Precipitation Extended Linear Scaling Method for Correcting GCM Precipitation and Its Evaluation and Implication in the Transboundary Jhelum River Basin
Abstract
:1. Introduction
2. Study Area and Data Description
2.1. Study Area
2.2. Data Description
3. Methodology
3.1. Precipitation Extended Linear Scaling (PELS) Method
3.2. Evaluation of GCMs
3.3. Evaluation of PELS Method
3.4. Projected Precipitation Changes
4. Results and Discussion
4.1. Evaluation of GCMs before Correction
4.2. Evaluation of PELS Method
4.3. Projected Changes under RCPs
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Fowler, H.J.; Blenkinsop, S.; Tebaldi, C. Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol. 2007, 27, 1547–1578. [Google Scholar] [CrossRef]
- Mahmood, R.; Babel, M.S. Evaluation of SDSM developed by annual and monthly sub-models for downscaling temperature and precipitation in the Jhelum basin, Pakistan and India. Theor. Appl. Climatol. 2013, 113, 27–44. [Google Scholar] [CrossRef]
- Zubler, E.M.; Fischer, A.M.; Fröb, F.; Liniger, M.A. Climate change signals of CMIP5 general circulation models over the Alps—Impact of model selection. Int. J. Climatol. 2015, 36, 3088–3104. [Google Scholar] [CrossRef]
- Hay, L.E.; Wilby, R.L.; Leavesley, G.H. A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. J. Am. Water Resour. Assoc. 2000, 36, 387–397. [Google Scholar] [CrossRef]
- Wetterhall, F.; Bárdossy, A.; Chen, D.; Halldin, S.; Xu, C.-Y. Daily precipitation-downscaling techniques in three Chinese regions. Water Resour. Res. 2006, 42, W11423. [Google Scholar] [CrossRef]
- Chu, J.; Xia, J.; Xu, C.Y.; Singh, V. Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China. Theor. Appl. Climatol. 2010, 99, 149–161. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, J.; Zhang, Z.; Xu, C.; Wang, B.; Yao, J. Estimation of future precipitation change in the Yangtze River basin by using statistical downscaling method. Stoch. Environ. Res. Risk Assess. 2011, 25, 781–792. [Google Scholar] [CrossRef]
- Giorgi, F.; Hewitson, B.; Christensen, J.; Hulme, M.; Storch, V.H.; Whetton, P.; Jones, R.; Mearns, L.; Mearns, C.; Fu, C. Regional climate information-evaluation and projection. In Climate Change 2001: The Scientific Basis; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., Dai, X., Maskell, K., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 585–629. [Google Scholar]
- Hay, L.E.; Clark, M.P. Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States. J. Hydrol. 2003, 282, 56–75. [Google Scholar] [CrossRef]
- Wilby, R.L.; Dawson, C.W.; Barrow, E.M. Sdsm—A decision support tool for the assessment of regional climate change impacts. Environ. Model. Softw. 2002, 17, 145–157. [Google Scholar] [CrossRef]
- Hessami, M.; Gachon, P.; Ouarda, T.B.M.J.; St-Hilaire, A. Automated regression-based statistical downscaling tool. Environ. Model. Softw. 2008, 23, 813–834. [Google Scholar] [CrossRef]
- Semenov, M.A.; Barrow, E.M. Use of a stochastic weather generator in the development of climate change scenarios. Clim. Chang. 1997, 33, 397–414. [Google Scholar] [CrossRef]
- Maraun, D. Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue. J. Clim. 2013, 26, 2137–2143. [Google Scholar] [CrossRef]
- Fang, G.H.; Yang, J.; Chen, Y.N.; Zammit, C. Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrol. Earth Syst. Sci. 2015, 19, 2547–2559. [Google Scholar] [CrossRef] [Green Version]
