Meteorological Applications Benefiting from an Improved Understanding of Atmospheric Exchange Processes over Mountains
Abstract
:1. Introduction
2. Hydrology
3. Ecology
4. Agriculture
5. Urban Planning
6. Wind Energy
7. Transportation
8. Air Pollution
9. Climate Change
10. Conclusions and Thoughts on Future Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Serafin, S.; Adler, B.; Cuxart, J.; De Wekker, S.F.J.; Gohm, A.; Grisogono, B.; Kalthoff, N.; Kirshbaum, D.J.; Rotach, M.W.; Schmidli, J.; et al. Exchange Processes in the Atmospheric Boundary Layer Over Mountainous Terrain. Atmosphere 2018, 9, 102. [Google Scholar] [CrossRef]
- Kirshbaum, D.J.; Adler, B.; Kalthoff, N.; Barthlott, C.; Serafin, S. Moist Orographic Convection: Physical Mechanisms and Links to Surface-Exchange Processes. Atmosphere 2018, 9, 80. [Google Scholar] [CrossRef]
- Pielke, R.A.; Avissar, R. Influence of landscape structure on local and regional climate. Landsc. Ecol. 1990, 4, 133–155. [Google Scholar] [CrossRef]
- Dickinson, R.E. Land-atmosphere interaction. Rev. Geophys. Suppl. 1995, 33, 917–922. [Google Scholar] [CrossRef]
- Sellers, P.J.; Heiser, M.D.; Hall, F.G.; Goetz, S.J.; Strebel, D.E.; Verma, S.B.; Desjardins, R.L.; Schuepp, P.M.; MacPherson, J.I. Effects of spatial variability in topography, vegetation cover and soil moisture on area-averaged surface fluxes: A case study using the FIFE 1989 data. J. Geophys. Res. 1995, 100, 25. [Google Scholar] [CrossRef]
- Chow, F.K.; De Wekker, S.F.J.; Snyder, B.J. Mountain Weather Research and Forecasting: Recent Progress and Current Challenges; Springer: Dordrecht, The Netherlands, 2013; ISBN 978-94-007-4097-6. [Google Scholar]
- Lehner, M.; Rotach, M.W. Current Challenges in Understanding and Predicting Transport and Exchange in the Atmosphere over Mountainous Terrain. Atmosphere 2018, 9, 276. [Google Scholar] [CrossRef]
- Hacker, J.; Draper, C.; Madaus, L. Challenges and Opportunities for Data Assimilation in Mountainous Environments. Atmosphere 2018, 9, 127. [Google Scholar] [CrossRef]
- Brown, M.E.; Ouyang, H.; Habib, S.; Shrestha, B.; Shrestha, M.; Panday, P.; Tzortziou, M.; Policelli, F.; Artan, G.; Giriraj, A.; et al. HIMALA: Climate Impacts on Glaciers, Snow, and Hydrology in the Himalayan Region. Mount. Res. Dev. 2010, 30, 401–404. [Google Scholar] [CrossRef]
- Maddox, R.A.; Caracean, F.; Hoxit, L.R.; Chappell, C.F. Meteorological aspects of the Big Thompson flash flood of 31 July 1976. NOAA Tech. Rep. 1977, 41, 87. [Google Scholar]
- Petersen, W.A.; Carey, L.D.; Rutledge, S.A.; Knievel, J.C.; Doesken, N.J.; Johnson, R.H.; McKee, T.B.; Haar, T.V.; Weaver, J.F. Mesoscale and Radar Observations of the Fort Collins Flash Flood of 28 July 1997. Bull. Am. Meteorol. Soc. 1999, 80, 191–216. [Google Scholar] [CrossRef] [Green Version]
- Gochis, D.; Schumacher, R.; Friedrich, K.; Doesken, N.; Kelsch, M.; Sun, J.; Ikeda, K.; Lindsey, D.; Wood, A.; Dolan, B.; et al. The Great Colorado Flood of September 2013. Bull. Am. Meteorol. Soc. 2014, 96, 1461–1487. [Google Scholar] [CrossRef]
- Gourley, J.J.; Flamig, Z.L.; Vergara, H.; Kirstetter, P.E.; Clark, R.A.; Argyle, E.; Arthur, A.; Martinaitis, S.; Terti, G.; Erlingis, J.M.; et al. The FLASH Project: Improving the Tools for Flash Flood Monitoring and Prediction across the United States. Bull. Am. Meteorol. Soc. 2016, 98, 361–372. [Google Scholar] [CrossRef]
- Mott, R.; Lehning, M. Meteorological Modeling of Very High-Resolution Wind Fields and Snow Deposition for Mountains. J. Hydrometeorol. 2010, 11, 934–949. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, N. Numerical simulation of the falling snow deposition over complex terrain. J. Geophys. Res. Atmos. 2017, 122, 980–1000. [Google Scholar] [CrossRef]
- Dozier, J.; Bair, E.H.; Davis, R.E. Estimating the spatial distribution of snow water equivalent in the world’s mountains. Wiley Interdiscip. Rev. Water 2016, 3, 461–474. [Google Scholar] [CrossRef]
- Winstral, A.; Marks, D. Simulating wind fields and snow redistribution using terrain-based parameters to model snow accumulation and melt over a semi-arid mountain catchment. Hydrol. Proc. 2002, 16, 3585–3603. [Google Scholar] [CrossRef] [Green Version]
- Mott, R.; Schirmer, M.; Bavay, M.; Grünewald, T.; Lehning, M. Understanding snow-transport processes shaping the mountain snow-cover. Cryosphere 2010, 4, 545–559. [Google Scholar] [CrossRef] [Green Version]
- Grünewald, T.; Schirmer, M.; Mott, R.; Lehning, M. Spatial and temporal variability of snow depth and ablation rates in a small mountain catchment. Cryosphere 2010, 4, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Clow, D.W.; Nanus, L.; Verdin, K.L.; Schmidt, J. Evaluation of SNODAS snow depth and snow water equivalent estimates for the Colorado Rocky Mountains, USA. Hydrol. Proc. 2012, 26, 2583–2591. [Google Scholar] [CrossRef]
