Observing Actual Evapotranspiration from Flux Tower Eddy Covariance Measurements within a Hilly Watershed: Case Study of the Kamech Site, Cap Bon Peninsula, Tunisia
Abstract
:1. Introduction
2. Experiments
2.1. Site Description
2.2. Experimental Design and Data Acquisition
2.2.1. Experimental Overview
2.2.2. Meteorological Station
2.2.3. Eddy Covariance Flux Tower
2.3. EC Flux Calculations and Quality Control
2.3.1. Calculating Convective Fluxes
2.3.2. Quality Control
2.4. The Dataset to be Gap-Filled
2.5. Characterization of the Meteorological Conditions
2.6. Method for Gap Filling EC Data
2.6.1. REddyProc Gap Filling Method
- Step 1: All meteorological data of interest are available (solar incoming radiation Rs, air temperature Ta, and vapor pressure deficit VPD). The missing values of H or λE are replaced by the averaged values obtained under similar meteorological conditions for a given time window. Similar meteorological conditions correspond to Rs, Ta and VPD values that do not deviate by more than 50 W·m−2, 2.5 °C, 0.5 kPa, respectively. If no similar meteorological conditions are present within a 14-day time window centered on the date of interest, the time window is extended to 28 days.
- Step 2: Rs only is available. The same approach is taken, and similar meteorological conditions correspond to Rs values that does not deviate by more than 50 W·m−2. The time window is 14 days centered on the date of interest.
- Step 3: All meteorological data are missing. The missing value of H or λE are replaced by values derived at the same time of the day from a mean diurnal course (MDC). The latter are computed on the date of interest when possible, or from the two adjacent days otherwise.
2.6.2. Adapting the REddyProc Method to Hilly Cropping Systems
- First, REddyProc was applied in its original version without discriminating the two dominant wind directions (classical way). The obtained gap-filled data were labelled HREP and λEREP.
- Second, REddyProc was applied after splitting the data according to the two main wind directions, i.e., north-west (NW) and south (S). We split the complete time series into two datasets. The NW (respectively S) dataset included the HORI and λEORI data collected under NW (respectively S) wind conditions. REddyProc was applied over each of these two datasets. The resulting gap-filled datasets were finally merged. The obtained energy fluxes were labelled HRNS and λERNS.
2.6.3. Cross-Validation of REddyProc: Artificial Gaps
3. Results
3.1. Cross-Validation of REddyProc
3.2. Application of REddyProc
3.2.1. Impact of Discriminating Wind Directions with REddyProc
3.2.2. Gap Filling Rates
- In May and June 2010, the LI-7500 analyzer experienced a 34 days-long failure without λE measurements. REddyProc was able to fill all the missing λE data.
- In December 2010 and January 2011, the flux tower experienced a 41 days-long failure without H and λE measurements. REddyProc was able to fill all the missing H and λE data.
- From November 2011 to March 2012, the flux tower experienced several failures, without H and λE measurements for 99 and 126 days, respectively. Gap-filling for missing data was only partial, leading to a 99-day period without final data for both H and λE.
- From October 2012 to May 2013, the flux tower experienced several failures, without H and λE measurements for 57 and 224 days, respectively. REddyProc was able to fill all the missing H data, but λE times series were not gap-filled during 221 days on 224.
