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Abstract: The effective prediction of storm track (ST) is greatly beneficial for analyzing the
development and anomalies of mid-latitude weather systems. For the non-stationarity, nonlinearity,
and uncertainty of ST intensity index (STII), a new probabilistic prediction model was proposed
based on dynamic Bayesian network (DBN) and wavelet analysis (WA). We introduced probability
theory and graph theory for the first time to quantitatively describe the nonlinear relationship and
uncertain interaction of the ST system. Then a casual prediction network (i.e., DBN) was constructed
through wavelet decomposition, structural learning, parameter learning, and probabilistic inference,
which was used for expression of relation among predictors and probabilistic prediction of STII.
The intensity prediction of the North Pacific ST with data from 1961–2010 showed that the new model
was able to give more comprehensive prediction information and higher prediction accuracy and
had strong generalization ability and good stability.
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1. Introduction

One of the primary features of mid- and high-latitude atmospheric circulation (AC) is transient
variability, which is closely related to the growth and decay of daily weather systems. In the 1970s,
Blackmon [1] found sub-weekly (2.5–6 days) transient eddies over the North Pacific and North Atlantic
with filtering data. He defined the two zonal-extended regions with the most intensive transient
variability as “storm track” (ST), which can be divided, respectively, into North Pacific ST (NPST)
and North Atlantic ST (NAST). ST corresponds significantly with cyclone and anticyclone activities,
which can be the indication of the development of weather systems. Moreover, as a contacting link of
heat and kinetic energy between ocean and atmosphere, ST plays an important role in the maintenance
of AC and climate change [2].

ST is crucial to the short-term anomaly of AC with interactions between ST and low-frequency
circulation. So far, many studies have revealed the interaction. Lau [3] studied the seasonal variation
of ST and pointed out that the main mode of the variation was related to the teleconnection pattern
of the low-frequency circulation in the northern hemisphere. Straus et al. [4] discovered that the
ST anomaly was closely related to the sea surface temperature (SST) anomaly in the Kuroshio area.
Zhu et al. [5] summarized the correlation between the winter NPST and the Pacific-North America
teleconnection pattern (PNA) and Western Pacific teleconnection pattern (WP). Ren et al. [6] used
the empirical orthogonal function (EOF) to analyze the temporal and spatial variability of the winter
NPST and explained its coupled pattern with the mid-latitude air-sea system. Liu et al. [7] determined
the correlation and potential influencing mechanisms between the Polar vortex intensity and NPST.
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Both observational research and theoretical studies have indicated the symbiotic relationship between
ST and large-scale AC in the Northern Hemisphere. However, most studies are just diagnostic analysis
about ST variability and correlation. To grasp the evolvement role of ST, prediction is becoming an
urgent area of research.

However, ST is a highly nonlinear system due to nonlinear processes in the air-sea system. There is
relatively little research on the numerical forecasting or statistical forecasting of ST both at home and
abroad. That may result from the diversity of influencing factors and the complexity of correlation
mechanisms. In addition, strong transients and uncertain rules have also caused difficulties in ST
prediction. In meteorological prediction, climate indexes are often used as predictands and predictors
to explain the behavior of future climate. Therefore, how to quantify the intensity and spatial-temporal
variation as indexes is the premise of ST prediction. At present, there are several indexes that can
indicate the possible evolution of ST, whose calculation methods with filtering variance includes the
central point representation [8,9], regional average [10], and EOF [11]. The above studies achieve the
quantitative description of the nonlinear ST system by establishing an index. Thus, we can predict the
temporal and spatial variation of ST with the ST index.

The prediction of ST index belongs to the prediction of nonlinear time-series. In the field of
meteorology and oceanology, data-driven models (i.e., statistical models) are suitable predicting
tools due to their rapid development times, as well as low information requirements compared to
physical-based models. Hong et al. [12] introduced the inversion idea and used genetic algorithm
to reconstruct the nonlinear forecasting model of the subtropical high index from historical data.
Liu et al. [13] integrated the EOF, wavelet decomposition and support vector machine (SVM) method
to predict the 500 hPa geopotential height in summer. Zhu et al. [14] conducted a short-term forecast
experiment of the tropical atmospheric seasonal oscillation (MJO) index, using both the singular
spectrum analysis and auto-regression model. Jia et al. [15] applied the correlation analysis and
optimal subset regression to select predictors and established a statistical prediction model for the
subtropical high index. The above statistical methods require a large amount of historical data, but their
efficiency on processing big data is low. Most importantly, these methods have weak ability to mine
and express the internal relations from data quantitatively. Therefore, the above models are still flawed
for prediction of ST index.