- Pomeroy, J.; Essery, R.; Toth, B. Implications of spatial distributions of snow mass and melt rate for snow-cover depletion: Observations in a subarctic mountain catchment. Ann. Glaciol. 2004, 38, 195–201. [Google Scholar] [CrossRef] [Green Version]
- McCabe, G.J.; Clark, M.P.; Hay, L.E. Rain-on-Snow Events in the Western United States. Bull. Am. Meteorol. Soc. 2007, 88, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Letcher, T.W.; Minder, J.R. Characterization of the Simulated Regional Snow Albedo Feedback Using a Regional Climate Model over Complex Terrain. J. Clim. 2015, 28, 7576–7595. [Google Scholar] [CrossRef]
- Tomasi, E.; Giovannini, L.; Zardi, D.; de Franceschi, M. Optimization of Noah and Noah_MP WRF Land Surface Schemes in Snow-Melting Conditions over Complex Terrain. Mon. Weather Rev. 2017, 145, 4727–4745. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Pomeroy, J.W.; Revuelto, J.; Vicente-Serrano, S.M. Response of snow processes to climate change: Spatial variability in a small basin in the Spanish Pyrenees. Hydrol. Proc. 2013, 27, 2637–2650. [Google Scholar] [CrossRef]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [CrossRef] [Green Version]
- Colorado Avalanche Information Center Avalanche Accident Statistics. Available online: https://tinyurl.com/yd8bvdat (accessed on 20 May 2018).
- Vionnet, V.; Guyomarc’h, G.; Lafaysse, M.; Naaim-Bouvet, F.; Giraud, G.; Deliot, Y. Operational implementation and evaluation of a blowing snow scheme for avalanche hazard forecasting. Cold Reg. Sci. Technol. 2018, 147, 1–10. [Google Scholar] [CrossRef]
- Zwaaftink, C.D.G.; Löwe, H.; Mott, R.; Bavay, M.; Lehning, M. Drifting snow sublimation: A high-resolution 3-D model with temperature and moisture feedbacks. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Vionnet, V.; Martin, E.; Masson, V.; Guyomarc’h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C. Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model. Cryosphere 2014, 8, 395–415. [Google Scholar] [CrossRef] [Green Version]
- Strasser, U.; Bernhardt, M.; Weber, M.; Liston, G.E.; Mauser, W. Is snow sublimation important in the alpine water balance? Cryosphere 2008, 2, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Mellor, M. Cold Regions Science and Engineering. Part III. Section A3c. Blowing Snow; US Army Material Command, Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1965. [Google Scholar]
- Tabler, R.D. Estimating the transport and evaporation of blowing snow. Great Plains Agric. Counc. Publ. 1975, 73, 85–104. [Google Scholar]
- Schmidt, R.A. Vertical profiles of wind speed, snow concentration, and humidity in blowing snow. Bound-Layer Meteorol. 1982, 23, 223–246. [Google Scholar] [CrossRef]
- Essery, R.; Li, L.; Pomeroy, J. A distributed model of blowing snow over complex terrain. Hydrol. Proc. 1999, 13, 2423–2438. [Google Scholar] [CrossRef]
- Liston, G.E.; Elder, K. A Distributed Snow-Evolution Modeling System (SnowModel). J. Hydrometeorol. 2006, 7, 1259–1276. [Google Scholar] [CrossRef]
- Vionnet, V.; Martin, E.; Masson, V.; Lac, C.; Naaim Bouvet, F.; Guyomarc’h, G. High-Resolution Large Eddy Simulation of Snow Accumulation in Alpine Terrain. J. Geophys. Res. Atmos. 2017, 122, 11005–11021. [Google Scholar] [CrossRef]
- Aksamit, N.O.; Pomeroy, J.W. Scale Interactions in Turbulence for Mountain Blowing Snow. J. Hydrometeorol. 2017, 19, 305–320. [Google Scholar] [CrossRef]
- Mann, G.W.; Anderson, P.S.; Mobbs, S.D. Profile measurements of blowing snow at Halley, Antarctica. J. Geophys. Res. Atmos. 2000, 105, 24491–24508. [Google Scholar] [CrossRef]
- Barral, H.; Genthon, C.; Trouvilliez, A.; Brun, C.; Amory, C. Blowing snow in coastal Adélie Land, Antarctica: Three atmospheric-moisture issues. Cryosphere 2014, 8, 1905–1919. [Google Scholar] [CrossRef] [Green Version]
- Guisan, A.; Theurillat, J.P.; Kienast, F. Predicting the potential distribution of plant species in an alpine environment. J. Veg. Sci. 1998, 9, 65–74. [Google Scholar] [CrossRef]
- Daubenmire, R. Alpine Timberlines in the Americas and Their Interpretation. Butler Univ. Bot. Stud. 1954, 11, 119–136. [Google Scholar]
- Körner, C. A re-assessment of high elevation treeline positions and their explanation. Oecologia 1998, 115, 445–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Quervain, A. Die Hebung der atmosphärischen Isothermen in den Schweizer Alpen und ihre Beziehung zu den Höhengrenzen. Gerlands Beitr. Zur Geophys. 1904, 6, 481–533. [Google Scholar]
- Körner, C.; Spehn, E.M. (Eds.) Mountain Biodiversity: A Global Assessment; Parthenon Pub. Group: Boca Raton, London, 2002; ISBN 978-1-84214-091-8. [Google Scholar]
