Influence of Cold Fronts on Variability of Daily Surface O3 over the Houston-Galveston-Brazoria Area in Texas USA during 2003–2016
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. O3 and Meteorology
2.3. Back Trajectory
2.4. Cold Front Position
2.5. Event Days Definitions
3. Results
3.1. Cold Front Time Series
3.2. Back Trajectory
3.3. O Time Series
3.4. Meteorology of Cold Front
3.5. O Sensitivity to Meteorology
4. Discussion
5. Summary and Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kunz, H.; Speth, P. Variability of near-ground ozone concentrations during cold front passages—A possible effect of tropopause folding events. J. Atmos. Chem. 1997, 28, 77–95. [Google Scholar] [CrossRef]
- Chu, D.A.; Ferrare, R.; Szykman, J.; Lewis, J.; Scarino, A.; Hains, J.; Burton, S.; Chen, G.; Tsai, T.; Hostetler, C.; et al. Regional characteristics of the relationship between columnar AOD and surface PM2.5: Application of lidar aerosol extinction profiles over Baltimore–Washington Corridor during DISCOVER-AQ. Atmos. Environ. 2015, 101, 338–349. [Google Scholar] [CrossRef]
- Ott, L.E.; Duncan, B.N.; Thompson, A.M.; Diskin, G.; Fasnacht, Z.; Langford, A.O.; Lin, M.; Molod, A.M.; Nielsen, J.E.; Pusede, S.E.; et al. Frequency and impact of summertime stratospheric intrusions over Maryland during DISCOVER-AQ (2011): New evidence from NASA’s GEOS-5 simulations. J. Geophys. Res. Atmos. 2016, 121, 3687–3706. [Google Scholar] [CrossRef]
- Yegorova, E.; Allen, D.; Loughner, C.; Pickering, K.; Dickerson, R. Characterization of an eastern US severe air pollution episode using WRF/Chem. J. Geophys. Res. Atmos. 2011, 116, D17306. [Google Scholar] [CrossRef]
- Hu, X.M.; Klein, P.M.; Xue, M.; Shapiro, A.; Nallapareddy, A. Enhanced vertical mixing associated with a nocturnal cold front passage and its impact on near-surface temperature and ozone concentration. J. Geophys. Res. Atmos. 2013, 118, 2714–2728. [Google Scholar] [CrossRef]
- Leibensperger, E.M.; Mickley, L.J.; Jacob, D.J. Sensitivity of US air quality to mid-latitude cyclone frequency and implications of 1980–2006 climate change. Atmos. Chem. Phys. 2008, 8, 7075–7086. [Google Scholar] [CrossRef]
- U.S. Census Bureau, P.D. Metropolitan and Micropolitan Statistical Area Population and Estimated Components of Change: April 1, 2010 to July 1, 2016 (CBSA-EST2016-alldata). 2017. Available online: https://www.census.gov/data/tables/2016/demo/popest/total-metro-and-micro-statistical-areas.html (accessed on 1 May 2017).
- U.S. EPA. 2008 National Ambient Air Quality Standards (NAAQS) for Ozone. Available online: https://www.epa.gov/ozone-pollution/2008-national-ambient-air-quality-standards-naaqs-ozone (accessed on 1 May 2017).
- U.S. EPA. 2015 National Ambient Air Quality Standards (NAAQS) for Ozone. Available online: https://www.epa.gov/ozone-pollution/2015-national-ambient-air-quality-standards-naaqs-ozone#rule-summary (accessed on 1 May 2017).
- Cuchiara, G.C.; Li, X.; Carvalho, J.; Rappenglück, B. Intercomparison of planetary boundary layer parameterization and its impacts on surface ozone concentration in the WRF/Chem model for a case study in Houston/Texas. Atmos. Environ. 2014, 96, 175–185. [Google Scholar] [CrossRef]
- Wilson, J. Getting the Big Picture on Houston’s Air Pollution. Available online: http://www.nasa.gov/vision/earth/everydaylife/archives/HP_ILP_Feature_03.html (accessed on 1 May 2017).
