Air Pollution Monitoring in the south-east baltic using the epiphytic lichen hypogymnia physodes
Abstract
:1. Introduction
2. Methods
2.1. Sampling Sites
2.2. Sampling Procedure and the Method of Analysis
2.3. Quality Control
2.4. Data Processing and Statistical Analysis
3. Results and Discussion
3.1. The Spatial Distribution of Elements
3.2. The Principle Component Factor Analysis
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Tyler, G. Uptake, retention, and toxicity of heavy metals in lichens. Water Air Soil Pollut. 1989, 47, 321–333. [Google Scholar] [CrossRef]
- Garty, J.; Karary, Y.; Harel, J.; Lurie, S. Temporal and spatial fluctuations of ethylene production and concentrations of sulfur, sodium, chlorine and iron on/in the thallus cortex in thelichen Ramalina duriaei (De Not.) Bagl. Environ. Exp. Bot. 1993, 33, 553–563. [Google Scholar] [CrossRef]
- Garty, J. Biomonitoring atmospheric heavy metals with lichens: Theory and application. Crit. Rev. Plant. Sci. 2001, 20, 309–371. [Google Scholar] [CrossRef]
- Chettri, M.K.; Sawidis, T.; Karataglis, S. Lichens as a tool for biogeochemical prospecting. Ecotoxicol. Environ. Saf. 1997, 38, 322–335. [Google Scholar] [CrossRef] [PubMed]
- Nimis, P.L.; Andreussi, S.; Pittao, E. The performance of two lichen species as bioaccumulators of trace metals. Sci. Total Environ. 2001, 275, 43–51. [Google Scholar] [CrossRef]
- Bergamaschi, L.; Rizzio, E.; Giaveri, G.; Loppi, S.; Gallorini, M. Comparison between the accumulation capacity of four lichen species transplanted to a urban site. Environ. Pollut. 2007, 148, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Balabanova, B.; Stafilov, T.; Šajn, R.; Baèeva, K. Characterisation of Heavy Metals in Lichen Species Hypogymnia physodes and Evernia prunastri due to Biomonitoring of Air Pollution in the Vicinity of Copper Mine. Int. J. Environ. Res. 2012, 6, 779–794. [Google Scholar]
- Tretiach, M.; Baruffo, L. Effects of H2S on CO2 gas exchanges and growth rates of the epiphytic lichen Parmelia sulcata Taylor. Symbiosis 2001, 31, 35–46. [Google Scholar]
- Adamo, P.; Crisafulli, P.; Giordano, S.; Minganti, V.; Modenesi, P.; Monaci, F.; Pittao, E.; Tretiach, M.; Bargagli, R. Lichen and moss bags as monitoring devices in urban areas. Part II: Trace element content in living and dead biomonitors and comparison with synthetic materials. Environ. Pollut. 2007, 146, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Chiarenzelli, J.R.; Aspler, L.B.; Ozarko, D.L.; Hall, G.E.; Powis, K.B.; Donaldson, J.A. Heavy metals in lichens, southern District of Keewatin, Northwest Territories, Canada. Chemosphere 1997, 35, 1329–1341. [Google Scholar] [CrossRef]
- Osyczka, P.; Rola, K. Response of the lichen Cladonia rei Schaer. to strong heavy metal contamination of the substrate. Environ. Sci. Pollut. Res. 2013, 20, 5076–5084. [Google Scholar] [CrossRef] [PubMed]
- Rola, K.; Osyczka, P. Cryptogamic community structure as a bioindicator of soil condition along a pollution gradient. Environ. Monit. Assess. 2014, 186, 5897–5910. [Google Scholar] [CrossRef] [PubMed]
- Rola, K.; Osyczka, P.; Nobis, M.; Drozd, P. How do soil factors determine vegetation structure and species richness in post-smelting dumps? Ecol. Eng. 2015, 75, 332–342. [Google Scholar] [CrossRef]
- Bačkor, M.; Loppi, S. Interactions of lichens with heavy metals. Biol. Plantarum. 2009, 53, 214–222. [Google Scholar] [CrossRef]
- Garty, J.; Galun, M.; Kessel, M. Localization of heavy metals and other elements accumulated in the lichen thallus. New Phytol. 1979, 82, 159–168. [Google Scholar] [CrossRef]
- Goyal, R.; Seaward, M.R.D. Metal uptake in terricolous lichens I. Metal localization within the thallus. New Phytol. 1981, 89, 631–645. [Google Scholar] [CrossRef]
- Sarret, G.; Manceau, A.; Cuny, D.; van Halowyn, C.; Deruelle, S.; Hazemann, J.L.; Soldo, Y.; Eybert-Bérard, L.; Menthonnex, J.J. Mechanisms of lichen resistance to metallic pollution. Environ. Sci. Technol. 1998, 32, 3325–3330. [Google Scholar] [CrossRef]
- Basile, A.; Sorbo, S.; Aprile, G.; Conte, B.; Castaldo Cobianchi, R. Comparison of the heavy metal bioaccumulation capacity of an epiphytic moss and an epiphytic lichen. Environ. Pollut. 2008, 151, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Purvis, O.W.; Pawlik-Skowrońska, B. Lichens and metals. In Stress in Yeasts and Filamentous Fungi; Avery, S.V., Stratford, M., van West, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 175–200. [Google Scholar]