3.3. Seasonal Variations of Daily Surface Fluxes
3.4. Monthly Evapotranspiration
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Besbes, M.; Chahed, J.; Hamdane, A. Sécurité Hydrique de la Tunisie (Water Security of Tunisia); De Marsily, G., Ed.; Éditions L’Harmattan: Paris, France, 2014. [Google Scholar]
- Moussa, R.; Chahinian, N.; Bocquillon, C. Distributed hydrological modelling of a Mediterranean mountainous catchment—Model construction and multi-site validation. J. Hydrol. 2007, 337, 35–51. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop—The FAO crop model tosimulate yield response to water: I. Concepts and underlying principles. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef]
- Wang, K.C.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, L.E.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Cai, X.; Zhang, X.; Noël, P.H.; Shafiee-Jood, M. Impacts of climate change on agricultural water management: A review. WIREs Water 2015, 2, 439–455. [Google Scholar] [CrossRef]
- Li, Q.; Ishidaira, H. Development of a biosphere hydrological model considering vegetation dynamics and its evaluation at basin scale under climate change. J. Hydrol. 2012, 412, 3–13. [Google Scholar] [CrossRef]
- Karimi, P.; Bastiaanssen, W.G.M. Spatial evapotranspiration, rainfall and land use data in water accounting—Part 1: Review of the accuracy of the remote sensing data. Hydrol. Earth Syst. Sci. 2015, 19, 507–532. [Google Scholar] [CrossRef]
- Aubinet, M.; Vesala, T.; Papale, D. Eddy Covariance. In A Practical Guide to Measurement and Data Analysis; Springer Science & Business Media: Amsterdam, The Netherlands, 2012; p. 438. [Google Scholar] [CrossRef]
- Alavi, N.; Warland, J.S.; Berg, A.A. Filling gaps in evapotranspiration measurements for water budget studies: Evaluation of a Kalman filtering approach. Agric. For. Meteorol. 2006, 141, 57–66. [Google Scholar] [CrossRef]
- Falge, E.; Baldocchi, D.D.; Olson, R.; Anthoni, P.; Aubinet, M.; Bernhofer, C.; Burba, G.; Ceulemans, R.; Clement, R.; Dolman, H.; et al. Gap filling strategies for long term energy flux data sets. Agric. For. Meteorol. 2001, 107, 71–77. [Google Scholar] [CrossRef]
- Greco, S.; Baldocchi, D.D. Seasonal variations of CO2 water vapour exchange rates over a temperate deciduous forest. Glob. Chang. Biol. 1996, 2, 183–197. [Google Scholar] [CrossRef]
- Berbigier, P.; Bonnefond, J.M.; Mellmann, P. CO2 and water vapour fluxes for 2 years obove Euroflux forest site. Agric. For. Meteorol. 2001, 108, 183–197. [Google Scholar] [CrossRef]
- Wilson, K.B.; Baldocchi, D.D. Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agric. For. Meteorol. 2000, 100, 1–18. [Google Scholar] [CrossRef]
- Wilson, K.B.; Hanson, P.J.; Mulholland, P.J.; Baldocchi, D.D.; Wullschleger, S.D. A comparison of methods for determining forest evapotranspiration and its components: Sap-flow, soil water budget, eddy covariance and catchment water balance. Agric. For. Meteorol. 2001, 106, 153–168. [Google Scholar] [CrossRef]
- Hui, D.; Wan, S.; Su, B.; Katul, G.; Monson, R.; Luo, Y. Gap filling missing data in eddy covariance measurements using multiple imputation (MI) for annual estimations. Agric. For. Meteorol. 2004, 121, 93–111. [Google Scholar] [CrossRef]
- Mekki, I.; Albergel, J.; Ben Mechlia, N.; Voltz, M. Assessment of overland flow variation and blue water production in a farmed semiarid water harvesting catchment. Phys. Chem. Earth 2006, 31, 1048–1061. [Google Scholar] [CrossRef]
- Ameur, M.; Mtimet, N.; Khlifi, S. Effects of Small Hill Dams on Farming Systems: Bizerte Region. In Tunisia Semi-Arid Environments: Agriculture, Water Supply and Vegetation; Degenovine, K.M., Ed.; Nova Science Publishers: New York, NY, USA, 2011; pp. 159–172. [Google Scholar]
- Joodi, N.; Satyanarayana, S.V. Design of Check Dam for Effective Utilization of the Aflaj Water Resources. Int. J. Multidiscip. Res. Dev. 2015, 2, 446–449. [Google Scholar]
- Parimala Renganayaki, S.; Elango, L. A review on managed aquifer recharge by check dams: A case study Near Chennai, INDIA. Int. J. Res. Eng. Technol. 2013, 2, 416–423. [Google Scholar]
- Finnigan, J.J.; Clement, R.; Malhi, Y.; Leuning, R.; Cleugh, H.A. A re-evaluation of long-term flux measurement techniques—Part 1: Averaging and coordinate rotation. Bound. Layer Meteorol. 2003, 107, 1–48. [Google Scholar] [CrossRef]
- Zitouna-Chebbi, R.; Prévot, L.; Jacob, F.; Mougou, M.; Voltz, M. Assessing the consistency of eddy covariance measurements under conditions of sloping topography within a hilly agricultural catchment. Agric. For. Meteorol. 2012, 16, 123–135. [Google Scholar] [CrossRef]
- Zitouna-Chebbi, R.; Prévot, L.; Jacob, F.; Voltz, M. Accounting for vegetation height and wind direction to correct eddy covariance measurements of energy fluxes over hilly crop fields. J. Geophys. Res. Atmos. 2015, 120. [Google Scholar] [CrossRef]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Van Dijk, A.; Moene, A.; DeBruin, H. The Principles of Surface Flux Physics: Theory, Practice and Description of the ECPACK Library; Internal Report 2004/1; Meteorology and Air Quality Group, Wageningen University: Wageningen, The Netherlands; Available online: http://www.met.wau.nl/projects/jep/report/ecromp/ (accessed on 15 March 2011).