- Levy, M.E.; Zhang, R.; Khalizov, A.F.; Zheng, J.; Collins, D.R.; Glen, C.R.; Wang, Y.; Yu, X.Y.; Luke, W.; Jayne, J.T.; et al. Measurements of submicron aerosols in Houston, Texas during the 2009 SHARP field campaign. J. Geophys. Res. Atmos. 2013, 118, 10518–10534. [Google Scholar] [CrossRef]
- Lefer, B.; Rappenglück, B.; Flynn, J.; Haman, C. Photochemical and meteorological relationships during the Texas-II Radical and Aerosol Measurement Project (TRAMP). Atmos. Environ. 2010, 44, 4005–4013. [Google Scholar] [CrossRef]
- McMillan, W.; Pierce, R.; Sparling, L.; Osterman, G.; McCann, K.; Fischer, M.; Rappenglueck, B.; Newsom, R.; Turner, D.; Kittaka, C.; et al. An observational and modeling strategy to investigate the impact of remote sources on local air quality: A Houston, Texas, case study from the Second Texas Air Quality Study (TexAQS II). J. Geophys. Res. Atmos. 2010, 115, D01301. [Google Scholar] [CrossRef]
- Schade, G.W.; Khan, S.; Park, C.; Boedeker, I. Rural southeast texas air quality measurements during the 2006 texas air quality study. J. Air Waste Manag. Assoc. 2011, 61, 1070–1081. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Choi, Y.; Czader, B.; Roy, A.; Kim, H.; Lefer, B.; Pan, S. The impact of observation nudging on simulated meteorology and ozone concentrations during DISCOVER-AQ 2013 Texas campaign. Atmos. Chem. Phys. 2016, 16, 3127–3144. [Google Scholar] [CrossRef]
- Pan, S.; Choi, Y.; Jeon, W.; Roy, A.; Westenbarger, D.A.; Kim, H.C. Impact of high-resolution sea surface temperature, emission spikes and wind on simulated surface ozone in Houston, Texas during a high ozone episode. Atmos. Environ. 2017, 152, 362–376. [Google Scholar] [CrossRef]
- Banta, R.; Senff, C.; Nielsen-Gammon, J.; Darby, L.; Ryerson, T.; Alvarez, R.; Sandberg, S.; Williams, E.; Trainer, M. A bad air day in Houston. Bull. Am. Meteorol. Soc. 2005, 86, 657–669. [Google Scholar] [CrossRef]
- Haman, C.; Couzo, E.; Flynn, J.; Vizuete, W.; Heffron, B.; Lefer, B. Relationship between boundary layer heights and growth rates with ground-level ozone in Houston, Texas. J. Geophys. Res. Atmos. 2014, 119, 6230–6245. [Google Scholar] [CrossRef]
- Langford, A.; Senff, C.; Banta, R.; Hardesty, R.; Alvarez, R.; Sandberg, S.P.; Darby, L.S. Regional and local background ozone in Houston during Texas Air Quality Study 2006. J. Geophys. Res. Atmos. 2009, 114, D00F12. [Google Scholar] [CrossRef]
- What Is a CAMS? Available online: https://www.tceq.texas.gov/cgi-bin/compliance/monops/daily_info.pl?cams (accessed on 1 May 2017).
- Berlin, S.R.; Langford, A.O.; Estes, M.; Dong, M.; Parrish, D.D. Magnitude, decadal changes, and impact of regional background ozone transported into the Greater Houston, Texas, area. Environ. Sci. Technol. 2013, 47, 13985–13992. [Google Scholar] [CrossRef] [PubMed]
- National Centers for Environmental Prediction; National Weather Service; NOAA; U.S. Department of Commerce (2005): NCEP North American Regional Reanalysis (NARR). Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. Available online: http://rda.ucar.edu/datasets/ds608.0/ (accessed on 1 May 2017).
