculated from the following equation:

NDVI =
ρnir−ρred
ρnir+ρred

, (2)

where ρred and ρnir are top of atmosphere (TOA) or surface reflectance, respectively, for red and
near-infrared wavelengths. The NDVI with the spatial resolution of 30 m is shown in Figure 3a.
The average NDVI for the street-town unit is shown in Figure 3b.
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Thermal infrared remote sensing provides a unique approach for retrieving land surface
temperature (LST) since the energy detected by the sensor in the spectral region is directly emitted
by the land surface. The radiative transfer equation is used to retrieve LST. The radiative transfer
equation shows the apparent radiance measured by a sensor:

Bi(Ti) = τi(θ)
[
εiBi(Ts) + (1− εi)I↓i

]
+ I↑i , (3)

where Bi(Ti) is the radiance received by channel i of the sensor with brightness temperature Ti. Bi(Ti)

is composed of three terms: surface emission, atmospheric reflection at the surface, and atmospheric
emission. τi(θ) is the transmittance from the surface to the top of the atmosphere for channel i when
the view zenith angle is θ. εi represents surface emissivity for channel i. Bi(Ts) refers to the ground
radiance at temperature Ts, and Ts is the surface temperature. I↓i and I↑i correspond to the downward
and upward atmospheric radiances, respectively..

According to Plank’s law, Bi(Ts) can be expressed as:

Bi(Ts) = 2hc2/
(

λ5
i

(
ehc/λikTs − 1

))
, (4)

where c is the speed of light, h is the Planck constant, k is the Boltzmann constant, and λi is the effective
band wavelength for band i.

According to Equations (3) and (4), the surface temperature can be calculated from the
following equation:

TS =
C2

λi ln( C1

λ5
i

(
Bi(Ti)−I↑i −τi(1−εi)I↓i

)
/τiεi

+ 1)
, (5)

where C1 = hc2, C2 = hc/k [42,43]. With the thermal radiance measured at sensor level, accompanied
by atmospheric parameters, the LST can be calculated using Equation (5). The LST is calculated
for each pixel (30 m resolution) using a Landsat image of Hangzhou City (as shown in Figure 4a).
The average surface temperature for the street-town unit is shown in Figure 4b.
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Figure 4. Land surface temperature retrieved from the Landsat 8 image: (a) inversion result with 30 m
spatial resolution, and (b) average surface temperature for street-town unit.

4.3. Urban Build-Up and Road Density

We used visual interpretation and geographic information system (GIS) analysis approach to
classify the land use/land cover into seven types: forest land, cropland, water, built-up, road, wetland,
and other. The urban built-up area includes residential, industrial, and commercial areas. The built-up
areas and roads were extracted to calculate their density for the street-town unit, as follows:
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CDi =
Coni

Areai
, (6)

RDi =
Ri

Areai
(7)

where i is the number of street-towns, CDi refers to the built-up density of street-town i, Coni represents
the built-up area of street-town i, Areai is the area of street-town i, and RDi is the road density of
street-town i; Ri means the road area of street-town i. The built-up density and road density are shown
in Figures 5 and 6.
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5. Spatiotemporal Distribution of Air Pollution in Hangzhou City

5.1. Temporal Distribution of Air Pollutants

Based on the 10 state-controlled monitoring sites of Hangzhou in the years 2014–2016 (Figure 1b),
the monthly and seasonal (spring: March–May, summer: June–August, autumn: September–November,
winter: December–February) concentrations and variability of particulate matter (PM2.5 and PM10)
and trace gases (O3, SO2, NO2, and CO) in Hangzhou are studied. The average concentrations of
PM2.5, PM10, SO2, O3, NO2, and CO, respectively, are 55.4, 84.7, 50.8, 17.9, 48.8 µg/m3, and 0.9 mg/m3