- Teutschbein, C.; Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 2012, 456–457, 12–29. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P.; Chaumont, D.; Braun, M. Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour. Res. 2013, 49, 4187–4205. [Google Scholar] [CrossRef]
- Xu, C.-Y. From GCMs to river flow: A review of downscaling methods and hydrologic modelling approaches. Prog. Phys. Geogr. 1999, 23, 229–249. [Google Scholar] [CrossRef]
- Santer, B.D.; Wigley, T.M.L.; Schlesinger, M.E.; Mitchell, J.F.B. Developing Climate Scenarios from Equilibrium GCM; Max Planck Institute for Meteorology: Hamburg, Germany, 1990; p. 29. [Google Scholar]
- Ouyang, F.; Zhu, Y.; Fu, G.; Lü, H.; Zhang, A.; Yu, Z.; Chen, X. Impacts of climate change under CMIP5 RCP scenarios on streamflow in the huangnizhuang catchment. Stoch. Environ. Res. Risk Assess. 2015, 29, 1781–1795. [Google Scholar] [CrossRef]
- Mpelasoka, F.S.; Chiew, F.H.S. Influence of rainfall scenario construction methods on runoff projections. J. Hydrometeorol. 2009, 10, 1168–1183. [Google Scholar] [CrossRef]
- Mahmood, R.; Jia, S. An extended linear scaling method for downscaling temperature and its implication in the Jhelum River basin, Pakistan, and India, using CMIP5 GCMs. Theor. Appl. Climatol. 2017, 130, 725–734. [Google Scholar] [CrossRef]
- Archer, D.R.; Fowler, H.J. Using meteorological data to forecast seasonal runoff on the River Jhelum, Pakistan. J. Hydrol. 2008, 361, 10–23. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2011, 93, 485–498. [Google Scholar] [CrossRef]
- Prasanna, V. Regional climate change scenarios over South Asia in the CMIP5 coupled climate model simulations. Meteorol. Atmos. Phys. 2015, 127, 561–578. [Google Scholar] [CrossRef]
- Babar, Z.; Zhi, X.-F.; Fei, G. Precipitation assessment of Indian summer monsoon based on CMIP5 climate simulations. Arab. J. Geosci. 2015, 8, 4379–4392. [Google Scholar] [CrossRef]
- Piani, C.; Haerter, J.; Coppola, E. Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol. 2010, 99, 187–192. [Google Scholar] [CrossRef]
- Akhtar, M.; Ahmad, N.; Booij, M.J. Use of regional climate model simulations as input for hydrological models for the Hindukush-Karakorum-Himalaya region. Hydrol. Earth Syst. Sci. 2009, 13, 1075–1089. [Google Scholar] [CrossRef]
- Salzmann, N.; Frei, C.; Vidale, P.-L.; Hoelzle, M. The application of Regional Climate Model output for the simulation of high-mountain permafrost scenarios. Glob. Planet. Chang. 2007, 56, 188–202. [Google Scholar] [CrossRef]
- Tukey, J.W. Exploratory Data Analysis, 1st ed.; Pearson: London, UK, 1977. [Google Scholar]
Serial Number | Station | Latitude (°) | Longitude (°) | Elevation (m AMSL) | Annual Precipitation (mm) |
---|---|---|---|---|---|
1 | Astore | 35.34 | 74.90 | 2168 | 496 |
2 | Bagh | 33.98 | 73.77 | 1067 | 1496 |
3 | Balakot | 34.55 | 73.35 | 995 | 1529 |
4 | Gari Dopatta | 34.22 | 73.62 | 814 | 1483 |
5 | Gujar Khan | 33.25 | 73.30 | 457 | 881 |
6 | Gulmarg | 34.00 | 74.33 | 2705 | 1702 |
7 | Jhelum | 32.94 | 73.74 | 287 | 858 |
8 | Kallar | 33.42 | 73.37 | 518 | 988 |
9 | Khandar | 33.50 | 74.05 | 1067 | 1101 |
10 | Kotli | 33.50 | 73.90 | 614 | 1289 |
11 | Kupwara | 34.51 | 74.25 | 1609 | 1283 |
12 | Mangla | 33.12 | 73.63 | 305 | 863 |
13 | Murree | 33.91 | 73.38 | 2213 | 1805 |
14 | Muzaffarabad | 34.37 | 73.48 | 702 | 1508 |
15 | Naran | 34.90 | 73.65 | 2362 | 1640 |