- Stein, A.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.; Cohen, M.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Baier, B.C.; Brune, W.H.; Lefer, B.L.; Miller, D.O.; Martins, D.K. Direct ozone production rate measurements and their use in assessing ozone source and receptor regions for Houston in 2013. Atmos. Environ. 2015, 114, 83–91. [Google Scholar] [CrossRef]
- Cooper, O.R.; Gao, R.S.; Tarasick, D.; Leblanc, T.; Sweeney, C. Long-term ozone trends at rural ozone monitoring sites across the United States, 1990–2010. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Suciu, L.G.; Griffin, R.J.; Masiello, C.A. Regional background O3 and NOx in the Houston–Galveston– Brazoria (TX) region: A decadal-scale perspective. Atmos. Chem. Phys. 2017, 17, 6565–6581. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, B.; Wang, S.C.; Estes, M.; Shen, L.; Xie, Y. Influence of the Bermuda High on interannual variability of summertime ozone in the Houston–Galveston–Brazoria region. Atmos. Chem. Phys. 2016, 16, 15265–15276. [Google Scholar] [CrossRef]
- Johnson, M.S.; Kuang, S.; Wang, L.; Newchurch, M.J. Evaluating summer-time ozone enhancement events in the southeast United States. Atmosphere 2016, 7, 108. [Google Scholar] [CrossRef]
- Kim, E.; Kim, B.U.; Kim, H.C.; Kim, S. The Variability of Ozone Sensitivity to Anthropogenic Emissions with Biogenic Emissions Modeled by MEGAN and BEIS3. Atmosphere 2017, 8, 187. [Google Scholar] [CrossRef]
- Souri, A.H.; Choi, Y.; Li, X.; Kotsakis, A.; Jiang, X. A 15-year climatology of wind pattern impacts on surface ozone in Houston, Texas. Atmos. Res. 2016, 174, 124–134. [Google Scholar] [CrossRef]
- Nielsen-Gammon, J.; Tobin, J.; McNeel, A.; Li, G. A Conceptual Model for Eight-Hour Ozone Exceedances in Houston, Texas Part I: Background Ozone Levels in Eastern Texas. Available online: http://oaktrust.library.tamu.edu/handle/1969.1/158250 (accessed on 1 May 2017).
- Liu, L.; Talbot, R.; Lan, X. Influence of climate change and meteorological factors on Houston’s air pollution: ozone a case study. Atmosphere 2015, 6, 623–640. [Google Scholar] [CrossRef]
- Pakalapati, S.; Beaver, S.; Romagnoli, J.A.; Palazoglu, A. Sequencing diurnal air flow patterns for ozone exposure assessment around Houston, Texas. Atmos. Environ. 2009, 43, 715–723. [Google Scholar] [CrossRef]
- Shen, L.; Mickley, L.; Tai, A. Influence of synoptic patterns on surface ozone variability over the eastern United States from 1980 to 2012. Atmos. Chem. Phys. 2015, 15, 10925–10938. [Google Scholar] [CrossRef]
- Pu, X.; Wang, T.; Huang, X.; Melas, D.; Zanis, P.; Papanastasiou, D.; Poupkou, A. Enhanced surface ozone during the heat wave of 2013 in Yangtze River Delta region, China. Sci. Total Environ. 2017, 603, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Hou, P.; Wu, S. Long-term changes in extreme air pollution meteorology and the implications for air quality. Sci. Rep. 2016, 6, 23792. [Google Scholar] [CrossRef] [PubMed]
- Fu, T.M.; Zheng, Y.; Paulot, F.; Mao, J.; Yantosca, R.M. Positive but variable sensitivity of August surface ozone to large-scale warming in the southeast United States. Nat. Clim. Chang. 2015, 5, 454. [Google Scholar] [CrossRef]