for the years 2014–2016.
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The monthly average concentrations of PM2.5 and PM10 (Figure 7), respectively, show the highest
concentrations 87.8 and 127.7 µg/m3, respectively, in the month of January and December, and the
lowest values 36.5 and 59.2 µg/m3, in the month of July. In addition, the monthly variations of SO2,
NO2, O3, and CO for the years 2014–2016 are shown in Figure 8. The concentration of O3 is highest in
the month of May, and lowest in the month of December. Highest concentrations of SO2 and CO are
observed in the month of January.
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The seasonal variations of particulate matter and trace gases are shown in Figures 9 and 10.
The highest concentration of O3 is found during summer (66.7 µg/m3), and the lowest during winter
(28.5 µg/m3). The concentrations of PM2.5, PM10, SO2, NO2, and CO are observed to be highest
during winter, and lowest in summer. During monsoon and typhoon periods, frequent rain cleans the
air pollutants [44]. Moreover, the active photochemical reaction consumes precursors of secondary
pollutants in the atmosphere, so the concentrations of particulate matter and SO2, NO2, and CO are
found to be low. However, during winter, the stable weather conditions (e.g., low wind speed) and
weak atmospheric diffusion capacity result in high concentrations of particulate matter and trace
gases (SO2, NO2, and CO). In addition, Hangzhou City has a terrain that descends from southwest to
northeast, and the northerly wind prevails during the winter, resulting in poor atmospheric diffusion
conditions. Under high temperature and high humidity, SO2 and NOx are easier to produce as
secondary aerosols. Urban weather features such as the heat island have a great impact on the
dispersion of air pollutants. The environmental capacity of Hangzhou City is limited due to the
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disadvantageous geographic and meteorological conditions. The major PM sources have changed
from coal burning to a mixture of construction sites, coal burning, vehicle exhaust, and secondary
particles. Iron/steel manufacturing, secondary aerosols, and local vehicle emissions are suggested
as the main sources of PM2.5 in Hangzhou City [29,32], with secondary inorganic aerosols playing an
important role in haze formation [45].
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5.2. Spatial Distribution of Air Pollutants

The spatial distribution of seasonal average concentrations of the six air pollutants for years
2014–2016 at the 10 monitoring sites are shown in Figure 11. PM2.5 and PM10 exhibit similar seasonal
variations with the lowest concentrations during summer and the highest during winter for all
sites. The lowest PM2.5 concentration (31.2 µg/m3) is found around site 10 during summer, and the
highest PM2.5 concentration (86.3 µg/m3) is observed around site 3 during winter. The maximum
difference of PM2.5 (44.5 µg/m3) between summer and winter is observed around site 4. The lowest
PM10 concentration (53.0 µg/m3) is found around site 5 during summer, and the highest PM10

concentration (121.7 µg/m3) is observed around site 1 during winter. The largest value of PM10

(60.1 µg/m3) difference between summer and winter is observed around site 1. Site 2 has the
highest SO2 concentration (31.1 µg/m3) during winter. Meanwhile, the maximum difference of
SO2 (17.5 µg/m3) between summer and winter is monitored at site 1. The O3 concentrations around
all sites are lowest during winter, and highest during summer. Site 3 has the highest O3 concentration
(75.8 µg/m3) during summer, and site 4 has the lowest O3 concentration (21.5 µg/m3) during winter.
The NO2 concentrations in all sites are lowest during summer, and highest in winter. Site 3 has the
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highest NO2 concentration (65.2 µg/m3) during winter, and site 10 has the lowest NO2 concentration
(22.3 µg/m3) during summer. The maximum difference of NO2 (26.8 µg/m3) between summer and
winter is observed around site 2. The CO concentrations around all sites are highest during winter.
The highest CO concentration (1.32 mg/m3) is observed around site 4 during winter, and the lowest
(0.59 mg/m3) is observed around site 2 during summer. The maximum difference of CO (0.46 mg/m3)
between summer and winter is observed around site 4.