- MacDonald, D.; Crabtree, J.R.; Wiesinger, G.; Dax, T.; Stamou, N.; Fleury, P.; Gutierrez Lazpita, J.; Gibon, A. Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response. J. Environ. Manag. 2000, 59, 47–69. [Google Scholar] [CrossRef] [Green Version]
- Schimel, D.; Kittel, T.G.F.; Running, S.; Monson, R.; Turnipseed, A.; Anderson, D. Carbon sequestration studied in western U.S. mountains. Eos Trans. Am. Geophys. Union 2002, 83, 445–449. [Google Scholar] [CrossRef]
- Sun, J.; Burns, S.P.; Delany, A.C.; Oncley, S.P.; Turnipseed, A.A.; Stephens, B.B.; Lenschow, D.H.; LeMone, M.A.; Monson, R.K.; Anderson, D.E. CO2 transport over complex terrain. Agric. For. Meteorol. 2007, 145, 1–21. [Google Scholar] [CrossRef]
- Pypker, T.G.; Unsworth, M.H.; Mix, A.C.; Rugh, W.; Ocheltree, T.; Alstad, K.; Bond, B.J. Using Nocturnal Cold Air Drainage Flow to Monitor Ecosystem Processes in Complex Terrain. Ecol. Appl. 2007, 17, 702–714. [Google Scholar] [CrossRef] [PubMed]
- Rotach, M.W.; Wohlfahrt, G.; Hansel, A.; Reif, M.; Wagner, J.; Gohm, A. The World is Not Flat: Implications for the Global Carbon Balance. Bull. Am. Meteorol. Soc. 2014, 95, 1021–1028. [Google Scholar] [CrossRef]
- Graves, H.S. Protection of Forests from Fire; Department of Agriculture: Washington, DC, USA, 1910.
- Coen, J.L. Some new basics of fire behavior. Fire Manag. Today 2011, 71, 37. [Google Scholar]
- Potter, B.E. Atmospheric interactions with wildland fire behaviour—I. Basic surface interactions, vertical profiles and synoptic structures. Int. J. Wildland Fire 2012, 21, 779–801. [Google Scholar] [CrossRef]
- Potter, B.E. Atmospheric interactions with wildland fire behaviour—II. Plume and vortex dynamics. Int. J. Wildland Fire 2012, 21, 802–817. [Google Scholar] [CrossRef]
- Riley, K.L.; Abatzoglou, J.T.; Grenfell, I.C.; Klene, A.E.; Heinsch, F.A. The relationship of large fire occurrence with drought and fire danger indices in the western USA, 1984–2008: The role of temporal scale. Int. J. Wildland Fire 2013, 22, 894–909. [Google Scholar] [CrossRef]
- Rothermel, R.C. Predicting behavior and size of crown fires in the northern Rocky Mountains. Res. Pap. Int. 1991, 438. [Google Scholar] [CrossRef] [Green Version]
- Peace, M.; Mccaw, L.; Santos, B.; Kepert, J.D.; Burrows, N.; Fawcett, R.J. Meteorological drivers of extreme fire behaviour during the Waroona bushfire, Western Australia, January 2016. J. South. Hemisphere Earth Syst. Sci. 2017, 67, 79–106. [Google Scholar]
- Filippi, J.B.; Bosseur, F.; Mari, C.; Lac, C.; Moigne, P.L.; Cuenot, B.; Veynante, D.; Cariolle, D.; Balbi, J.H. Coupled Atmosphere-Wildland Fire Modelling. J. Adv. Model. Earth Syst. 2009, 1. [Google Scholar] [CrossRef]
- Coen, J. Some Requirements for Simulating Wildland Fire Behavior Using Insight from Coupled Weather—Wildland Fire Models. Fire 2018, 1, 6. [Google Scholar] [CrossRef]
- Muñoz-Esparza, D.; Kosović, B.; Jiménez, P.A.; Coen, J.L. An Accurate Fire-Spread Algorithm in the Weather Research and Forecasting Model Using the Level-Set Method. J. Adv. Model. Earth Syst. 2018, 10, 908–926. [Google Scholar] [CrossRef] [Green Version]
- Kalthoff, N.; Fiebig-Wittmaack, M.; Meißner, C.; Kohler, M.; Uriarte, M.; Bischoff-Gauß, I.; Gonzales, E. The energy balance, evapo-transpiration and nocturnal dew deposition of an arid valley in the Andes. J. Arid Environ. 2006, 65, 420–443. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Routledge: London, NY, USA, 2002; ISBN 1-134-95134-5. [Google Scholar]
- Yoshino, M.M. Thermal belt and cold air drainage on the mountain slope and cold air lake in the basin at quiet, clear night. GeoJournal 1984, 8, 235–250. [Google Scholar] [CrossRef]
- Geiger, R.; Aron, R.H.; Todhunter, P. The Climate Near the Ground, 5th ed.; Verlag: Braunschweig, Germany, 1995; ISBN 978-3-322-86584-7. [Google Scholar]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Lazar, R.; Podesser, A. An urban climate analysis of Graz and its significance for urban planning in the tributary valleys east of Graz (Austria). Atmos. Environ. 1999, 33, 4195–4209. [Google Scholar] [CrossRef]
- Sturman, A.; Zawar-Reza, P. Application of back-trajectory techniques to the delimitation of urban clean air zones. Atmos. Environ. 2002, 36, 3339–3350. [Google Scholar] [CrossRef]
- Masson, V.; Lion, Y.; Peter, A.; Pigeon, G.; Buyck, J.; Brun, E. “Grand Paris”: Regional landscape change to adapt city to climate warming. Clim. Chang. 2013, 117, 769–782. [Google Scholar] [CrossRef]
- Reuter, U.; Kapp, R. Climate Booklet for Urban Development—Indications for Urban Land-Use Planning; Ministry of Economy, Work and Housing of Baden: Württemberg, Germany, 2012.