- Bajpai, R.; Upreti, D.K. Accumulation and toxic effect of arsenic and other heavy metals in a contaminated area of West Bengal, India, in the lichen Pyxine cocoes (Sw.) Nyl. Ecotoxicol. Environ. Saf. 2012, 83, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Conti, M.E.; Cecchetti, G. Biological monitoring: Lichens as bioindicators of air pollution assessment—A review. Environ. Pollut. 2001, 114, 471–492. [Google Scholar] [CrossRef]
- Poikolainen, J. Mosses, Epiphytic Lichens and Tree Bark as Biomonitors for Air Pollutants—Specifically for Heavy Metals in Regional Surveys; Oulu University Press: Oulu, Finland, 2004; ISBN 9514274792. [Google Scholar]
- Cuny, D.; Denayer, F.O.; de Foucault, B.; Schumacker, R.; Colein, P.; van Haluwyn, C. Patterns of metal soil contamination and changes in terrestrial cryptogamic communities. Environ. Pollut. 2004, 129, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Pirintsos, S.A.; Matsi, T.; Vokou, D.; Gaggi, C.; Loppi, S. Vertical distribution patterns of trace elements in an urban environment as reflected by their accumulation in lichen transplants. J. Atmos. Chem. 2006, 54, 121–131. [Google Scholar] [CrossRef]
- Nieminen, T.M.; Ukonmaanaho, L.; Rausch, N.; Shotyk, W. Biogeochemistry of Nickel and Its Release into the Environment. Met. Ions Life Sci. 2007, 2, 1–30. [Google Scholar]
- Klimek, B.; Tarasek, A.; Hajduk, J. Trace Element Concentrations in Lichens Collected in the Beskidy Mountains, the Outer Western Carpathians. Bull. Environ. Contam. Toxicol. 2015, 94, 532–536. [Google Scholar] [CrossRef] [PubMed]
- Boonpragob, K.; Nash, T.H. Seasonal variation of elemental status in the lichen Ramalina menziesii Tayl. from 2 sites in southern California—Evidence for dry deposition accumulation. Environ. Exp. Bot. 1990, 30, 415–428. [Google Scholar] [CrossRef]
- Walther, D.A.; Ramelov, G.J.; Beck, J.N.; Young, J.C.; Callahan, J.D.; Marcon, M.F. Temporal changes in metal levels of the lichen Parmotrema praesorediosum and Ramalina stenospora, southwest Louisiana. Water Air Soil Pollut. 1990, 53, 189–200. [Google Scholar] [CrossRef]
- Cuny, D.; Davranche, L.; Thomas, P.; Kempa, M.; van Haluwyn, C. Spatial and temporal variations of trace element contents in Xanthoria parietina thalli collected in a highly industrialized area in northern France as an element for a future epidemiological study. J. Atmos. Chem. 2004, 49, 391–401. [Google Scholar] [CrossRef]
- Barinova, G.M. Kaliningrad Region; Climate; Publishing House “Amber Tale”: Kaliningrad, Russia, 2002. [Google Scholar]
- Kucheryavy, P.P.; Fedorov, G.M. Geography of the Kaliningrad Region; Kaliningrad Book Publishing House: Kaliningrad, Russia, 1989. [Google Scholar]
- Král, R.; Kryžová, L.; Liška, J. Background concentrations of lead and cadmium in the lichen Hypogymnia physodes at different altitudes. Sci. Total Environ. 1989, 84, 201–209. [Google Scholar] [CrossRef]
- Paul, A.; Hauck, M.; Langenfeld-Heyser, R. Ultrastructural changes in soredia of the epiphytic lichen Hypogymnia physodes cultivated with manganese. Environ. Exp. Bot. 2004, 52, 139–147. [Google Scholar] [CrossRef]
- Hauck, M.; Huneck, S. Lichen substances affect metal adsorption in Hypogymnia physodes. J. Chem. Ecol. 2007, 33, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Mikhailova, I.N.; Sharunova, I.P. Dynamics of heavy metal accumulation in thalli of the epiphytic lichen Hypogymnia physodes. Russ. J. Ecol. 2008, 39, 346–352. [Google Scholar] [CrossRef]
- Koroleva, Y. Use of mosses Hylocomium splendens and Pleurozium schreberi for an estimation of absolute values of atmospheric losses of heavy metals in Kaliningrad areas. Vestnik IKBFU 2006, 7, 29–34. [Google Scholar]
- Koroleva, Y.; Pukhlova, I. New data on heavy metal bioconcentration on the territory of the Baltic region. Vestnik IKBFU 2012, 12, 99–106. [Google Scholar]
- Koroleva, Y.; Vakhranyova, O.; Okhrimenko, M. Accumulation of Trace Elements by Wild Mushrooms in West Part of Russia (South-Eastern Baltic). Available online: http://lodel.irevues.inist.fr/pollution-atmospherique/index.php?id=4989 (accessed on 15 February 2017).
