A Two-Decade Anthropogenic and Biogenic Isoprene Emissions Study in a London Urban Background and a London Urban Traffic Site
Abstract
:1. Introduction
2. Experimental
2.1. Measurement Locations
2.2. In-Situ Measurement Technique
2.3. Method for Distinguishing Biogenic and Anthropogenic Isoprene
2.4. Modelling Biogenic Isoprene Emissions Versus Temperature, PAR and Ozone
= ATαPβOγ
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Borbon, A.; Fontaine, H.; Veillerot, M.; Locoge, N.; Galloo, J.C.; Guillermo, R. An investigation into the traffic-related fraction of isoprene at an urban location. Atmos. Environ. 2001, 35, 3749–3760. [Google Scholar] [CrossRef]
- Reimann, S.; Pierluigi, C.; Hofer, P. The anthropogenic fraction contribution to isoprene concentrations in a rural atmosphere. Atmos. Environ. 2000, 34, 109–115. [Google Scholar] [CrossRef]
- Derwent, R.G.; Middleton, D.R.; Field, R.A.; Golgstone, M.E.L.; Lester, J.N.; Perry, R. Analysis and interpretation of air quality data from an urban roadside location in central London over the period from July 1991 to July 1992. Atmos. Environ. 1995, 29, 923–946. [Google Scholar] [CrossRef]
- Derwent, R.G.; Davies, T.J.; Delaney, M.; Dollard, G.J.; Field, R.A.; Dumitrean, P.; Nason, P.D.; Jones, B.M.R.; Pepler, S.A. Analysis and interpretation of the continuous hourly monitoring data for 26 C2-C8 hydrocarbons at 12 United Kingdom sites during 1996. Atmos. Environ. 2000, 34, 297–312. [Google Scholar] [CrossRef]
- Christensen, C.S.; Skov, H.; Palmgren, F. C5-C8 non-methane hydrocarbon measurements in Copenhagen: Concentrations, sources and emission estimates. Sci. Total Environ. 1999, 236, 163–171. [Google Scholar] [CrossRef]
- Diskin, A.M.; Španêl, P.; Smith, D. Time variation of ammonia, acetone, isoprene and ethanol in breath: A quantitative SIFT-MS study over 30 days. Physiol. Meas. 2003, 24, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Kinoyama, M.; Nitta, H.; Watanabe, A.; Ueda, H. Acetone and isoprene concentrations in exhaled breath in healthy subjects. J. Health Sci. 2008, 54, 471–477. [Google Scholar] [CrossRef]
- Kushch, I.; Arendacká, B.; Štolc, S.; Mochalski, P.; Filipiak, W.; Schwarz, K.; Schwentner, L.; Schmid, A.; Dzien, A.; Lechleitner, M.; et al. Breath isoprene—Aspects of normal physiology related to age, gender and cholesterol profile as determined in a proton transfer reaction mass spectrometry study. Clin. Chem. Lab. Med. 2008, 46, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Veres, P.R.; Faber, P.; Drewnick, F.; Lelieveld, J.; Williams, J. Anthropogenic sources of VOC in a football stadium: Assessing human emissions in the atmosphere. Atmos. Environ. 2013, 77, 1052–1059. [Google Scholar] [CrossRef]
- Kansal, A. Sources and reactivity of NMHCs and VOCs in the atmosphere: A review. J. Hazard. Mater. 2009, 166, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Stewart, H.E.; Hewitt, C.N.; Bunce, R.G.H.; Steinbrecher, R.; Smiatek, G.; Schoenemeye, T. A highly spatially and temporally resolved inventory of biogenic isoprene and monoterpene emissions: Model description and application to Great Britain. J. Geophys. Res. Atmos. 2003, 108, 4644. [Google Scholar] [CrossRef]
- Park, C.; Schade, G.W.; Boedeker, I. Characteristics of the flux of isoprene and its oxidation products in an urban area. J. Geophys. Res. Atmos. 2011, 116, D21303. [Google Scholar] [CrossRef]
- von Schneidemesser, E.; Monks, P.S.; Gros, V.; Gauduin, J. How important is biogenic isoprene in an urban environment? A study in London and Paris. Geophys. Res. Lett. 2011, 38, L19804. [Google Scholar] [CrossRef]
- Hellén, H.; Tykkä, T.; Hakola, H. Importance of monoterpenes and isoprene in urban air in northern Europe. Atmos. Environ. 2012, 59, 59–66. [Google Scholar] [CrossRef]
- Wagner, P.; Kuttler, W. Biogenic and anthropogenic isoprene in the near-surface urban atmosphere—A case study in Essen, Germany. Sci. Total Environ. 2014, 475, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Commission of the European Communities CEC. Council directive amending directive 70/220/EEC on the approximation of the laws of member states relating to the measures to be taken against air pollution by emissions from motor vehicles. 91/441/EEC. Off. J. Eur. Communities 1991, 24, L242/1–L242/106. Available online: https://www.as-sl.com/pdf/homolog/91-441-CEE-en.pdf (accessed on 4 June 2018).