- Ren, C.; Ng, E.Y.; Katzschner, L. Urban climatic map studies: A review. Int. J. Climatol. 2011, 31, 2213–2233. [Google Scholar] [CrossRef]
- Zardi, D.; Whiteman, C.D. Diurnal Mountain Wind Systems. In Mountain Weather Research and Forecasting: Recent Progress and Current Challenges; Chow, F.K., De Wekker, S.F.J., Snyder, B.J., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 35–119. ISBN 978-94-007-4098-3. [Google Scholar]
- Gross, G. Some effects of deforestation on nocturnal drainage flow and local climate—A numerical study. Bound-Layer Meteorol. 1987, 38, 315–337. [Google Scholar] [CrossRef]
- Gross, G. Numerical simulation of the nocturnal flow systems in the Freiburg area for different topographies. Contr. Atmos. Phys. 1989, 62, 57–72. [Google Scholar]
- Chen, H.; Yi, C. Optimal control of katabatic flows within canopies. Q. J. R. Meteorol. Soc. 2012, 138, 1676–1680. [Google Scholar] [CrossRef] [Green Version]
- Kiefer, M.T.; Zhong, S. The effect of sidewall forest canopies on the formation of cold-air pools: A numerical study. J. Geophys. Res. Atmos. 2013, 118, 5965–5978. [Google Scholar] [CrossRef] [Green Version]
- Kiefer, M.T.; Zhong, S. The role of forest cover and valley geometry in cold-air pool evolution. J. Geophys. Res. Atmos. 2015, 120, 8693–8711. [Google Scholar] [CrossRef]
- Poulos, G.S.; Bossert, J.E.; McKee, T.B.; Pielke, R.A. The Interaction of Katabatic Flow and Mountain Waves. Part I: Observations and Idealized Simulations. J. Atmos. Sci. 2000, 57, 1919–1936. [Google Scholar] [CrossRef] [Green Version]
- Princevac, M.; Hunt, J.C.R.; Fernando, H.J.S. Quasi-Steady Katabatic Winds on Slopes in Wide Valleys: Hydraulic Theory and Observations. J. Atmos. Sci. 2008, 65, 627–643. [Google Scholar] [CrossRef] [Green Version]
- Fernando, H.J.S. Fluid Dynamics of Urban Atmospheres in Complex Terrain. Ann. Rev. Fluid Mech. 2010, 42, 365–389. [Google Scholar] [CrossRef]
- Jackson, P.L.; Mayr, G.; Vosper, S. Dynamically-Driven Winds. In Mountain Weather Research and Forecasting: Recent Progress and Current Challenges; Chow, F.K., De Wekker, S.F.J., Snyder, B.J., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 121–218. ISBN 978-94-007-4098-3. [Google Scholar]
- Emeis, S. Wind Energy Meteorology—Atmospheric Physics for Wind Power Generation; Green Energy and Technology, Green Energy and Technology; Springer: Heidelberg, Germany, 2012; ISBN 978-3-642-30522-1. [Google Scholar]
- Emeis, S. Current issues in wind energy meteorology. Meteorol. Appl. 2014, 21, 803–819. [Google Scholar] [CrossRef] [Green Version]
- Taylor, P.A.; Teunissen, H.W. The Askervein Hill project: Overview and background data. Bound-Layer Meteorol. 1987, 39, 15–39. [Google Scholar] [CrossRef]
- Berg, J.; Mann, J.; Bechmann, A.; Courtney, M.S.; Jørgensen, H.E. The Bolund Experiment, Part I: Flow Over a Steep, Three-Dimensional Hill. Bound-Layer Meteorol. 2011, 141, 219. [Google Scholar] [CrossRef]
- Mann, J.; Angelou, N.; Arnqvist, J.; Callies, D.; Cantero, E.; Arroyo, R.C.; Courtney, M.; Cuxart, J.; Dellwik, E.; Gottschall, J.; et al. Complex terrain experiments in the New European Wind Atlas. Philos. Trans. R. Soc. A. 2017, 375, 20160101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lange, J.; Mann, J.; Berg, J.; Parvu, D.; Kilpatrick, R.; Costache, A.; Chowdhury, J.; Kamran, S.; Hangan, H. For wind turbines in complex terrain, the devil is in the detail. Environ. Res. Lett. 2017, 12, 094020. [Google Scholar] [CrossRef]
- Petersen, E.L.; Mortensen, N.G.; Landberg, L.; Højstrup, J.; Frank, H.P. Wind power meteorology. Part II: Siting and models. Wind Energy 1998, 1, 55–72. [Google Scholar] [CrossRef]
- Walmsley, J.L.; Troen, I.; Lalas, D.P.; Mason, P.J. Surface-layer flow in complex terrain: Comparison of models and full-scale observations. Bound-Layer Meteorol. 1990, 52, 259–281. [Google Scholar] [CrossRef]
- Wood, N. Wind Flow Over Complex Terrain: A Historical Perspective and the Prospect for Large-Eddy Modelling. Bound-Layer Meteorol. 2000, 96, 11–32. [Google Scholar] [CrossRef]
- Zhong, S.; Chow, F.K. Meso- and Fine-Scale Modeling over Complex Terrain: Parameterizations and Applications. In Mountain Weather Research and Forecasting: Recent Progress and Current Challenges; Chow, F.K., De Wekker, S.F.J., Snyder, B.J., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 591–653. ISBN 978-94-007-4098-3. [Google Scholar]