Briefly, during summer, site 10 has the lowest PM2.5 concentration (31.2 µg/m3) and NO2

concentration (22.3 µg/m3), site 5 has the lowest PM10 concentration (53.0 µg/m3), site 7 has the lowest
SO2 concentration (6.9 µg/m3), and site 3 has the highest O3 concentration (75.8 µg/m3). During winter,
site 3 has the highest PM2.5 (86.3 µg/m3) and NO2 (65.2 µg/m3) concentrations, and site 2 has the highest
SO2 (31.1 µg/m3) concentration. Sites 5, 7, and 10 are located in Xihu district. As the main attraction
of Hangzhou, Xihu district is a focus for the protection of scenic spots. In this area, water area is vast,
vegetation coverage is high, and tourists visit scenic spots on foot. These factors are conducive to the
spread and filtration of particulate matter, making the air quality better. Site 3 is located in Gongshu
district (Figure 1b), one of the downtown areas of Hangzhou City. The emission intensity of motor
vehicle pollutants shows a decreasing trend from the city center to the city edge. High-emission areas
are concentrated in the center and north of the city, mainly because the road network structure is more
intensive, and the distribution of commercial and residential areas is relatively concentrated in these
areas [46]. Site 2 is located in Jianggang district, which is close to Haining industrial zone. The Haining
industrial zone not only blocks the passage of the wind from the north during winter, but also results in
a certain source of air pollution in the upwind direction of Jianggang district. In addition, site 1 has the
highest variations of SO2 (17.5 µg/m3) and PM10 (60.1 µg/m3) between summer and winter. Site 4 has the
highest variations of PM2.5 (44.5 µg/m3) and CO (0.46 mg/m3) between summer and winter. Site 2 has the
highest variations of NO2 (26.8 µg/m3) and O3 (48.1 µg/m3) between summer and winter.
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City and surroundings by an ordinary kriging method. We adopted kriging interpolation because 
this stochastic method produces the best linear unbiased estimation of the pollution level [47]. The 
kriging interpolations of annual average concentrations of PM2.5, PM10, SO2, O3, NO2, and CO for 2015 
are shown in Figure 12. Both PM2.5 and PM10 show high concentrations in the middle region compared 
with the western parts of the Hangzhou region. The concentration of SO2 increases from west to east. 
A low concentration of O3 is observed in the central region, and a high value is observed in north-
central and south-central regions. The annual CO level decreases from north to south. The average 
concentrations of each air pollutants for the street-town unit are quantitatively calculated for the 
quantitative analysis. 
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Figure 11. Spatial distribution of seasonal average concentrations of particulate matter and trace
gases in Hangzhou City for 2014–2016: (a) PM2.5 (µg/m3); (b) PM10 (µg/m3); (c) SO2 (µg/m3);
(d) O3 (µg/m3); (e) NO2 (µg/m3); (f) CO (mg/m3).

5.3. Spatial Interpolation of Air Pollutants

For the quantitative relationship between air pollution and land use, we interpolated the annual
average concentrations of particulate matter and trace gases from 10 monitoring sites in Hangzhou
City and surroundings by an ordinary kriging method. We adopted kriging interpolation because this
stochastic method produces the best linear unbiased estimation of the pollution level [47]. The kriging
interpolations of annual average concentrations of PM2.5, PM10, SO2, O3, NO2, and CO for 2015 are
shown in Figure 12. Both PM2.5 and PM10 show high concentrations in the middle region compared
with the western parts of the Hangzhou region. The concentration of SO2 increases from west to
east. A low concentration of O3 is observed in the central region, and a high value is observed
in north-central and south-central regions. The annual CO level decreases from north to south.
The average concentrations of each air pollutants for the street-town unit are quantitatively calculated
for the quantitative analysis.
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6. Results and Discussion