- Loreto, F.; Sharkey, T.D. A gas-exchange study of photosynthesis and isoprene emission in Quercus rubra L. Planta 1990, 182, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Wildermuth, M.C.; Fall, R. Light-dependent isoprene emission. Characterization of a thylakoid-bound isoprene synthase in Salix discolor chloroplasts. Plant Physiol. 1996, 112, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Carter, W.P.L. Development of ozone reactivity scales for volatile organic compounds. J. Air. Waste Manage. Assoc. 1994, 44, 881–899. [Google Scholar] [CrossRef]
- Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- Claeys, M.; Graham, B.; Vas, G.; Wang, W.; Vermeylen, R.; Pashynska, V.; Cafmeyer, J.; Guyon, P.; Andreae, M.O.; Artaxo, P.; et al. Formation of secondary organic aerosols through photooxidation of isoprene. Science 2004, 303, 1173–1176. [Google Scholar] [CrossRef] [PubMed]
- Kroll, J.H.; Ng, N.L.; Murphy, S.M.; Flagan, R.C.; Seinfeld, J. H. Secondary organic aerosol formation from isoprene photooxidation under high-NOx conditions. Geophys. Res. Lett. 2005, 32, L18808. [Google Scholar] [CrossRef]
- Paulot, F.; Crounse, J.D.; Kjaergaard, H.G.; Kroll, J.H.; Seinfeld, J.H.; Wennberg, P.O. Isoprene photooxidation: New insights into the production of acids and organic nitrates. Atmos. Chem. Phys. 2009, 9, 1479–1501. [Google Scholar] [CrossRef]
- Navakoudis, E.; Lütz, C.; Langebartels, C.; Lütz-Meindl, U.; Kotzabass, K. Ozone impact on the photosynthetic apparatus and the protective role of polyamines. BBA Gen. Subj. 2003, 1621, 160–169. [Google Scholar] [CrossRef]
- Loreto, F.; Velikova, V. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products and reduces lipid peroxidation of cellular membranes. Plant Physiol. 2001, 127, 1781–1787. [Google Scholar] [CrossRef] [PubMed]
- Doyle, M.; Sexton, K.G.; Jeffries, H.; Bridge, K.; Jaspers, I. Effects of 1,3-butadiene, isoprene and their photochemical degradation products on human lung cells. Environ. Health Perspect. 2004, 112, 1488–1495. [Google Scholar] [CrossRef] [PubMed]
- Hughes, K.; Meek, M.; Walker, M. 1,3-Butadiene: Human Health Aspects. World Health Organization, Geneva. 2001. Available online: http://www.who.int/ipcs/publications/cicad/en/cicad30.pdf (accessed on 4 June 2018).
