Simulation and Analysis of the Initiation of a Squall Line within a Meiyu Frontal System in East China
Abstract
:1. Introduction
2. Data, Numerical Model, and Experimental Design
3. Overview of the IOP-8 Case
4. Forecasts of Convective Storms
5. Boundary Layer Evolution and CIs in CTRL
5.1. The Forecast of HCRs, Gust Fronts, and Their Evolutions
5.2. CI Processes
5.2.1. CI-B
5.2.2. CI-C
5.2.3. CI-D
6. Sensitivity Experiments
6.1. Surface Heat Flux Turned off
6.2. Dry Run
7. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ding, Y.H. Summer monsoon rainfalls in China. J. Meteorol. Soc. Jpn. 1992, 70, 373–396. [Google Scholar] [CrossRef]
- Chen, G.T.-J.; Yu, C.-C. Study of low-level jet and extreme heavy rainfall for northern Taiwan in the Meiyu season. Mon. Weather Rev. 1998, 116, 884–891. [Google Scholar] [CrossRef]
- Ding, Y.H.; Chan, J.C.L. The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys. 2005, 89, 117–142. [Google Scholar]
- Wang, C.-C.; Chen, G.T.-J.; Huang, S.-Y. Remote trigger of deep convection by cold outflow over the Taiwan Strait in the Meiyu season: A modeling study of the 8 June 2007 case. Mon. Weather Rev. 2011, 139, 2854–2875. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, D.-L. Subkilometer simulation of a torrential-rain-producing mesoscale convective system in East China. Part I: Model verification and convective organization. Mon. Weather Rev. 2012, 140, 184–201. [Google Scholar] [CrossRef]
- Luo, Y.; Gong, Y.; Zhang, D.-L. Initiation and organizational modes of an extreme-rain-producing mesoscale convective system along a Meiyu front in East China. Mon. Weather Rev. 2014, 142, 203–221. [Google Scholar] [CrossRef]
- Sun, J.H.; Zhao, S.X.; Xu, G.K.; Meng, Q.T. Study on a mesoscale convective vortex causing heavy rainfall during the Meiyu season in 2003. Adv. Atmos. Sci. 2010, 27, 1193–1209. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, F. Impacts of mountain-plains solenoid on diurnal variations of rainfalls along the Meiyu front over east China plains. Mon. Weather Rev. 2012, 140, 379–397. [Google Scholar] [CrossRef]
- Qian, J.H.; Tao, W.K.; Lau, K.M. Mechanisms for torrential rain associated with the Meiyu development during SCSMEX 1998. Mon. Weather Rev. 2004, 132, 3–27. [Google Scholar] [CrossRef]
- Yu, R.-C.; Zhou, T.J.; Xiong, A.Y.; Zhu, Y.J.; Li, J. Diurnal variations of summer precipitation over contiguous China. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Zhou, T.-J.; Yu, R.; Chen, H.; Dai, A.; Pan, Y. Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations. J. Clim. 2008, 21, 3997–4010. [Google Scholar] [CrossRef]
- Chen, H.; Yu, R.; Li, J.; Yuan, W.; Zhou, T. Why nocturnal long-duration rainfall presents an eastward-delayed diurnal phase of rainfall down the Yangtze River valley. J. Clim. 2010, 23, 905–917. [Google Scholar] [CrossRef]
- Wilson, J.W.; Carbone, R. Nowcasting with Doppler Radar. The Forecaster-Computer Relationship; European Space Agency: Paris, France, 1984.
- Schreiber, W.E. Case study of thunderstorms initiated by radar observed convergence lines. Mon. Weather Rev. 1986, 114, 2256–2266. [Google Scholar] [CrossRef]
- Wilson, J.W.; Schreiber, W.E. Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Weather Rev. 1986, 114, 2516–2536. [Google Scholar] [CrossRef]
- Karan, H.; Knupp, K. Radar and profiler analysis of colliding boundaries: A case study. Mon. Weather Rev. 2009, 137, 2203–2222. [Google Scholar] [CrossRef]
- Crook, N.A. Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Weather Rev. 1996, 124, 1767–1785. [Google Scholar] [CrossRef]
- Weckwerth, T.M.; Wilson, J.W.; Wakimoto, R.M. Thermodynamic variability within the convective boundary layer due to horizontal convective rolls. Mon. Weather Rev. 1996, 124, 769–784. [Google Scholar] [CrossRef]
- Wang, Q.-W.; Xue, M. Convective initiation on 19 June 2002 during IHOP: High-resolution simulations and analysis of the mesoscale structures and convection initiation. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Ziegler, C.L.; Rasmussen, E.N. The initiation of moist convection at the dryline: Forecasting issues from a case study perspective. Weather Forecast. 1998, 13, 1106–1131. [Google Scholar] [CrossRef]
- Byers, H.R.; Braham, R.R. The Thunderstorm; U.S. Government Printing Office: Washington, DC, USA, 1949.