With the rapid development of computer technology and information acquisition technology,
machine learning (ML) and data mining (DM) have opened a new era—artificial intelligence.
Breakthroughs have been made by the application of ML and DM in the fields of biology, finance,
and medicine [16–18], and they have also brought opportunities for the development of predicting
technology in meteorology and oceanology. Many scholars have applied ML and DM to meteorological
prediction: Yang et al. [19] used the association rules mining to analyze the data set of North Atlantic
hurricane history trace and predicted the intensity of the North Atlantic hurricane based on the mining
results. Royston et al. [20] applied the semantic decision tree to conduct regular mining and forecast
modeling with water level and meteorological data, to forecast the storm surge of Thames Estuary.
Gordon et al. [21] constructed a meteorological prediction model using neural network (NN) and
frequency domain algorithm to implement 24-hour refined prediction. Teng [22] extracted highly
relevant factors and used the stepwise regression and SVM to establish the medium-term prediction
model of the tropical cyclone path in the Western Pacific.

To a certain extent, ML and DM can overcome the shortcomings of the above statistical methods
and achieve data mining and reasoning with rapid development times. However, the above ML
algorithms are all deterministic methods, that is, give a certain value for a certain predicting moment.
Please note that ST is affected by the nonlinear action of various weather systems and has strong
uncertainties. When the intensity and position of ST fluctuate greatly, deterministic single-point
prediction may not achieve the desired accuracy. In contrast, the probabilistic prediction method could
give the result in the form of probability distribution, covering more complete prediction information.



Atmosphere 2018, 9, 224 3 of 20

As a new branch of ML theory, Bayesian network (BN) makes it feasible for the probabilistic
prediction of ST index, which has been initially used in the field of meteorology and hydrology [23,24].
The emerging dynamic Bayesian Network (DBN) adds time information to the classical BN,
which becomes a new probabilistic expression and reasoning tool owing to the ability to deal with
uncertainties. Correspondingly, ST is affected by many factors in the mid-latitude air-sea system.
There are random and non-linear interactions between these factors at same and different time.
The features coincide exactly with the DBN, thus DBN is a powerful theoretical tool for probabilistic
prediction of ST index. Additionally, note that time-series of the ST index is non-stationary. This
limitation with non-stationary data has led to the recent formation of hybrid models, where data is
preprocessed for non-stationary characteristics and then run through a predicting method such as
ML algorithms to cope with the nonlinearity. Wavelet analysis (WA), an effective tool to deal with
non-stationary data, has recently been applied to meteorological forecast. We will combine WA with
DBN to achieve scientific and accurate prediction of ST index.

In this paper, we constructed the WA-DBN model to predict the winter PST intensity index. To deal
with the non-stationarity, nonlinearity, and uncertainty, we introduced DBN theory innovatively and
combined WA to establish a data-driven model for predicting the monthly STII using large-scale
climate indexes as the predictors. We first selected the climate indexes significantly related to ST
as predictors. Then based on wavelet decomposition, a WA-DBN probabilistic prediction model
was constructed through structure learning, parameter learning and probabilistic reasoning. Finally,
a deeper comparative analysis of model performance is conducted with key statistical indicators.

2. Theory and Method

2.1. Definition of Storm Track Intensity Index

To quantitatively describe the intensity of ST and its spatial-temporal variation, we refer to the
existing definition method to calculate the intensity index. We identify the ST as the sub-weekly
transient of the 500 hPa geopotential height. First sub-weekly transient eddies are derived from the
geopotential height based on 31 symmetrical digital filter [25]. Then we calculate the monthly average
band-pass filtering variance, selecting all grid points with the filtering variance greater than a certain
fixed threshold, of which the mean value is defined as the ST intensity index (STII). The fixed threshold
is usually taken as 20 dagpm2.

2.2. Dynamic Bayesian Network Theory

Bayesian Network (BN) was proposed by Judea Pearl in 1988, including the static Bayesian
Network (SBN) and the dynamic Bayesian Network (DBN). Based on probability theory and graph
theory, DBN integrates the time dimension into SBN to represent the temporal correlation, which forms
a dynamic reasoning model with dynamic analysis and prediction of temporal information [26].