- Bowen, A.J.; Mortensen, N.G. WAsP Prediction Errors Due to Site Orography; Riso National Laboratory: Roskilde, Denmark, 2004. [Google Scholar]
- Giovannini, L.; Antonacci, G.; Zardi, D.; Laiti, L.; Panziera, L. Sensitivity of Simulated Wind Speed to Spatial Resolution over Complex Terrain. Energy Procedia 2014, 59, 323–329. [Google Scholar] [CrossRef]
- Gultepe, I.; Fernando, H.J.S.; Pardyjak, E.R.; Hoch, S.W.; Silver, Z.; Creegan, E.; Leo, L.S.; Pu, Z.; De Wekker, S.F.J.; Hang, C. An Overview of the MATERHORN Fog Project: Observations and Predictability. Pure Appl. Geophys. 2016, 173, 2983–3010. [Google Scholar] [CrossRef]
- Pomeroy, J.W.; Gray, D.M. Snowcover Accumulation, Relocation, and Management; National Hydrology Research Institute Science Report 0843-9052, No. 5; National Hydrology Research Institute: Saskatoon, SK, Canada, 1995; ISBN 978-0-660-15816-7. [Google Scholar]
- Schmidt, R.A. Threshold Wind-Speeds and Elastic Impact in Snow Transport. J. Glaciol. 1980, 26, 453–467. [Google Scholar] [CrossRef] [Green Version]
- Guyomarc’h, G.; Mérindol, L. Validation of an application for forecasting blowing snow. Ann. Glaciol. 1998, 26, 138–143. [Google Scholar] [CrossRef]
- Perry, A.H.; Symons, L.J. (Eds.) Highway Meteorology; CRC Press: London, UK, 1991; ISBN 978-0-203-47349-8. [Google Scholar]
- Adams, E.E.; Gauer, P.; McKittrick, L.R.; Curran, A.R. A First Principles Pavement Thermal Model for Topographically Complex Terrain. Transp. Res. Circ. 2004, E-C063, 422–432. [Google Scholar]
- Sprenger, M.; Schmidli, J.; Egloff, L. The Laseyer wind storm—Case studies and a climatology. Meteorol. Z. 2018, 15–32. [Google Scholar] [CrossRef]
- Chan, P.W. LIDAR-based turbulence intensity calculation using glide-path scans of the Doppler LIght Detection and Ranging (LIDAR) systems at the Hong Kong International Airport and comparison with flight data and a turbulence alerting system. Meteorol. Z. 2010, 549–563. [Google Scholar] [CrossRef]
- Sharman, R.; Lane, T. (Eds.) Aviation Turbulence: Processes, Detection, Prediction; Springer International Publishing: Basel, Switzerland, 2016; ISBN 978-3-319-23629-2. [Google Scholar]
- Muñoz-Esparza, D.; Sharman, R. An Improved Algorithm for Low-Level Turbulence Forecasting. J. Appl. Meteorol. Climatol. 2018, 57, 1249–1263. [Google Scholar] [CrossRef] [Green Version]
- Storer, L.N.; Williams, P.D.; Gill, P.G. Aviation Turbulence: Dynamics, Forecasting, and Response to Climate Change. Pure Appl. Geophys. 2018, 1–15. [Google Scholar] [CrossRef]
- Gohm, A.; Harnisch, F.; Vergeiner, J.; Obleitner, F.; Schnitzhofer, R.; Hansel, A.; Fix, A.; Neininger, B.; Emeis, S.; Schäfer, K. Air Pollution Transport in an Alpine Valley: Results from Airborne and Ground-Based Observations. Bound-Layer Meteorol. 2009, 131, 441–463. [Google Scholar] [CrossRef] [Green Version]
- De Franceschi, M.; Zardi, D. Study of wintertime high pollution episodes during the Brenner-South ALPNAP measurement campaign. Meteorol. Atmos. Phys. 2009, 103, 237–250. [Google Scholar] [CrossRef]
- Steyn, D.G.; De Wekker, S.F.J.; Kossmann, M.; Martilli, A. Boundary Layers and Air Quality in Mountainous Terrain. In Mountain Weather Research and Forecasting: Recent Progress and Current Challenges; Chow, F.K., De Wekker, S.F.J., Snyder, B.J., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 261–289. ISBN 978-94-007-4098-3. [Google Scholar]
- Prueksakorn, K.; Kim, T.H.; Vongmahadlek, C. Applications of WRF/CALPUFF modeling system and multi-monitoring methods to investigate the effect of seasonal variations on odor dispersion: A case study of Changwon City, South Korea. Air Qual. Atmos. Health 2014, 7, 13–27. [Google Scholar] [CrossRef]
- Cahill, T.A.; Gill, T.E.; Reid, J.S.; Gearhart, E.A.; Gillette, D.A. Saltating Particles, Playa Crusts and Dust Aerosols at Owens (dry) Lake, California. Earth Surf. Proc. Landf. 1996, 21, 621–639. [Google Scholar] [CrossRef]
- Whiteman, C.D. Mountain Meteorology: Fundamentals and Applications; Oxford University Press: Oxford, NY, USA, 2000; ISBN 978-0-19-513271-7. [Google Scholar]
- Sharples, J.J. An overview of mountain meteorological effects relevant to fire behaviour and bushfire risk. Int. J. Wildland Fire 2009, 18, 737–754. [Google Scholar] [CrossRef]
- De Wekker, S.F.J.; Kossmann, M. Convective Boundary Layer Heights Over Mountainous Terrain—A Review of Concepts. Front. Earth Sci. 2015, 3, 77. [Google Scholar] [CrossRef]