- Steins, E. A critical evaluation of the use of naturally growing moss to monitor the deposition of atmospheric metals. Sci. Tot. Environ. 1995, 160, 243–249. [Google Scholar] [CrossRef]
- Vinogradov, A.R. Average contents of chemical elements in the principal type of igneous rocks of the Earth’s crust. Geochemistry 1962, 7, 555–571. [Google Scholar]
- Kabata-Pendias, A.; Szteke, B. Trace Elements in Abiotic and Biotic Environments; MIR: Moscow, Russia, 1989. [Google Scholar]
- Carballeira, A.; Carral, E.; Puente, X.; Villares, R. Regional-scale monitoring of coastal contamination. Nutrients and heavy metals in estuarine sediments and organisms on the coast of Galicia (NW Spain). Environ. Pollut. 2000, 13, 534–572. [Google Scholar] [CrossRef]
- Chiarenzelli, J.; Aspler, L.; Dunn, C.; Cousens, B.; Ozarko, D.; Powis, K. Multi-element and rare earth element composition of lichens, mosses, and vascular plants from the Central Barrenlands, Nunavut, Canada. Appl. Geochem. 2001, 16, 245–270. [Google Scholar] [CrossRef]
- Darnajoux, R.; Lutzoni, F.; Miadlikowska, J.; Bellenger, J.-P. Determination of elemental baseline using peltigeralean lichens from Northeastern Canada (Québec): Initial data collection for long term monitoring of the impact of global climate change on boreal and subarctic area in Canada. Sci. Total Environ. 2015, 533, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.A.; Carballeira, A. Evaluation of contamination, by different elements, in terrestrial mosses. Arch. Environ. Contam. Toxicol. 2001, 40, 461–468. [Google Scholar] [PubMed]
- Nimis, P.L.; Scheidegger, C.; Wolseley, P.A. (Eds.) Monitoring Lichens—Monitoring with Lichens; Kluwer: Dordrecht, The Netherlands, 2002; pp. 295–299. [Google Scholar]
- Berg, T.; Røyset, O.; Steinnes, E.; Vadset, M. Atmospheric Trace Element Deposition: Principal Component Analysis of ICP-MS Data from Moss Samples. Environ. Pollut. 1995, 88, 67–77. [Google Scholar] [CrossRef]
Metal | Mean | SD | SE | CV, % | Median | Max | Min |
---|---|---|---|---|---|---|---|
Fe | 446 | 183 | 33 | 41 | 399 | 1135 | 180 |
Mn | 200 | 135 | 25 | 72 | 187 | 455 | 33 |
Zn | 83 | 47 | 8 | 56 | 78 | 298 | 33 |
Ni | 1.30 | 0.63 | 0.11 | 56 | 1.30 | 2.43 | 0.013 |
Sr | 10.1 | 4.79 | 0.92 | 47 | 8.96 | 18.6 | 4.45 |
Rb | 9.74 | 4.59 | 0.82 | 47 | 10.5 | 19.9 | 1.28 |
Ca | 1203 | 817 | 140 | 68 | 980 | 2995 | 219 |
Metal | Mean | SD | SE | CV, % | Median | Max | Min |
---|---|---|---|---|---|---|---|
Ag | 0.051 | 0.024 | 0.009 | 47 | 0.040 | 0.095 | 0.032 |
Cd | 0.194 | 0.040 | 0.016 | 21 | 0.185 | 0.263 | 0.146 |
Pb | 6.57 | 2.36 | 0.96 | 36 | 7.15 | 9.03 | 3.50 |
Cu | 7.91 | 1.21 | 0.49 | 15 | 7.83 | 9.94 | 6.69 |
Mn | 313 | 253 | 103 | 81 | 259 | 664 | 74.2 |
Ni | 1.64 | 0.549 | 0.225 | 34 | 1.611 | 2.43 | 0.941 |