According to Bayesian theory, BN is a directed acyclic graph expressing the probabilistic relation
between variables. It is mainly composed of nodes, directed arcs, and conditional probability
distribution (CPT). DBN is an extension of SBN in the time dimension, and can be explained by
a bigram < B0, B→ >:

• B0 denotes the initial network, that is the SBN of each time slice. It contains the network structure
and probability distribution of nodes at the same time;

• B→ denotes the transition network. It contains the causal link and the transition probability
distribution of nodes in different time slice.

Define a variable set X = [X1, X2, · · · , Xn] and a finite time segment [0, 1, · · · , T], then the joint
probability distribution of X0, . . . , XT is

P(X0, . . . , XT) = P(X0) ·
T

∏
t=1

N

∏
i=1

P
[
Xt

i
∣∣π(Xt

i
)]

. (1)
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where Xt
i denotes the node i located in t time slice, π

(
Xt

i
)

denotes the parent of Xt
i . Formula (1) denotes

the probabilistic reasoning of different time slices and different node states.
The construction of DBN includes structure learning and parameter learning: the former needs

to construct B0 and B→; the latter needs to determine the initial probability P(X0), the observation
conditional probability P

[
Xt

i

∣∣π(Xt
i
)]

, and the transition conditional probability P(Xt
∣∣Xt−1) . There are

two common learning technologies for DBN: manual construction based on expert knowledge and
automatic learning based on intelligent algorithms [27]. We adopt a combination of subjective and
objective methods for DBN learning. Expert knowledge is used for structural learning while objective
data is used for parameter learning.

2.3. Wavelet Analysis

Wavelet analysis (WA) is a mathematical function that can be used for the analysis of time-series
that contain non-stationarities [28]. WA of the input variables can analyze various similarities within
the dataset by decomposing data into different levels. Large-scale frequencies are checked with
approximation series, while small-scale frequencies are checked by details (4–5 levels of decomposition).
Wavelet decomposition gives time frequency representation of a signal at different temporal domains,
providing considerable information about the physical structure of the data. Wavelet reconstruction
can synthesize the different frequency signals to achieve information integration. The application
of WA in meteorology and oceanology is relatively mature [29,30], therefore this paper will not give
unnecessary details.

3. Probabilistic Prediction Model Based on WA and DBN

The STII prediction model based on WA and DBN (WA-DBN) was proposed for two problems:
First, the time-series of intensity index is nonlinear due to strong transient; second, both ST intensity
and predictors contain probabilistic uncertainties. Figure 1 displays the technical structure of
WA-DBN model.
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Figure 1. Technical structure of WA-DBN probabilistic prediction model.

Seen from Figure 1, the WA-DBN prediction model includes two modules: WA module and DBN
prediction module. WA is used for the decomposition and reconstruction of non-stationary time series.
DBN is used for probabilistic prediction through structure learning, parameter learning and inference
calculation, which is the core of this prediction model.
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3.1. Structural Learning

The DBN structure describing the casual relation between various weather systems and the STII is
the basis of intensity index prediction. The structural learning includes the selection of node variables
and the determination of the dependencies among nodes. We adopt an expert-constructed method for
structural learning. Based on professional knowledge, the predictors are selected as child nodes of the
DBN and a causal topology is constructed, including the initial network and the transition network.

3.1.1. Node Determination—Predictor Selection

We choose key factors that have significant influence on the ST as network nodes. Winter ST
relates to many members in the North Pacific atmosphere-ocean system. Limpasuvan et al. [31] pointed
out that the weakening of the stratospheric polar vortex would affect the changes of the ST and jet;
Gao [32] conducted a preliminary exploration of the relationship between winter NPST and Arctic
Oscillation (AO) index, and discovered that AO and NPST had the same phase of strong and weak
variation; Gu et al. [33] determined the relationship between NPST anomaly in winter and the AC in
East Asia. In addition, the NPST intensity is closely related to the atmospheric system, such as the
WP and PNA teleconnection patterns, jet flow anomaly, monsoon activity, the Aleutian low pressure,
Siberian high, and the ocean circulation and SST anomaly [34–39].

