Quantifying Thermal Stress for Sport Events—The Case of the Olympic Games 2020 in Tokyo
Abstract
:1. Introduction
2. Methodology and Data
2.1. Study Area
2.2. Physiologically Equivalent Temperature
2.3. Modified Physiologically Equivalent Temperature
2.4. RayMan Model
2.5. Input Data for the Analysis of Thermal Comfort
3. Results
3.1. Frequencies of PET and mPET Classes
3.2. Daily Distribution of Mean PET and mPET
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Matzarakis, A.; Fröhlich, D. Sport events and climate for visitors—The case of FIFA World Cup in Qatar 2022. Int. J. Biometeorol. 2015, 59, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.; Lai, P.-C.; Hart, M. Microclimate Variations between Semienclosed and Open Sections of a Marathon Route. Adv. Meteorol. 2013, 287934. [Google Scholar] [CrossRef]
- Armstrong, L.E.; Casa, D.J.; Millard-Stafford, M.; Moran, D.S.; Pyne, S.W.; Roberts, W.O. American College of Sports Medicine position stand. Exertional heat illness during training and competition. Med. Sci. Sports Exerc. 2007, 39, 556–572. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.P.; Matzarakis, A.; Hwand, R.L. Shading effect on long-term outdoor thermal comfort. Build. Environ. 2010, 45, 213–221. [Google Scholar] [CrossRef]
- Nastos, P.; Matzarakis, A. The effect of air temperature and Physiologically Equivalent Temperature on mortality in Athens, Greece. Theor. Appl. Climatol. 2012, 108, 591–599. [Google Scholar] [CrossRef]
- Höppe, P.R. The physiological equivalent temperature—A universal index for the bioclimatological assessment of the thermal environment. Int. J. Biometeorol. 1999, 4, 71–75. [Google Scholar]
- Höppe, P.R. Indoor Climate. Experientia 1993, 49, 775–779. [Google Scholar] [CrossRef]
- Matzarakis, A. The dilemma in thermal comfort estimations in urban areas. In Two hundred years of urban meteorology in the heart of Florence. In Proceedings of the International Conference on Urban Climate and History of Meteorology, Florence, Italy, 25–27 February 2013; Istituto di Biometeorologia: Sassari, Italy, 2013; pp. 3–11. [Google Scholar]
- Hirabayashi, S.; Abe, T.; Imamura, F.; Morioka, C. Development of a Distributed Modeling Framework to Estimate Thermal Comfort along 2020 Tokyo Olympic Marathon Course. Atmosphere 2018, 9, 210. [Google Scholar] [CrossRef]
- Kosaka, E.; Iida, A.; Vanos, J.; Middel, A.; Yokohari, M.; Brown, R. Microclimate Variation and Estimated Heat Stress of Runners in the 2020 Tokyo Olympic Marathon. Atmosphere 2018, 9, 192. [Google Scholar] [CrossRef]
- Walter, H.; Lieth, H. Klimadiagram-Weltatlas; VEB Gustav Fischer Verlag: Jena, Germany, 1660. [Google Scholar]
- Mayer, H.; Höppe, P. Thermal Comfort of Man in Different Urban Environments. Theor. Appl. Climatol. 1987, 38, 43–49. [Google Scholar] [CrossRef]
- Matzarakis, A.; Mayer, H.; Iziomon, M.G. Applications of a universal thermal index: Physiological equivalent temperature. Int. J. Biometeorol. 1999, 43, 76–84. [Google Scholar] [CrossRef]
- Nouri, A.S.; Fröhlich, D.; Silva, M.M.; Matzarakis, A. The Impact of Tipuana tipu Species on Local Human Thermal Comfort Thresholds in Different Urban Canyon Cases in Mediterranean Climates: Lisbon, Portugal. Atmosphere 2018, 9, 12. [Google Scholar] [CrossRef]
- Höppe, P.R. Die Energiebilanz des Menschen. Dissertation, Wissenschaftliche Mitteilungen des Meteorologischen Instituts der Universität München 49, Munich, Germany, 1984. [Google Scholar]
- Herrmann, J.; Matzarakis, A. Mean radiant temperature in idealized urban canyons—Examples from Freiburg, Germany. Int. J. Biometeorol. 2012, 56, 199–203. [Google Scholar] [CrossRef] [PubMed]
- VDI. Environmental Meteorology, Methods for the Human-Biometeorological Evaluation of Climate and Air Quality for the Urban and Regional Planning at Regional Level; Part, I. Climate. VDI/DIN—Handbuch Reinhaltung der Luft. Band 1b; VDI: Düsseldorf, Germany, 1998. [Google Scholar]