- Harrison, R.M.; Shi, J.P.; Xi, S.; Khan, A.; Mark, D.; Kinnersley, R.; Yin, J. Measurement of number, mass and size distribution of particles in the atmosphere. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2000, 358, 2567–2580. [Google Scholar] [CrossRef]
- Arnold, S.J.; ApSimon, H.; Barlow, J.; Belcher, S.; Bell, M.; Boddy, J.W.; Britter, R.; Cheng, H.; Clark, R.; Colville, R.N.; et al. Introduction to the DAPPLE Air Pollution Project. Sci. Total Environ. 2004, 332, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Dollard, G.J.; Dumitrean, P.; Telling, S.; Dixon, J.; Derwent, R.G. Observed trends in ambient concentrations of C2-C8 hydrocarbons in the United Kingdom over the period from 1993 to 2004. Atmos. Environ. 2007, 41, 2559–2569. [Google Scholar] [CrossRef]
- Biesenthal, T.A.; Shepson, P.B. Observations of anthropogenic inputs of the isoprene oxidation products methyl vinyl ketone and methacrolein to the atmosphere. Geophys. Res. Lett. 1997, 24, 1375–1378. [Google Scholar] [CrossRef] [Green Version]
- Cobb, C.W.; Douglas, P.H. A theory of production. Am. Econ. Rev. 1928, 18, 139–165. [Google Scholar]
- Burgess, R.A.; Penkett, S.A. Ground-based non-methane hydrocarbon measurements in England. In Proceedings of the EUROTRAC’92; Borell, P., Ed.; Academic Publishing: The Hague, The Netherlands, 1993; pp. 165–169. [Google Scholar]
- Wang, J.L.; Chew, C.; Chang, C.Y.; Liao, W.C.; Lung, S.C.C.; Chen, W.N.; Lee, P.J.; Lin, P.H.; Chang, C.C. Biogenic isoprene in subtropical urban settings and implications for air quality. Atmos. Environ. 2013, 79, 369–379. [Google Scholar] [CrossRef]
- McLaren, R.; Singleton, D.L.; Lai, J.Y.K.; Knouw, B.; Singer, E.; Wu, Z.; Niki, H. Analysis of motor vehicle sources and their contribution to ambient hydrocarbon distributions at urban sites in Toronto during the Southern Ontario oxidants study. Atmos. Environ. 1996, 30, 2219–2232. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-C.; Wang, J.-L.; Lung, S.-C.C.; Chang, C.-Y.; Lee, P.-J.; Chew, C.; Liao, W.-C.; Chen, W.-N.; Ou-Yang, C.-F. Seasonal characteristics of biogenic and anthropogenic isoprene in tropical-subtropical urban environments. Atmos. Environ. 2014, 99, 298–308. [Google Scholar] [CrossRef]
- Borbon, A.; Fontaine, H.; Locoge, N.; Veillerot, M.; Galloo, J.C. Developing receptor-oriented methods for non-methane hydrocarbon characterisation in urban air-Part I: Source identification. Atmos. Environ. 2003, 37, 4051–4064. [Google Scholar] [CrossRef]
- Lee, J.D.; Lewis, A.C.; Monks, P.S.; Jacob, M.; Hamilton, J.F.; James, R.; Watson, N.; Saxton, J.; Ennis, C.; Carpenter, L.J.; et al. Ozone photochemistry during the UK heat wave of August 2003. Atmos. Environ. 2006, 40, 7598–7613. [Google Scholar] [CrossRef]
- Tressol, M.; Ordonez, C.; Zbinden, R.; Brioude, J.; Thouret, V.; Mari, C.; Nedelec, P.; Cammas, J.P.; Smit, H.; Patz, H.W.; et al. Air pollution during the 2003 European heat wave as seen by MOZAIC airliners. Atmos. Chem. Phys. 2008, 8, 2133–2150. [Google Scholar] [CrossRef] [Green Version]
- Fu, T.-M.; Zheng, Y.; Paulot, F.; Mao, J.; Yantosca, R.M. Positive but variable sensitivity of August surface ozone to large-scale warming in the southeast United States. Nat. Clim. Chang. 2015, 5, 454–458. [Google Scholar] [CrossRef]