A time-delayed correlation analysis between the above AC indexes and the STII has been
made, and the 9 most relevant indexes are chosen as predictors: AL index, AO index, PVI (polar
vortex intensity) index, PVA (polar vortex area) index, KI index (Kuroshio SST), NINO index
(Niño-3.4 SST), PNA index, SH (Siberian high pressure) index and WP index, respectively denoted as
AL, AO, PVI, PVA, KI, NINO, PNA, SH, and WP. The complete DBN node set is:

Child node set (predictor) = {AL, AO, PVI, PVA, KI, NINO, PNA, SH, WP}
Parent node set (predictand) = {STII}

3.1.2. Construction of Initial Network and Transition Network

The definition of causality is the premise to express the transfer rules between different nodes.
Based on the network nodes and the analysis in Section 3.1.1, we define the following causality:{

P(AL, AO, PVI, PVA, KI, NINO, PNA, SH, WP|STII)
P(STII[t + 1]|STII[t])

Figure 2 shows the DBN topology structure between two adjacent time slices, including the initial
network and transition network.
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3.2. Parameter Learning

The aim of node parameters determination is to extract the probability distribution from the
historical data that truly reflects the causality among variables. The learning steps includes determining
the states taken by the node and training parameters by intelligent algorithms. Under the complete
historical data, we choose the Expectation-Maximization (EM) algorithm to learn the parameters.

3.2.1. Determination of Node States

As DBN is better at processing discrete data, the continuous data is required to be discretized to
determine the number of states taken by the node. We analyze the historical data over a period and
discretize the node states according to the maximum and minimum values. Consequently, discrete
state space of each node is obtained used the equal interval division method [40].

3.2.2. Calculation of Probability Distribution

First initialize the probability distribution of each node, including prior probability, observation
probability, and transition probability. Then, based on the inference mechanism and training data,
use EM algorithm to learn parameters and correct the initial probability distribution, to get the
probability distribution that matches the objective data. The idea of the EM algorithm is to replace the
actual statistics with the expected statistics, whose learning process is iterative and involves two steps:

• E step: Infer the distribution P(Z
∣∣X, θt) of hidden variable Z with the current parameter θt and

observed variables X, and calculate the expectation of log likelihood LL(θt
∣∣Z, X) for Z:

Q
(
θ
∣∣θt) = EZ|X,θt [LL(θ|X, Z)], (2)

• M step: Find the parameter to maximize the expectation likelihood:

θt+1 = argmax
[
Q
(
θ
∣∣θt)]. (3)

3.3. Probabilistic Inference of Prediction Distribution

Based on the DBN structure and node parameters, the probability distribution calculation in
the predicted time slice belongs to the probabilistic reasoning problem of BN. Bayesian inference
algorithm includes exact algorithm and approximate algorithm. Approximate algorithm is more
applied to large-scale network structure to solve the problem of excessive computation. Considering
the scale of the network in our research, we apply the exact algorithm-joint tree inference algorithm to
accurate reasoning [41]. Each predictor data is input as evidence into the DBN and the joint probability
distribution is calculated, then it is marginalized to obtain the prediction distribution of STII.

4. Prediction Experiment of STII

We use the WA-DBN probabilistic prediction model to predict STII and all experiments
are performed with MATLAB (R2012a, The MathWorks, Natick, MA, USA). Both the wavelet
decomposition and DBN construction are conducted with Wavelet Tool-Box and FullBNT Tool-Box
(v1.0.4) [42].

4.1. Data Introduction

In this research, the study area is taken as [30◦ N–60◦ N, 120◦ E–120◦ W]. Winter data (November
to March) of the 500 hPa geopotential height at a horizontal resolution of 2.5◦ × 2.5◦ are obtained
from the National Center for Environment Prediction (NECP) and National Center for Atmospheric Research
(NCAR) of United States of American for the period 1961–2010. Data sources of the predictors are
shown in Table 1, and the coverage period is the same. We calculate the STII according to the definition
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in Section 2.1 and get a single time-series of each variable with 250 months. The first 240 months are
chosen as training data and the last 10 months are test data.

Table 1. Data sources of 9 predictors in STII prediction.

Predictor Data Source

AO, PNA, WP NOAA Climate Prediction Center
AL, SH Calculation with sea level pressure data from NCEP/NCAR
NINO Hadley Center

KI Calculation with SST data from Hadley Center
PVI, PVA 74 circulation characteristics from the National Climate Center

4.2. Construction of WA-DBN Prediction Model

4.2.1. Wavelet Decomposition Module

We apply wavelet decomposition to original STII time-series (first 240 months) with Daubechies
orthogonal mother wavelet [43]. As a result, a total of seven detailed components and one level of
approximation are acquired as shown in Figure 3.