16 | Palandri | 33.72 | 73.71 | 1402 | 1411 |
17 | Qazi Gund | 33.58 | 75.08 | 1690 | 1379 |
18 | Rawalakot | 33.87 | 73.68 | 1676 | 1407 |
19 | Sehr Kakota | 33.73 | 73.95 | 914 | 1471 |
20 | Shinkiari | 34.47 | 73.27 | 991 | 1312 |
21 | Srinagar | 34.08 | 74.83 | 1587 | 771 |
Centre | Country | Model | Resolution Grid (Latitude × Longitude) |
---|---|---|---|
Geophysical Fluid Dynamics Laboratory (GFDL) | USA | GFDL-ESM2G | 90 × 144 |
Norwegian Climate Centre (NCC) | Norway | NorESM1-ME | 96 × 144 |
Met Office Hadley Centre (MOHC) | UK | HadGEM2-ES | 145 × 192 |
Atmosphere and Ocean Research Institute (AORI) | Japan | MIROC5 | 128 × 256 |
Canadian Centre for Climate Modelling and Analysis (CCCMA) | Canada | CanESM2 | 64 × 128 |
Indicators | CanESM2 | GFDL | HadGEM2 | MIROC5 | NorESM1 | Ensemble |
---|---|---|---|---|---|---|
Without correction | ||||||
E_μ (%) | −86 | −53 | 1 | −57 | −45 | −48 |
E_σ (%) | −76 | −50 | −40 | −69 | −53 | −57 |
RMSE (mm) | 11 | 12 | 12 | 12 | 12 | 12 |
R | 0.02 | 0.0001 | 0.002 | 0.01 | 0.02 | 0.01 |
Corrected with PELS | ||||||
E_μ (%) | 11 | −2 | −2 | −4 | −2 | 0.2 |
E_σ (%) | 50 | 36 | −33 | 36 | 20 | 21.8 |
RMSE (mm) | 15 | 18 | 12 | 18 | 16 | 15.8 |
Corrected with OLS | ||||||
E_μ (%) | −14 | 28 | −2 | 23 | 9 | 8.8 |
E_σ (%) | 44 | 115 | −37 | 74 | 15 | 42.2 |
RMSE (mm) | 19 | 25 | 12 | 21 | 17 | 18.8 |
Month | CanESM2 | GFDL | MIROC5 | NorESM1 | HadGEM2 | Average |
---|---|---|---|---|---|---|
Winter | 1 | 118 | −19 | −37 | −17 | 9 |
Spring | 3 | 75 | −18 | −42 | −1 | 4 |
Summer | 4 | −6 | −50 | −33 | −25 | −22 |
Fall | 92 | 61 | −15 | −2 | −57 | 16 |
Annual | 10 | 50 | −28 | −31 | −20 | −4 |
March | −15 | 24 | 2 | −34 | 15 | −2 |
July | −9 | −10 | −61 | −28 | −27 | −27 |
August | −21 | −19 | −69 | −23 | −38 | −34 |
Month | CanESM2 | GFDL | MIROC5 | NorESM1 | HadGEM2 | Average |
---|---|---|---|---|---|---|
Winter | −2 | 72 | −34 | −28 | −16 | −2 |
Spring | 25 | 68 | −17 | −30 | 9 | 11 |
Summer | 13 | −31 | −58 | −36 | −35 | −29 |
Fall | 84 | 57 | −57 | −10 | −48 | 5 |
Annual | 21 | 32 | −39 | −27 | −18 | −6 |
March | 28 | 38 | −4 | −24 | 18 | 11 |
July | −3 | −48 | −58 | −31 | −40 | −36 |
August | −7 | −21 | −77 | −31 | −41 | −36 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmood, R.; Jia, S.; Tripathi, N.K.; Shrestha, S. Precipitation Extended Linear Scaling Method for Correcting GCM Precipitation and Its Evaluation and Implication in the Transboundary Jhelum River Basin. Atmosphere 2018, 9, 160. https://doi.org/10.3390/atmos9050160
Mahmood R, Jia S, Tripathi NK, Shrestha S. Precipitation Extended Linear Scaling Method for Correcting GCM Precipitation and Its Evaluation and Implication in the Transboundary Jhelum River Basin. Atmosphere. 2018; 9(5):160. https://doi.org/10.3390/atmos9050160
Chicago/Turabian StyleMahmood, Rashid, Shaofeng Jia, Nitin Kumar Tripathi, and Sangam Shrestha. 2018. "Precipitation Extended Linear Scaling Method for Correcting GCM Precipitation and Its Evaluation and Implication in the Transboundary Jhelum River Basin" Atmosphere 9, no. 5: 160. https://doi.org/10.3390/atmos9050160
APA StyleMahmood, R., Jia, S., Tripathi, N. K., & Shrestha, S. (2018). Precipitation Extended Linear Scaling Method for Correcting GCM Precipitation and Its Evaluation and Implication in the Transboundary Jhelum River Basin. Atmosphere, 9(5), 160. https://doi.org/10.3390/atmos9050160