- Kaimal, J.C.; Finnigan, J.J. Atmospheric Boundary Layer Flows, Their Structure and Measurement; Oxford University Press: Oxford, UK, 1994; p. 289. [Google Scholar]
- Hiller, R.; Zeeman, M.J.; Eugster, W. Eddy-covariance flux measurements in the complex terrain of an Alpine valley in Switzerland. Bound. Layer Meteorol. 2008, 127, 449–467. [Google Scholar] [CrossRef]
- Foken, T.; Göckede, M.; Mauder, M.; Mahrt, L.; Amiro, B.; Munger, W. Post-field data quality control. In Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis; Lee, X., Massman, W., Law, B., Eds.; Kluwer Academic Publishers: Dordrecht, Netherlands, 2004; pp. 181–208. [Google Scholar] [CrossRef]
- Rebmann, C.; Göckede, M.; Foken, T.; Aubinet, M.; Aurela, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Carrara, A.; Cescatti, R.C.A.; et al. Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling. Theor. Appl. Climatol. 2005, 80, 121–141. [Google Scholar] [CrossRef]
- Papale, D.; Reichstein, M.; Aubinet, M.; Canfora, E.; Bernhofer, C.; Kutsch, W.; Longdoz, B.; Rambal, S.; Valentini, R.; Vesala, T.; et al. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: Algorithms and uncertainty estimation. Biogeosciences 2006, 3, 571–583. [Google Scholar] [CrossRef]
- Aschmann, H. Distribution and Peculiarity of Mediterranean Ecosystems. In Mediterranean Type Ecosystems; Chapter Part of the Ecological Studies Book Series; Springer: Berlin/Heidelberg, Germany, 1973; Volume 7, pp. 11–19. [Google Scholar]
- Bolle, H.J. Mediterranean Climate: Variability and Trends; Springer: Berlin/Heidelberg, Germany, 2003; p. 371. [Google Scholar]
- Brilli, F.; Gioli, B.; Zona, D.; Pallozzi, E.; Zenone, T.; Fratini, G.; Calfapietra, C.; Loreto, F.; Janssens, I.A.; Ceulemans, R. Simultaneous leaf-and ecosystem-level fluxes of volatile organic compounds from a poplar-based SRC plantation. Agric. For. Meteorol. 2014, 187, 22–35. [Google Scholar] [CrossRef]
- Horemans, J.A.; Van Gaelen, H.; Raes, D.; Zenone, T.; Ceulemans, R. Can the agricultural AquaCrop model simulate water use and yield of a poplar short-rotation coppice? GCB Bioenergy 2017, 9, 1151–1164. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Huang, Y. A comparison of three gap filling techniques for eddy covariance net carbon fluxes in short vegetation ecosystems. Adv. Meteorol. 2015, 12. [Google Scholar] [CrossRef]
- Zitouna Chebbi, R. Observing and Characterising Water and Energy Exchanges within the Soil-Plant-Atmosphere Continuum under Condition of Hilly Relief. The Case Study of the Kamech Catchment, Cap Bon Peninsula, Tunisia. Ph.D. Thesis, School of Agronomy, Montpellier SupAgro, Montpellier, France, 4 December 2009. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: II. Recommended documentation. Agric. Water Manag. 2011, 98, 921–929. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper No. 56; The Food and Agriculture Organization (FAO): Rome, Italy, 1998. [Google Scholar]