Modes d1− d3 contain the noise information in the original sequence. d4− d7 are the detail modes
with gradually increasing period and decreasing amplitude, containing the significant information of
the original sequence. Mode a7 indicates the linear trend of the original sequence.
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4.2.2. DBN Prediction Module

DBN is applied to predict each sub-mode, and the final probabilistic prediction of STII is obtained
by integrating each prediction result with a reconstruction algorithm.

(1) Data Process

According to historical records, we select reasonable interval division steps for 9 predictors and
8 sub-modes and denote them with consecutive numbers. The discretization standard is shown in
Table 2. Then we discretize the predictors and sub-modes with equal interval to obtain training data of
each modes (See Table S1 in Supplementary Material).

Table 2. Discretization standard for predictors and modes of STII.

Predictor Interval Step State Number Sub-Mode Interval Step State Number

AL 1 1–23 d1 1 1–15
AO 0.1 1–78 d2 1 1–14
CVI 10 1–16 d3 1 1–8
CVS 10 1–29 d4 1 1–6
KU 0.1 1–63 d5 0.1 1–32

NINO 0.1 1–48 d6 0.1 1–20
PNA 0.1 1–46 d7 0.1 1–14
SH 1 1–24 a7 0.1 1–23
WP 0.1 1–59 - - -

(2) Network Construction and Parameter Learning

Based on the node variables and causality determined in Section 3.1, the DBN structure is
generated with MATLAB. In Figure 4, Node 1 denotes each sub-mode (d1 − d7, a7) of the predictand
(STII) and nodes 2–10 denote predictors. Nodes 1–10 are in the previous time slice while nodes 11–20
are in the latter time slice.

After constructing the network structure, EM algorithm is used to learn parameters, i.e., the prior
probability, conditional probability, and transition probability of the nodes. Where the transition
probability is shown in Table A1 in Appendix A.
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Figure 4. DBN structure of STII prediction under MATLAB.

4.3. Reasoning Prediction and Result Analysis

Following the determination of structure and parameters, we discretize the test data of predictors
(later 10 months) according to Table 2 and input the discrete value into DBN to reason and predict the
probability distribution of each sub-mode in the last 10 months. The results are shown in Table A2
in Appendix A. Take the median of the most probable interval as the predictand of each sub-mode,
then apply the wavelet reconstruction to get the composite predictand of STII. Figure 5 plots the
monthly predicted and actual STII in the test period together with the prediction absolute error (PAE)
yield of the WA-DBN model for each tested month.
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Figure 5. Monthly prediction of STII in the test period.

At present, most of the common evaluation indicators for prediction accuracy in the literature are
the following: average sum error, average absolute error, average relative error, root mean square error,
etc. [44]. All of them can measure the deviation between the predicted value and the actual value.

To statistically test the performance of WA-DBN model, three prediction score metrics are
employed: root mean square error (RMSE), mean relative error (MRE) and correlation coefficient (R).
The RMSE of the prediction result is 2.8954, the MRE is 0.0794, and the R value is 0.6579. The prediction
variation of the STII is less and the changing tendency agrees with that in reality.

Different from previous prediction models, the WA-DBN model could provide a casual graph
and conditional probability. Therefore, it can intuitively and quantitatively express the relationship
between STII and climate indexes, which could deal with the uncertainty and nonlinearity to improve
prediction accuracy. In contrast with the certain mapping relationship, the model could establish the
probabilistic mapping between predictands and predictors and offer the comprehensive prediction
information with probability distribution.
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5. Model Analysis and Discussion

To make a further test for the WA-DBN prediction model, we conduct another prediction
experiment, the regression fitting experiment, and the comparison experiment with NN and Poisson
regression (P-regression). Moreover, the error analysis of the prediction results is performed
and discussed.

5.1. Model Experiment and Discussion

5.1.1. Prediction Experiment

(1) Contrast experiment with the Poisson regression

To test the prediction capacity of this model, a prediction experiment with the classic P-regression
is conducted for comparison [44]. We also use the first 240 months for training and the last 10 months
for predicting in Section 4. Figure 6 and Table 3 show the comparative results and error analysis.
As evidence by higher R and smaller RMSE, the WA-DBN model has better prediction ability
than P-regression.
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Figure 6. Comparative results of STII prediction between WA-DBN and P-regression.

Table 3. Error analysis of WA-DBN and P-regression.