- Rasmussen, D.J.; Fiore, A.M.; Naik, V.; Horowitz, L.W.; McGinnis, S.J.; Schultz, M.G. Surface ozone-temperature relationships in the eastern US: A monthly climatology for evaluating chemistry-climate models. Atmos. Environ. 2012, 47, 142–153. [Google Scholar] [CrossRef]
- Pinho, P.G.; Lemos, L.T.; Pio, C.A.; Evtyugina, M.G.; Nunes, T.V.; Jenkin, M.E. Detailed chemical analysis of regional-scale air pollution in western Portugal using an adapted version of MCM v3.1. Sci. Tot. Environ. 2009, 407, 2024–2038. [Google Scholar] [CrossRef] [PubMed]
- Colette, A.; Granier, C.; Hodnebrog, Ø.; Jakobs, H.; Maurizi, A.; Nyiri, A.; Bessagnet, B.; D’Angiola, A.; D’Isidoro, M.; Gauss, M.; et al. Air quality trends in Europe over the past decade: A first multi-model assessment. Atmos. Chem. Phys. 2011, 11, 11657–11678. [Google Scholar] [CrossRef] [Green Version]
- Vieno, M.; Dore, A.J.; Stevenson, D.S.; Doherty, R.; Heal, M.R.; Reis, S.; Hallsworth, S.; Tarrason, L.; Wind, P.; Fowler, D.; et al. Modelling surface ozone during the 2003 heat-wave in the UK. Atmos. Chem. Phys. 2010, 10, 7963–7978. [Google Scholar] [CrossRef] [Green Version]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics from Air Pollution to Climate Change, 2nd ed.; John Wiley & Sons: New York. NY, USA, 2006. [Google Scholar]
- Li, G.; Zhang, R.; Fan, J.; Tie, X. Impacts of biogenic emissions on photochemical ozone production in Houston, Texas. J. Geophys. Res. Atmos. 2007, 112, D10309. [Google Scholar] [CrossRef]
- Solberg, S.; Hov, Ø.; Søvde, A.; Isaksen, I.S.A.; Coddeville, P.; De Backer, H.; Forster, C.; Orsolini, Y.; Uhse, K. European surface ozone in the extreme summer 2003. J. Geophys. Res. Atmos. 2008, 113, D07307. [Google Scholar] [CrossRef]
- Singsaas, E.L.; Lerdau, M.; Winter, K.; Sharkey, T.D. Isoprene increases thermotolerance of isoprene-emitting species. Plant Physiol. 1997, 115, 1413–1420. [Google Scholar] [CrossRef] [PubMed]
- Singsaas, E.L.; Sharkey, T.D. The effects of high temperature on isoprene synthesis in oak leaves. Plant Cell Environ. 2000, 23, 751–757. [Google Scholar] [CrossRef] [Green Version]
- Fares, S.; Barta, C.; Brilli, F.; Centritto, M.; Ederli, L.; Ferranti, F.; Pasqualini, S.; Reale, L.; Tricoli, D.; Loreto, F. Impact of high ozone on isoprene emission, photosynthesis and histology of developing Populus alba leaves directly or indirectly exposed to the pollutant. Physiol. Plant. 2006, 128, 456–465. [Google Scholar] [CrossRef] [Green Version]
- Velikova, V.; Tsonev, T.; Pinelli, P.; Alessio, G.A.; Loreto, F. Localized ozone fumigation system for studying ozone effects on photosynthesis, respiration, electron transport rate and isoprene emission in field-grown Mediterranean oak species. Tree Physiol. 2005, 25, 1523–1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lerdau, M. A positive feedback with negative consequences. Science 2007, 316, 212–213. [Google Scholar] [CrossRef] [PubMed]
- Vickers, C.E.; Gershenzon, J.; Lerdau, M.T.; Loreto, F. A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nature Chem. Biol. 2009, 5, 283–291. [Google Scholar] [CrossRef] [PubMed]
- McCrae, I.S.; Latham, S.; Boulter, P.G. A Review of Roadside Emission Testing by Local Authorities in the United Kingdom. Available online: https://trl.co.uk/sites/default/files/PPR107.pdf (accessed on 4 June 2018).