Years | Number of Days | Number of 30-min Intervals | Missing Raw Measurements | Missing after QC | ||
---|---|---|---|---|---|---|
H | λE | H | λE | |||
2010 | 306 | 14,687 | 20% | 31% | 44% | 78% |
2011 | 365 | 17,520 | 25% | 28% | 48% | 66% |
2012 | 366 | 17,568 | 30% | 53% | 53% | 81% |
2013 | 243 | 11,664 | 57% | 81% | 69% | 92% |
total | 1280 | 61,439 | 31% | 46% | 53% | 78% |
Fluxes | Total Number of 30-min Intervals | Number of 30-min Intervals Remaining after QC | % of Artificial Gaps | Bias (W·m−2) | Relative Bias (%) | RMSE (W·m−2) | RRMSE (%) | R2 |
---|---|---|---|---|---|---|---|---|
H | 10,464 | 7255 | 10 | 5.6 | 5.8 | 64 | 66 | 0.81 |
20 | −1.2 | −1.2 | 71 | 71 | 0.75 | |||
30 | 1.1 | 1.1 | 69 | 69 | 0.78 | |||
40 | −3.4 | −3.3 | 69 | 68 | 0.77 | |||
50 | 0.2 | 0.2 | 73 | 70 | 0.75 | |||
60 | −0.5 | −0.4 | 73 | 71 | 0.75 | |||
70 | 1.2 | 1.1 | 75 | 73 | 0.74 | |||
λE | 10,464 | 4547 | 10 | −0.7 | −0.9 | 49 | 58 | 0.64 |
20 | −1.9 | −2.4 | 48 | 59 | 0.65 | |||
30 | −1.8 | −2.1 | 51 | 60 | 0.64 | |||
40 | 1.5 | 1.8 | 50 | 58 | 0.64 | |||
50 | 0.9 | 1.1 | 51 | 61 | 0.63 | |||
60 | −0.5 | −0.6 | 52 | 63 | 0.61 | |||
70 | −1.7 | −2 | 54 | 64 | 0.59 |
Years | Number of 30-min Intervals | Missing after QC | Missing after Gap-Filling REP | Missing after Gap-Filling RNS | |||
---|---|---|---|---|---|---|---|
H | λE | H | λE | H | λE | ||
2010 | 14,687 | 44% | 78% | 0% | 0% | 0% | 0% |
2011 | 17,520 | 48% | 66% | 11% | 11% | 11% | 11% |
2012 | 17,568 | 53% | 81% | 16% | 36% | 16% | 36% |
2013 | 11,664 | 69% | 92% | 0% | 61% | 24% | 75% |
Total | 61,439 | 53% | 78% | 8% | 25% | 12% | 28% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zitouna-Chebbi, R.; Prévot, L.; Chakhar, A.; Marniche-Ben Abdallah, M.; Jacob, F. Observing Actual Evapotranspiration from Flux Tower Eddy Covariance Measurements within a Hilly Watershed: Case Study of the Kamech Site, Cap Bon Peninsula, Tunisia. Atmosphere 2018, 9, 68. https://doi.org/10.3390/atmos9020068
Zitouna-Chebbi R, Prévot L, Chakhar A, Marniche-Ben Abdallah M, Jacob F. Observing Actual Evapotranspiration from Flux Tower Eddy Covariance Measurements within a Hilly Watershed: Case Study of the Kamech Site, Cap Bon Peninsula, Tunisia. Atmosphere. 2018; 9(2):68. https://doi.org/10.3390/atmos9020068
Chicago/Turabian StyleZitouna-Chebbi, Rim, Laurent Prévot, Amal Chakhar, Manel Marniche-Ben Abdallah, and Frederic Jacob. 2018. "Observing Actual Evapotranspiration from Flux Tower Eddy Covariance Measurements within a Hilly Watershed: Case Study of the Kamech Site, Cap Bon Peninsula, Tunisia" Atmosphere 9, no. 2: 68. https://doi.org/10.3390/atmos9020068
APA StyleZitouna-Chebbi, R., Prévot, L., Chakhar, A., Marniche-Ben Abdallah, M., & Jacob, F. (2018). Observing Actual Evapotranspiration from Flux Tower Eddy Covariance Measurements within a Hilly Watershed: Case Study of the Kamech Site, Cap Bon Peninsula, Tunisia. Atmosphere, 9(2), 68. https://doi.org/10.3390/atmos9020068