- Tawfik, A.B.; Steiner, A.L. A proposed physical mechanism for ozone-meteorology correlations using land–atmosphere coupling regimes. Atmos. Environ. 2013, 72, 50–59. [Google Scholar] [CrossRef]
- Kim, H.; Lee, P.; Ngan, F.; Tang, Y.; Yoo, H.; Pan, L. Evaluation of modeled surface ozone biases as a function of cloud cover fraction. Geosci. Model Dev. 2015, 8, 2959. [Google Scholar] [CrossRef]
- Kuang, S.; Newchurch, M.J.; Thompson, A.M.; Stauffer, R.M.; Johnson, B.J.; Wang, L. Ozone variability and anomalies observed during SENEX and SEAC4RS campaigns in 2013. J. Geophys. Res. Atmos. 2017, 122. [Google Scholar] [CrossRef]
- Luo, L.; Wood, E.F. Monitoring and predicting the 2007 US drought. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, Y. Influence of the West Pacific subtropical high on surface ozone daily variability in summertime over eastern China. Atmos. Environ. 2017, 170, 197–204. [Google Scholar] [CrossRef]
Cold Front 1st Days | Cold Front 2+ Days | Post Frontal Days | |
---|---|---|---|
Wind direction | S→SE | S→NE | S→E |
Wind speed(m/s) | −0.7 | −0.2 | −0.3 |
Precipitation (mm) | 0.6 | −0.04 | −0.1 |
Temperature (C) | −1.7 | −3.4 | −3.9 |
Cloud cover (%) | 7.4 | 8.3 | −11.7 |
RH (%) | 0.8 | −2.6 | −5.2 |
Cold Front 1st Days | Cold Front 2+ Days | Post Frontal Days | ||
Peak O (ppbv) | Wind direction | 7 | 23 | 18.5 |
Wind speed | 3.8 ± 5.3 | 1.4 ± 5.4 | 1.6 ± 5.4 | |
Precipitation | −0.5 ± 1.6 | 0.04 ± 1.5 | 0.1 ± 1.5 | |
Temperature | 0.4 ± 20.2 | 0.8 ± 19.9 | 1.0± 19.8 | |
Cloud cover | −1.6 ± 4.5 | −1.8 ± 4.6 | 2.5 ± 4.0 | |
RH | −0.8 ± 21.9 | 2.6 ± 21.6 | 5.2 ± 21.5 | |
Cold Front 1st Days | Cold Front 2+ Days | Post Frontal Days | ||
Background O (ppbv) | Wind direction | 8 | 22 | 18 |
Wind speed | 1.3 ± 4.0 | 0.5 ± 4.2 | 0.5 ± 4.1 | |
Precipitation | −0.3 ± 1.1 | 0.02 ± 1.0 | 0.1 ± 1.0 | |
Temperature | 2.2 ± 12.7 | 4.5 ± 12.5 | 5.2 ± 12.4 | |
Cloud cover | −1.0 ± 3.1 | −1.2 ± 3.1 | 1.6 ± 2.7 | |
RH | −0.5 ± 14.9 | 1.8 ± 14.7 | 3.5 ± 14.6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, R.; Talbot, R.; Wang, Y.; Wang, S.-C.; Estes, M. Influence of Cold Fronts on Variability of Daily Surface O3 over the Houston-Galveston-Brazoria Area in Texas USA during 2003–2016. Atmosphere 2018, 9, 159. https://doi.org/10.3390/atmos9050159
Lei R, Talbot R, Wang Y, Wang S-C, Estes M. Influence of Cold Fronts on Variability of Daily Surface O3 over the Houston-Galveston-Brazoria Area in Texas USA during 2003–2016. Atmosphere. 2018; 9(5):159. https://doi.org/10.3390/atmos9050159
Chicago/Turabian StyleLei, Ruixue, Robert Talbot, Yuxuan Wang, Sing-Chun Wang, and Mark Estes. 2018. "Influence of Cold Fronts on Variability of Daily Surface O3 over the Houston-Galveston-Brazoria Area in Texas USA during 2003–2016" Atmosphere 9, no. 5: 159. https://doi.org/10.3390/atmos9050159
APA StyleLei, R., Talbot, R., Wang, Y., Wang, S. -C., & Estes, M. (2018). Influence of Cold Fronts on Variability of Daily Surface O3 over the Houston-Galveston-Brazoria Area in Texas USA during 2003–2016. Atmosphere, 9(5), 159. https://doi.org/10.3390/atmos9050159