- Ulanski, S.L.; Garstang, M. The role of surface divergence and vorticity in the life cycle of convective rainfall. Part I: Observations and analysis. J. Atmos. Sci. 1978, 35, 1047–1062. [Google Scholar] [CrossRef]
- Garstang, M.; Cooper, H.J. The role of near surface outflow in maintaining convective activity. In Nowcasting: Mesoscale Observations and Short-Range Prediction; Battrick, B., Mort, J., Eds.; European Space Agency: Paris, France, 1981; Volume 165, p. 161. [Google Scholar]
- Purdom, J.F.W. Subjective Interpretations of Geostationary Satellite Data for Nowcasting; Academic Press: Cambridge, MA, USA, 1982. [Google Scholar]
- Weckwerth, T.M.; Parsons, D.B.; Koch, S.E.; Moore, J.A.; LeMone, M.A.; Demoz, B.B.; Flamant, C.; Geerts, B.; Wang, J.; Feltz, W.F. An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Am. Meteorol. Soc. 2004, 85, 253–277. [Google Scholar] [CrossRef]
- Emanuel, K.A. Atmospheric Convection; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Mueller, C.K.; Carbone, R.E. Dynamics of a thunderstorm outflow. J. Atmos. Sci. 1987, 44, 1879–1898. [Google Scholar] [CrossRef]
- Lin, Y.-L.; Deal, R.L.; Kulie, M.S. Mechanisms of cell regeneration, development, and propagation within a two-dimensional multicell storm. J. Atmos. Sci. 1998, 55, 1867–1886. [Google Scholar] [CrossRef]
- May, P.T. Thermodynamic and vertical velocity structure of two gust fronts observed with a wind profiler/RASS during MCTEX. Mon. Weather Rev. 1999, 127, 1796–1807. [Google Scholar] [CrossRef]
- Weiss, C.C.; Bluestein, H.B. Airborne pseudo-dual Doppler analysis of a dryline–outflow boundary intersection. Mon. Weather Rev. 2002, 130, 1207–1226. [Google Scholar] [CrossRef]
- Brown, R.A. Longitudinal instabilities and secondary flows in the planetary boundary layer: A review. Rev. Geophys. Space Phys. 1980, 18, 683–697. [Google Scholar] [CrossRef]
- Etling, D.; Brown, R.A. Roll vortices in the planetary boundary layer: A review. Bound.-Layer Meteorol. 1993, 65, 215–248. [Google Scholar] [CrossRef]
- Xue, M.; Martin, W.J. A high-resolution modeling study of the 24 May 2002 case during IHOP. Part II: Horizontal convective rolls and convective initiation. Mon. Weather Rev. 2006, 134, 172–191. [Google Scholar] [CrossRef]
- Xue, M.; Martin, W.J. A high-resolution modeling study of the 24 May 2002 case during IHOP. Part I: Numerical simulation and general evolution of the dryline and convection. Mon. Weather Rev. 2006, 134, 149–171. [Google Scholar] [CrossRef]
- Weckwerth, T.M. The effect of small-scale moisture variability on thunderstorm initiation. Mon. Weather Rev. 2000, 128, 4017–4030. [Google Scholar] [CrossRef]
- Xue, M. Preface to the special issue on the “Observation, Prediction and Analysis of severe Convection of China” (OPACC) National“973” Project. Adv. Atmos. Sci. 2016, 33, 1099–1101. [Google Scholar] [CrossRef]
- Xue, M.; Droegemeier, K.K.; Wong, V. The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I: Model dynamics and verification. Meteorol. Atmos. Phys. 2000, 75, 161–193. [Google Scholar] [CrossRef]
- Lin, Y.-L.; Farley, R.D.; Orville, H.D. Bulk parameterization of the snow field in a cloud model. J. Clim. Appl. Meteorol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef]
- Gao, J.-D.; Xue, M.; Brewster, K.; Droegemeier, K.K. A three dimensional variational data analysis method with recursive filter for Doppler radars. J. Atmos. Ocean. Technol. 2004, 21, 457–469. [Google Scholar] [CrossRef]
- Baidu Drive. Available online: https://pan.baidu.com/s/1NeyRYFPbVQeOH4pVUZ7LnA (passwd: 33gf) (accessed on 11 May 2018).
- Kain, J.S.; Coniglio, M.C.; Correia, J.; Clark, A.J.; Marsh, P.T.; Ziegler, C.L.; Lakshmanan, V.; Miller, S.D., Jr.; Dembek, S.R.; Weiss, S.J.; et al. A feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance. Bull. Am. Meteorol. Soc. 2013, 94, 1213–1225. [Google Scholar] [CrossRef]
- Wang, Q.; Xue, M.; Tan, Z.-M. Convective initiation by topographically induced convergence forcing over the Dabie Mountains on 24 June 2010. Adv. Atmos. Sci. 2016, 33, 1120–1136. [Google Scholar] [CrossRef]
- Banacos, P.C.; Schultz, D.M. The use of moisture flux convergence in forecasting convective initiation: Historical and operational perspectives. Weather Forecast. 2005, 20, 351–366. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, X.; Xue, M.; Fei, J. Simulation and Analysis of the Initiation of a Squall Line within a Meiyu Frontal System in East China. Atmosphere 2018, 9, 183. https://doi.org/10.3390/atmos9050183
Luo X, Xue M, Fei J. Simulation and Analysis of the Initiation of a Squall Line within a Meiyu Frontal System in East China. Atmosphere. 2018; 9(5):183. https://doi.org/10.3390/atmos9050183
Chicago/Turabian StyleLuo, Xia, Ming Xue, and Jianfang Fei. 2018. "Simulation and Analysis of the Initiation of a Squall Line within a Meiyu Frontal System in East China" Atmosphere 9, no. 5: 183. https://doi.org/10.3390/atmos9050183
APA StyleLuo, X., Xue, M., & Fei, J. (2018). Simulation and Analysis of the Initiation of a Squall Line within a Meiyu Frontal System in East China. Atmosphere, 9(5), 183. https://doi.org/10.3390/atmos9050183