The relationship between air pollutants and land use was analyzed at the street-town unit level
in Hangzhou City for 2015. There are 49 street-towns in the Hangzhou area (Figure 1c), and 49
groups of data used in the correlation analysis. The Spearman’s rank correlation with SPSS software
version 16.0 (SPSS Inc., Chicago, IL, USA) is used in the present study. Spearman’s rank correlation
is a non-parametric measure of statistical dependence between two variables. The exact sample
distribution is obtained without requiring knowledge of the probability distribution of variables.
The correlation analysis between land-use change and air pollutants is shown in Table 2. A strong
correlation is found between the concentrations of air pollutants and land use. From the perspective
of land use, road density shows a pronounced positive correlation (R = 0.39, 0.45, 0.32, 0.48) with
PM2.5, PM10, SO2, and NO2, and weak positive correlation (R = 0.02, 0.2) with O3 and CO. The built-up
density shows a strong positive correlation (R = 0.78, 0.67, 0.63, 0.69) with PM2.5, PM10, NO2, and
CO pollution, as well as population density (R = 0.55, 0.42, 0.56, 0.57). LST shows a strong positive
correlation (R = 0.67, 0.69, 0.49, 0.46, 0.47) with PM2.5, PM10, SO2, NO2, and CO, while NDVI shows
a strong negative correlation (R = −0.29, −0.29) with PM10 and NO2, and weak negative correlation
(R = −0.19, −0.07, −0.08) with PM2.5, SO2, and CO. The areas with low NDVI, high built-up density,
road density, and LST are consistent with high concentrations of PM2.5, PM10, SO2, NO2, CO pollution.
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Table 2. Spearman’s rank correlation between air pollutants and land use.

Air Pollutants Land Use

PM2.5 PM10 SO2 O3 NO2 CO RD CD NDVI LST PD

PM2.5 —
PM10 0.780 ** —
SO2 0.437 ** 0.750 ** —
O3 0.118 −0.124 0.172 —

NO2 0.730 ** 0.560 ** 0.223 0.098 —
CO 0.861 ** 0.465 ** −0.006 0.087 0.579 ** —
RD 0.394 ** 0.450 ** 0.318 * 0.024 0.475 ** 0.204 —
BD 0.784 ** 0.667 ** 0.191 −0.246 0.628 ** 0.688 ** 0.447 ** —

NDVI −0.187 −0.294 * −0.068 0.263 −0.294 * −0.084 −0.455 ** −0.514 ** —
LST 0.670 ** 0.685 ** 0.487 ** −0.113 0.461 ** 0.471 ** 0.509 ** 0.772 ** −0.312 * —
PD 0.551 ** 0.415 ** −0.082 −0.333 * 0.562 ** 0.566 ** 0.531 ** 0.816 ** −0.606 ** 0.615 ** —

RD-Road density, BD-Built-up density, LST-Land surface temperature, PD-Population density; ** Correlation is
significant at the 0.01 level (2-tailed); * Correlation is significant at the 0.05 level (2-tailed).

For particle matter, PM2.5 shows pronounced positive correlation with land-use effects except
NDVI, especially with built-up density and LST with the correlation coefficient higher than 0.6. For PM10,
there is a strong positive correlation (R = 0.67, 0.69) with built-up density and LST, but a negative
correlation (R = −0.29) with NDVI. Vegetation could deposit particulate matter, while built-up areas
could produce particulate matter. A similar relationship between particulate pollution and land use is
observed in representative cities of China. Strong correlations between particulate pollution and urban
land, woodland, and grassland are found [48]. The effects of landscape pattern on PM2.5 concentration
by means of correlation analysis are also explored in Beijing. Vegetation can significantly reduce PM2.5