- Fanger, P.O. Thermal Comfort; McGraw-Hill: New York, NY, USA, 1972. [Google Scholar]
- Chen, Y.C.; Matzarakis, A. Modified physiologically equivalent temperature—Basics and applications for western European climate. Theor. Appl. Climatol. 2018. [Google Scholar] [CrossRef]
- Matzarakis, A.; Mayer, H. Another kind of environmental stress: Thermal stress. WHO Newsl. 1996, 18, 7–10. [Google Scholar]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling Radiation fluxes in simple and complex environments—Application of the RayMan model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling Radiation fluxes in simple and complex environments—Basics of the RayMan model. Int. J. Biometeorol. 2010, 54, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Matzarakis, A.; De Rocco, M.; Najjar, G. Thermal bioclimate in Strasburg—The 2003 heat wave. Theor. Appl. Climatol. 2009, 98, 209–220. [Google Scholar] [CrossRef]
- Campbell, S.; Remenyi, T.A.; Whiteb, C.J.; Johnston, F.H. Heatwave and health impact research: A global review. Health Place 2018, 53, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Oke, T.R. City size and the urban heat island. Atmos. Environ. 1967, 8, 769–779. [Google Scholar] [CrossRef]
- Cohen, P.; Potchter, O.; Matzarakis, A. Human thermal perception of Coastal Mediterranean outdoor urban environments. Appl. Geogr. 2013, 37, 1–10. [Google Scholar] [CrossRef]
- Lin, T.P.; Matzarakis, A. Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int. J. Biometeorol. 2008, 52, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Tomczyk, A.M.; Półrolniczak, M.; Kolendowicz, L. Cold Waves in Poznań (Poland) and Thermal Conditions in the City during Selected Cold Waves. Atmosphere 2018, 9, 208. [Google Scholar] [CrossRef]
- Fröhlich, D.; Matzarakis, A. Spatial Estimation of Thermal Indices in Urban Areas—Basics of the SkyHelios Model. Atmosphere 2018, 9, 209. [Google Scholar] [CrossRef]
Parameter | Min | 1st Quantile | Mean | Median | 3rd Quantile | Max |
---|---|---|---|---|---|---|
Air Temperature (°C) | −20.0 | 9.2 | 16.3 | 16.7 | 23.0 | 37.4 |
Relative Humidity (%) | 2.0 | 48.0 | 62.2 | 63.0 | 77.0 | 100.0 |
Vapor Pressure (hPa) | 0.4 | 6.1 | 13.4 | 12.1 | 20.0 | 38.2 |
Wind Velocity (m/s) | 0.0 | 0.8 | 3.2 | 3.1 | 4.1 | 50.9 |
Cloud Cover (octas) | 0 | 1 | 4.6 | 7 | 7 | 8 |
PET (°C) | Thermal Perception | Grade of Physical Stress |
---|---|---|
<4 | Very cold | Extreme cold stress |
4–8 | Cold | Strong cold stress |
8–13 | Cool | Moderate cold stress |
13–18 | Slightly cool | Slight cold stress |
18–23 | Comfortable | No thermal stress |
23–29 | Slightly warm | Slight heat stress |
29–35 | Warm | Moderate heat stress |
35–41 | Hot | Strong heat stress |
>41 | Very hot | Extreme heat stress |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matzarakis, A.; Fröhlich, D.; Bermon, S.; Adami, P.E. Quantifying Thermal Stress for Sport Events—The Case of the Olympic Games 2020 in Tokyo. Atmosphere 2018, 9, 479. https://doi.org/10.3390/atmos9120479
Matzarakis A, Fröhlich D, Bermon S, Adami PE. Quantifying Thermal Stress for Sport Events—The Case of the Olympic Games 2020 in Tokyo. Atmosphere. 2018; 9(12):479. https://doi.org/10.3390/atmos9120479
Chicago/Turabian StyleMatzarakis, Andreas, Dominik Fröhlich, Stéphane Bermon, and Paolo Emilio Adami. 2018. "Quantifying Thermal Stress for Sport Events—The Case of the Olympic Games 2020 in Tokyo" Atmosphere 9, no. 12: 479. https://doi.org/10.3390/atmos9120479
APA StyleMatzarakis, A., Fröhlich, D., Bermon, S., & Adami, P. E. (2018). Quantifying Thermal Stress for Sport Events—The Case of the Olympic Games 2020 in Tokyo. Atmosphere, 9(12), 479. https://doi.org/10.3390/atmos9120479