- Rotach, M.W.; Gohm, A.; Lang, M.N.; Leukauf, D.; Stiperski, I.; Wagner, J.S. On the Vertical Exchange of Heat, Mass, and Momentum Over Complex, Mountainous Terrain. Front. Earth Sci. 2015, 3. [Google Scholar] [CrossRef]
- Prévôt, A.S.H.; Staehelin, J.; Richner, H.; Griesser, T. A thermally driven wind system influencing concentrations of ozone precursors and photo-oxidants at a receptor site in the Alpine foothills. Meteorol. Z. 1993, 167–177. [Google Scholar] [CrossRef]
- Kalthoff, N.; Horlacher, V.; Corsmeier, U.; Volz-Thomas, A.; Kolahgar, B.; Geiß, H.; Möllmann-Coers, M.; Knaps, A. Influence of valley winds on transport and dispersion of airborne pollutants in the Freiburg-Schauinsland area. J. Geophys. Res. Atmos. 2000, 105, 1585–1597. [Google Scholar] [CrossRef] [Green Version]
- Volz-Thomas, A.; Geiß, H.; Kalthoff, N. Schauinsland Ozone Precursor Experiment (SLOPE96): Scientific background and main results. J. Geophys. Res. Atmos. 2000, 105, 1553–1561. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, A.; Strunk, A.; Carvalho, A.; Tchepel, O.; Miranda, A.I.; Borrego, C.; Saavedra, S.; Rodríguez, A.; Souto, J.; Casares, J.; et al. Investigating a high ozone episode in a rural mountain site. Environ. Pollut. 2012, 162, 176–189. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Jiang, X.; Lee, M.; Turnipseed, A.; Guenther, A.; Kim, J.C.; Lee, S.J.; Kim, S. Impact of biogenic volatile organic compounds on ozone production at the Taehwa Research Forest near Seoul, South Korea. Atmos. Environ. 2013, 70, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Lugauer, M.; Baltensperger, U.; Furger, M.; Gäggeler, H.W.; Jost, D.T.; Schwikowski, M.; Wanner, H. Aerosol transport to the high Alpine sites Jungfraujoch (3454 m asl) and Colle Gnifetti (4452 m asl). Tellus B Chem. Phys. Meteorol. 1998, 50, 76–92. [Google Scholar] [CrossRef]
- Brooks, B.G.J.; Desai, A.R.; Stephens, B.B.; Bowling, D.R.; Burns, S.P.; Watt, A.S.; Heck, S.L.; Sweeney, C. Assessing filtering of mountaintop CO2 mole fractions for application to inverse models of biosphere-atmosphere carbon exchange. Atmos. Chem. Phys. 2012, 12, 2099–2115. [Google Scholar] [CrossRef]
- Collaud Coen, M.; Andrews, E.; Aliaga, D.; Andrade, M.; Angelov, H.; Bukowiecki, N.; Ealo, M.; Fialho, P.; Flentje, H.; Hallar, A.G.; et al. The topography contribution to the influence of the atmospheric boundary layer at high altitude stations. Atmos. Chem. Phys. Discuss. 2017, 1–44. [Google Scholar] [CrossRef] [Green Version]
- Giovannini, L.; Zardi, D.; de Franceschi, M.; Chen, F. Numerical simulations of boundary-layer processes and urban-induced alterations in an Alpine valley. Int. J. Climatol. 2014, 34, 1111–1131. [Google Scholar] [CrossRef]
- Salamanca, F.; Martilli, A.; Yagüe, C. A numerical study of the Urban Heat Island over Madrid during the DESIREX (2008) campaign with WRF and an evaluation of simple mitigation strategies. Int. J. Climatol. 2012, 32, 2372–2386. [Google Scholar] [CrossRef]
- Rendón, A.M.; Salazar, J.F.; Palacio, C.A.; Wirth, V.; Brötz, B. Effects of Urbanization on the Temperature Inversion Breakup in a Mountain Valley with Implications for Air Quality. J. Appl. Meteorol. Climatol. 2014, 53, 840–858. [Google Scholar] [CrossRef]
- Neff, W.D.; King, C.W. The Accumulation and Pooling of Drainage Flows in a Large Basin. J. Appl. Meteorol. 1989, 28, 518–529. [Google Scholar] [CrossRef] [Green Version]
- Whiteman, C.D.; Bian, X.; Zhong, S. Wintertime Evolution of the Temperature Inversion in the Colorado Plateau Basin. J. Appl. Meteorol. 1999, 38, 1103–1117. [Google Scholar] [CrossRef]
- Conangla, L.; Cuxart, J.; Jiménez, M.A.; Martínez-Villagrasa, D.; Miró, J.R.; Tabarelli, D.; Zardi, D. Cold-air pool evolution in a wide Pyrenean valley. Int. J. Climatol. 2018, 38, 2852–2865. [Google Scholar] [CrossRef]
- Baker, K.R.; Simon, H.; Kelly, J.T. Challenges to Modeling “Cold Pool” Meteorology Associated with High Pollution Episodes. Environ. Sci. Technol. 2011, 45, 7118–7119. [Google Scholar] [CrossRef]
- Silcox, G.D.; Kelly, K.E.; Crosman, E.T.; Whiteman, C.D.; Allen, B.L. Wintertime PM2.5 concentrations during persistent, multi-day cold-air pools in a mountain valley. Atmos. Environ. 2012, 46, 17–24. [Google Scholar] [CrossRef]
- Lyman, S.; Tran, T. Inversion structure and winter ozone distribution in the Uintah Basin, Utah, U.S.A. Atmos. Environ. 2015, 123, 156–165. [Google Scholar] [CrossRef]