- Ellison, R.B.; Greaves, S.P.; Hensher, D.A. Five years of London’s low emission zone: Effects on vehicle fleet composition and air quality. Trans. Res. Part D Trans. Environ. 2013, 23, 25–33. [Google Scholar] [CrossRef]
- Jiang, X.; Guenther, A.; Potosnak, M.; Geron, C.; Seco, R.; Karl, T.; Kim, S.; Gu, L.; Pallardy, S. Isoprene emission response to drought and the impact on global atmospheric chemistry. Atmos. Environ. 2018, 183, 69–83. [Google Scholar] [CrossRef]
- Potosnak, M.J.; LeStourgeon, L.; Pallardy, S.G.; Hosman, K.P.; Gu, L.; Karl, T.; Geron, C.; Guenther, A.B. Observed and modeled ecosystem isoprene fluxes from an oak-dominated temperate forest and the influence of drought stress. Atmos. Environ. 2014, 84, 314–322. [Google Scholar] [CrossRef] [Green Version]
- Niinemets, Ü. Mild versus severe stress and BVOCs: Thresholds, priming and consequences. Trends Plant Sci. 2010, 15, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Miyama, T.; Tobita, H.; Uchiyama, K.; Yazaki, K.; Ueno, S.; Saito, T.; Matsumoto, A.; Kitao, M.; Izuta, T. Differences in monoterpene emission characteristics after ozone exposure between three clones representing major gene pools of Cryptomeria japonica. J. Agric. Meteorol. 2018, 74, 102–108. [Google Scholar] [CrossRef]
- Kanagendran, A.; Pazouki, L.; Niinemets, Ü. Differential regulation of volatile emission from Eucalyptus globulus leaves upon single and combined ozone and wounding treatments through recovery and relationships with ozone uptake. Environ. Exp. Bot. 2018, 145, 21–38. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.A.H.; Schlich, B.-L.; Jenkin, M.E.; Shallcross, B.M.A.; Moseley, K.; Walker, C.; Morris, W.C.; Derwent, R.G.; Percival, C.J.; Shallcross, D.E. A Two-Decade Anthropogenic and Biogenic Isoprene Emissions Study in a London Urban Background and a London Urban Traffic Site. Atmosphere 2018, 9, 387. https://doi.org/10.3390/atmos9100387
Khan MAH, Schlich B-L, Jenkin ME, Shallcross BMA, Moseley K, Walker C, Morris WC, Derwent RG, Percival CJ, Shallcross DE. A Two-Decade Anthropogenic and Biogenic Isoprene Emissions Study in a London Urban Background and a London Urban Traffic Site. Atmosphere. 2018; 9(10):387. https://doi.org/10.3390/atmos9100387
Chicago/Turabian StyleKhan, M. Anwar H., Billie-Louise Schlich, Michael E. Jenkin, Beth M. A. Shallcross, Katherine Moseley, Catherine Walker, William C. Morris, Richard G. Derwent, Carl J. Percival, and Dudley E. Shallcross. 2018. "A Two-Decade Anthropogenic and Biogenic Isoprene Emissions Study in a London Urban Background and a London Urban Traffic Site" Atmosphere 9, no. 10: 387. https://doi.org/10.3390/atmos9100387
APA StyleKhan, M. A. H., Schlich, B. -L., Jenkin, M. E., Shallcross, B. M. A., Moseley, K., Walker, C., Morris, W. C., Derwent, R. G., Percival, C. J., & Shallcross, D. E. (2018). A Two-Decade Anthropogenic and Biogenic Isoprene Emissions Study in a London Urban Background and a London Urban Traffic Site. Atmosphere, 9(10), 387. https://doi.org/10.3390/atmos9100387