concentration, while construction land increases the concentration [49]. For trace gases, O3 shows a
weak correlation with land use. SO2 shows a strong positive correlation (R = 0.32, 0.49) with road
density and LST. A street-town unit with high road density could reflect the convenient transportation
of this area, and is considered to have a higher probability of being used for industrial and mining
warehouses, and as a business center. The positive correlation between SO2 and road density and LST
means the denser the roads, the more emissions from industry and traffic exhaust, causing an increase
in SO2 concentration. In addition, the pronounced correlation between road density and LST (R = 0.51)
is associated with traffic road materials and exhaust heat of vehicles; LST over roads is much higher
than over other land cover, as found earlier [50]. NO2 shows a strong positive correlation with road
density, built-up density, LST, and population density, with a correlation coefficient higher than 0.46,
while there is a strong negative correlation (R = −0.29) with NDVI. NO2 is the most affected by land
use among the trace gases. NO2 is a good indicator of traffic-related pollution. In earlier studies of NO2

prediction using the LUR model, NO2 showed a positive correlation with road length, built-up area, and
population, but a negative correlation with agricultural land area and tree canopy [20,51]. CO shows
a strong positive correlation (R = 0.69, 0.47, 0.57) with built-up density, LST, and population density.
The results show that the urban concentration of CO is strongly influenced by production activities in
the built-up area and emissions from residents’ stoves. A similar relationship of air pollution (SO2, NOx,
and dust) with urban land use and the urban thermal landscape is observed in Guangzhou City, China.
Results show that the spatial patterns of air pollutants are positively correlated with urban built-up
density and satellite-derived land surface temperature [41].

In the present study, we have used the Landsat 8 acquired in October to retrieve NDVI and LST,
representing the spatial distribution of vegetation and thermal environment information in Hangzhou.
With the introduction of satellite data in different months, the spatial distribution could be more
detailed and accurate. There is no doubt that particulate matter and trace gases are controlled by many
factors besides the variables in the present study. With the rapid development of data sharing around
the world, there would be more potential variables included in the correlation analysis.
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7. Conclusions

We have shown the spatial and monthly/seasonal variability of air pollutants (particulate matter
and trace gases) Hangzhou City for the years 2014–2016. The annual average concentrations of PM2.5,
PM10, SO2, O3, NO2, and CO are 55.4, 84.7, 50.8, 17.9, 48.8 µg/m3, and 0.9 mg/m3, respectively.
PM2.5 and PM10 show strong inter-monthly dynamics, with the lowest values in the month of July.
Meanwhile, trace gases (SO2 and CO) show the highest values in the month of January, while O3 shows
the highest value in the month of May. Due to the disadvantageous geographic and meteorological
conditions, air pollutants are difficult to disperse. Coal burning, construction, vehicle exhaust, and
secondary particles are the main sources of air pollutants. From the seasonal variation, PM2.5, PM10,
SO2, NO2, and CO concentrations are observed to be highest during winter due to the stable weather
conditions and northerly winds, and lowest in summer due to the clean marine air during the monsoon
period, and the concentration of O3 is highest during summer and lowest in winter. From the spatial
distribution of air pollutants in Hangzhou City, low concentrations of PM2.5 PM10, and SO2 are
observed during summer in Xihu district. Due to high vehicular emissions concentrated in the center
and north of the city, high PM2.5, NO2, and CO are observed during winter in Gongshu and Xiacheng
districts. In addition, we have analyzed the correlation between air pollutants and land-use change at
the street-town level. From the perspective of land use, through the correlation analysis, it is found that
high built-up density, road density, LST, and low NDVI are consistent with increasing concentrations
of PM2.5, PM10, SO2, NO2, CO. For particulate matter, both PM2.5 and PM10 have a strong positive
correlation with built-up density and LST. Among trace gases, O3 shows weak correlation with land
use, and NO2 is the most sensitive element affected by land use among the trace gases. SO2 shows
pronounced positive correlation with road density and LST. CO shows a positive correlation with
built-up density, LST, and population density. The street-towns are the smallest geographic unit at
which census data are released. At the street-town scale, the social and environmental data are more
detailed and accurate. Detailed information on the relationship between air pollutants and land use at
the street-town level in the Hangzhou area will be very useful to urban and environmental planners
in formulating urban design and landscape policies for ecological improvement and sustainable
economic growth.
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