Zn | 79.5 | 22.7 | 9.26 | 29 | 87.7 | 100 | 45.6 |
Sr | 15.0 | 10.3 | 4.22 | 69 | 10.7 | 31.5 | 6.38 |
Rb | 12.2 | 5.59 | 2.28 | 45.8 | 10.9 | 22.6 | 5.69 |
Fe | 610 | 279 | 114 | 45.7 | 526 | 1135 | 339 |
Ca | 1253 | 0.855 | 0.349 | 68 | 1118 | 2684 | 375 |
Metal | Sambian Peninsula | Kaliningrad Region | ||
---|---|---|---|---|
CF | Classification | CF | Classification | |
Pb | 22 | C5 | - | - |
Cd | 3.1 | C3 | - | - |
Cu | 2.1 | C3 | - | - |
Ni | 2.0 | C3 | 1.6 | C2 |
Zn | 2.2 | C3 | 1.9 | C2 |
Fe | 9.7 | C5 | 7.4 | C4 |
Ca | 1.5 | C2 | 1.2 | C2 |
Mn | 2.0 | C3 | 1.4 | C2 |
Sr | 2.3 | C3 | 1.9 | C2 |
Rb | 2.7 | C3 | 2.6 | C3 |
Metal | Mn | Ni | Zn | Sr | Rb | Fe | Ca | Ag | Cd | Pb |
---|---|---|---|---|---|---|---|---|---|---|
Mn | 1.00 | - | - | - | - | - | - | - | - | - |
Ni | 0.67 * | 1.00 | - | - | - | - | - | - | - | - |
Zn | −0.38 | −0.20 | 1.00 | - | - | - | - | - | - | - |
Sr | 0.13 | 0.19 | −0.43 | 1.00 | - | - | - | - | - | - |
Rb | 0.28 | 0.10 | −0.12 | 0.42 * | 1.00 | - | - | - | - | - |
Fe | 0.65 * | 0.46 * | −0.10 | 0.49 | 0.82 ** | 1.00 | - | - | - | - |
Ca | 0.17 | 0.12 | −0.62 | 0.91 ** | 0.16 | 0.30 | 1.00 | - | - | - |
Ag | −0.47 | −0.01 | 0.19 | −0.08 | −0.24 | −0.21 | 0.01 | 1.00 | - | - |
Cd | 0.42 | −0.10 | 0.04 | 0.25 | −0.05 | 0.23 | 0.30 | −0.64 | 1.00 | - |
Pb | 0.33 | −0.22 | 0.29 | −0.17 | 0.07 | 0.34 | −0.05 | −0.02 | 0.56 * | 1.00 |
Cu | −0.13 | 0.24 | 0.45 | −0.64 | −0.75 | −0.59 | −0.60 | 0.09 | −0.12 | −0.22 |
Variable | Factor 1 | Factor 2 | Factor 3 | Factor 4 |
---|---|---|---|---|
Mn | 0.266 | 0.518 | 0.766 | |
Ni | 0.946 | |||
Zn | −0.791 | −0.271 | ||
Sr | 0.833 | 0.379 | ||
Rb | 0.917 | |||
Fe | 0.867 | 0.221 | 0.407 | |
Ca | 0.920 | |||
Ag | −0.695 | −0.238 | ||
Cd | 0.962 | - | ||
Pb | −0.358 | 0.373 | 0.640 | −0.223 |
Cu | −0.539 | −0.755 | 0.276 | |
Extraction sums of squared loadings | 36.2 | 19.4 | 15.6 | 13.5 |
Rotation sums of squared loadings | 24.2 | 23.2 | 19.8 | 1.9 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koroleva, Y.; Revunkov, V. Air Pollution Monitoring in the south-east baltic using the epiphytic lichen hypogymnia physodes. Atmosphere 2017, 8, 119. https://doi.org/10.3390/atmos8070119
Koroleva Y, Revunkov V. Air Pollution Monitoring in the south-east baltic using the epiphytic lichen hypogymnia physodes. Atmosphere. 2017; 8(7):119. https://doi.org/10.3390/atmos8070119
Chicago/Turabian StyleKoroleva, Yulia, and Vladimir Revunkov. 2017. "Air Pollution Monitoring in the south-east baltic using the epiphytic lichen hypogymnia physodes" Atmosphere 8, no. 7: 119. https://doi.org/10.3390/atmos8070119
APA StyleKoroleva, Y., & Revunkov, V. (2017). Air Pollution Monitoring in the south-east baltic using the epiphytic lichen hypogymnia physodes. Atmosphere, 8(7), 119. https://doi.org/10.3390/atmos8070119