- Lareau, N.P.; Crosman, E.; Whiteman, C.D.; Horel, J.D.; Hoch, S.W.; Brown, W.O.J.; Horst, T.W. The Persistent Cold-Air Pool Study. Bull. Am. Meteorol. Soc. 2013, 94, 51–63. [Google Scholar] [CrossRef]
- Price, J.D.; Vosper, S.; Brown, A.; Ross, A.; Clark, P.; Davies, F.; Horlacher, V.; Claxton, B.; McGregor, J.R.; Hoare, J.S.; et al. COLPEX: Field and Numerical Studies over a Region of Small Hills. Bull. Am. Meteorol. Soc. 2011, 92, 1636–1650. [Google Scholar] [CrossRef] [Green Version]
- Doran, J.C.; Fast, J.D.; Horel, J. The VTMX 2000 campaign. Bull. Am. Meteorol. Soc. 2002, 83, 537–554. [Google Scholar] [CrossRef]
- Bonasoni, P.; Laj, P.; Marinoni, A.; Sprenger, M.; Angelini, F.; Arduini, J.; Bonafè, U.; Calzolari, F.; Colombo, T.; Decesari, S.; et al. Atmospheric Brown Clouds in the Himalayas: First two years of continuous observations at the Nepal Climate Observatory-Pyramid (5079 m). Atmos. Chem. Phys. 2010, 10, 7515–7531. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, M.G. Atmospheric science: Asia under a high-level brown cloud. Nat. Geosci. 2011, 4, 352–353. [Google Scholar] [CrossRef]
- Gautam, R.; Hsu, N.C.; Lau, W.K.M.; Yasunari, T.J. Satellite observations of desert dust-induced Himalayan snow darkening. Geophys. Res. Lett. 2013, 40, 988–993. [Google Scholar] [CrossRef] [Green Version]
- Painter, T.H.; Barrett, A.P.; Landry, C.C.; Neff, J.C.; Cassidy, M.P.; Lawrence, C.R.; McBride, K.E.; Farmer, G.L. Impact of disturbed desert soils on duration of mountain snow cover. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Painter, T.H.; Skiles, S.M.; Deems, J.S.; Brandt, W.T.; Dozier, J. Variation in Rising Limb of Colorado River Snowmelt Runoff Hydrograph Controlled by Dust Radiative Forcing in Snow. Geophys. Res. Lett. 2017, 45, 797–808. [Google Scholar] [CrossRef]
- Borys, R.D.; Lowenthal, D.H.; Mitchell, D.L. The relationships among cloud microphysics, chemistry, and precipitation rate in cold mountain clouds. Atmos. Environ. 2000, 34, 2593–2602. [Google Scholar] [CrossRef]
- Igawa, M.; Tsutsumi, Y.; Mori, T.; Okochi, H. Fogwater Chemistry at a Mountainside Forest and the Estimation of the Air Pollutant Deposition via Fog Droplets Based on the Atmospheric Quality at the Mountain Base. Environ. Sci. Technol. 1998, 32, 1566–1572. [Google Scholar] [CrossRef]
- Givati, A.; Rosenfeld, D. Quantifying Precipitation Suppression Due to Air Pollution. J. Appl. Meteorol. 2004, 43, 1038–1056. [Google Scholar] [CrossRef]
- Beniston, M. Climatic Change in Mountain Regions: A Review of Possible Impacts. Clim. Chang. 2003, 59, 5–31. [Google Scholar] [CrossRef]
- Gobiet, A.; Kotlarski, S.; Beniston, M.; Heinrich, G.; Rajczak, J.; Stoffel, M. 21st century climate change in the European Alps—A review. Sci. Total Environ. 2014, 493, 1138–1151. [Google Scholar] [CrossRef]
- Beniston, M.; Diaz, H.F.; Bradley, R.S. Climatic change at high-elevation sites: An overview. Clim. Chang. 1997, 36, 233–251. [Google Scholar] [CrossRef]
- Letcher, T.W.; Minder, J.R. The Simulated Impact of the Snow Albedo Feedback on the Large-Scale Mountain–Plain Circulation East of the Colorado Rocky Mountains. J. Atmos. Sci. 2018, 75, 755–774. [Google Scholar] [CrossRef]
- Minder, J.R.; Letcher, T.W.; Liu, C. The Character and Causes of Elevation-Dependent Warming in High-Resolution Simulations of Rocky Mountain Climate Change. J. Clim. 2018, 31, 2093–2113. [Google Scholar] [CrossRef]
- Letcher, T.W.; Minder, J.R. The Simulated Response of Diurnal Mountain Winds to Regionally Enhanced Warming Caused by the Snow Albedo Feedback. J. Atmos. Sci. 2017, 74, 49–67. [Google Scholar] [CrossRef]
- Im, E.S.; Coppola, E.; Giorgi, F.; Bi, X. Local effects of climate change over the Alpine region: A study with a high resolution regional climate model with a surrogate climate change scenario. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Daly, C.; Conklin, D.R.; Unsworth, M.H. Local atmospheric decoupling in complex topography alters climate change impacts. Int. J. Climatol. 2010, 30, 1857–1864. [Google Scholar] [CrossRef]
- United Nations The World’s Cities in 2016. United Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA. Available online: http://www.un.org/en/development/desa/population/publications/pdf/urbanization/the_worlds_cities_in_2016_data_booklet.pdf (accessed on 18 July 2018).
- McElroy, M.B.; Baker, D.J. Climate Extremes: Recent Trends with Implications for National Security. Vt. J. Environ. Law 2014, 15, 727–743. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Dudhia, J. Improving the Representation of Resolved and Unresolved Topographic Effects on Surface Wind in the WRF Model. J. Appl. Meteorol. Climatol. 2012, 51, 300–316. [Google Scholar] [CrossRef]
- Tomasi, E.; Giovannini, L.; Jimenez, P.; Kosovic, B.; Alessandrini, S.; Ferrero, E.; Faloccchi, M.; Zardi, D.; Delle Monache, L. WRF PBL Schemes for Turbulence Parameterizations: Representing Dispersion Processes in Sub-Kilometer Horizontally Non-Homogeneous Flows. In Proceedings of the 18th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Bologna, Italy, 9–12 October 2017; pp. 1–5. [Google Scholar]
- Rotach, M.W.; Zardi, D. On the boundary-layer structure over highly complex terrain: Key findings from MAP. Q. J. R. Meteorol. Soc. 2007, 133, 937–948. [Google Scholar] [CrossRef] [Green Version]
- Wagner, J.S.; Gohm, A.; Rotach, M.W. The Impact of Horizontal Model Grid Resolution on the Boundary Layer Structure over an Idealized Valley. Mon. Weather Rev. 2014, 142, 3446–3465. [Google Scholar] [CrossRef]
- Duine, G.J.; De Wekker, S.F.J. The effects of horizontal grid spacing on simulated daytime boundary layer depths in an area of complex terrain in Utah. Environ. Fluid Mech. 2017, 1–19. [Google Scholar] [CrossRef]
- Daly, C.; Gibson, W.P.; Taylor, G.H.; Johnson, G.L.; Pasteris, P. A knowledge-based approach to the statistical mapping of climate. Clim. Res. 2002, 22, 99–113. [Google Scholar] [CrossRef] [Green Version]
- Fiddes, J.; Gruber, S. TopoSCALE v.1.0: Downscaling gridded climate data in complex terrain. Geosci. Model Dev. 2014, 7, 387–405. [Google Scholar] [CrossRef] [Green Version]
- Thornton, P.E.; Thornton, M.M.; Mayer, B.W.; Wei, Y.; Devarakonda, R.; Vose, R.S.; Cook, R.B. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 3. ORNL DAAC 2018. [Google Scholar] [CrossRef]
- Xia, Y.; Mitchell, K.; Ek, M.; Sheffield, J.; Cosgrove, B.; Wood, E.; Luo, L.; Alonge, C.; Wei, H.; Meng, J.; et al. Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Krähenmann, S.; Walter, A.; Brienen, S.; Imbery, F.; Matzarakis, A. High-resolution grids of hourly meteorological variables for Germany. Theor. Appl. Climatol. 2018, 131, 899–926. [Google Scholar] [CrossRef]
- Wagenbrenner, N.S.; Forthofer, J.M.; Lamb, B.K.; Shannon, K.S.; Butler, B.W. Downscaling surface wind predictions from numerical weather prediction models in complex terrain with WindNinja. Atmos. Chem. Phys. 2016, 16, 5229–5241. [Google Scholar] [CrossRef] [Green Version]
- Gutmann, E.; Barstad, I.; Clark, M.; Arnold, J.; Rasmussen, R. The Intermediate Complexity Atmospheric Research Model (ICAR). J. Hydrometeorol. 2016, 17, 957–973. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Wekker, S.F.J.; Kossmann, M.; Knievel, J.C.; Giovannini, L.; Gutmann, E.D.; Zardi, D. Meteorological Applications Benefiting from an Improved Understanding of Atmospheric Exchange Processes over Mountains. Atmosphere 2018, 9, 371. https://doi.org/10.3390/atmos9100371
De Wekker SFJ, Kossmann M, Knievel JC, Giovannini L, Gutmann ED, Zardi D. Meteorological Applications Benefiting from an Improved Understanding of Atmospheric Exchange Processes over Mountains. Atmosphere. 2018; 9(10):371. https://doi.org/10.3390/atmos9100371
Chicago/Turabian StyleDe Wekker, Stephan F. J., Meinolf Kossmann, Jason C. Knievel, Lorenzo Giovannini, Ethan D. Gutmann, and Dino Zardi. 2018. "Meteorological Applications Benefiting from an Improved Understanding of Atmospheric Exchange Processes over Mountains" Atmosphere 9, no. 10: 371. https://doi.org/10.3390/atmos9100371
APA StyleDe Wekker, S. F. J., Kossmann, M., Knievel, J. C., Giovannini, L., Gutmann, E. D., & Zardi, D. (2018). Meteorological Applications Benefiting from an Improved Understanding of Atmospheric Exchange Processes over Mountains. Atmosphere, 9(10), 371. https://doi.org/10.3390/atmos9100371