Model
Indicator

RMSE MRE R

WA-DBN 2.8954 0.0794 0.6579
P-regression 6.1703 0.1778 0.1981

(2) Prediction experiment with different training samples

In accordance with the experiment steps in Section 4, we use 4 sets of data with different time-series
length (i.e., 200 months, 210 months, 220 months, and 230 months) to train the model respectively,
then successively predict for 10 months. The prediction result is shown in Figure 7 and error analysis
is shown in Table 4.

The RMSE of four groups of prediction results are all around 3.5, MRE is around 0.1, and R is
around 0.6, indicating that the model has good prediction accuracy, good correlation, and high stability.
More importantly, the prediction of extremums is more accurate, which is meaningful for ST prediction.
However, there are also outliers of predictions, such as the large deviations in the prediction results
from month 6 to 7 in Figure 7a and from month 1 to 3 in Figure 7c.
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Table 4. Error analysis of WA-DBN prediction model with different training data.

Indicator
Training Data

200 Months 210 Months 220 Months 230 Months Mean

RMSE 3.6956 3.8548 3.9734 2.7921 3.5789
MRE 0.0818 0.1119 0.1152 0.0881 0.0993

R 0.6341 0.6806 0.5245 0.5346 0.5935

5.1.2. Fitting Experiment

We train the model with the first 240-month data and input the corresponding predictor data for
return fitting, comparing the fitting result with NN [45]. The comparison result and error analysis are
shown in Figure 8 and Table 5.

Table 5. Error analysis of WA-DBN and NN.

Model
Indicator

RMSE MRE R

WA-DBN 3.7311 0.2315 0.9771
NN 18.7454 2.1849 0.2237

From Table 5, the single-point fitting accuracy with the WA-DBN probabilistic prediction model is
significantly better than the deterministic NN method. When there are large fluctuations in the data,
the error increases significantly for NN, but the DBN can give a probability distribution relatively
close to the reality according to the transition between different states of the STII in the historical data.
All states of STII are presented in the probability distribution without loss of results.
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Figure 8. Comparative fitting results between WA-DBN and NN.

To further test the time-validity of WA-DBN model over short- and long-term prediction, we input
the first month data and the first 10-month data of predictors when performing regression fitting
experiments. Figure 9 (a) indicates that only the first month data is input, the results of the subsequent
three months are more effective, but the other predictions have greater errors; (b) indicates that when
input the first 10-month data, the results of the subsequent five months are more effective. Although
the predictable time extends when the input time is increased from 1 to 10 months, the predictable
time is still short. Thus, the model is not suitable for medium- and long-term prediction. The reason
may be that the probabilistic inference of DBN depends on the priori probability of nodes. When only
the finite priori probability is given, such as one month or ten months, the reasoning error increases as
the predicted time increases.
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5.1.3. Expending Experiment for NAST Intensity Index Prediction

To further verify the generalization ability of this model, we perform a prediction experiment
of NAST (35◦ N–70◦ N, 90◦ W–0◦ W). The NAST intensity index is also calculated with the same
definition in Section 2.1. A time-delayed correlation analysis between the AC indexes [46] and the
NAST intensity index has also been made. Different from NPST, 6 most relevant indexes are chosen as
predictors: AO index, North Atlantic Oscillation (NAO) index, Atlantic Decadal Oscillation (ADO)
index, East Atlantic (EA) index, West Atlantic index (WAI), and North American Jet Stream (NAJ)
index, respectively denoted as AO, NAO, ADO, EA, WAI and NAJ. The DBN network with above
nodes is constructed as shown in Figure 10.
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Figure 10. DBN structure between two adjacent time slices of NAST prediction.

According to the integrated steps in Section 4, we conduct the same prediction experiment of
NAST. Figure 11 displays the monthly predicted intensity index of NAST.

We calculate the evaluation indicators for prediction accuracy: the RMSE is 3.1717, the MRE is
0.1104, and the R value is 0.5568. Therefore, it is reasonable to generalize the WA-DBN model for other
mid-latitude ST regions and the predicted results are reliable. This prediction model has adaptive
ability owing to the flexible modeling features of DBN.
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Figure 11. Monthly Prediction of NAST intensity index in the test period.

6. Conclusions

Effective short-term prediction of STII is significant for researches of mid-latitude weather systems,
especially the analysis of abnormal changes. In this study, we have applied the state-of-the art
artificial intelligence to predict the monthly intensity index of NPST with WA-DBN probabilistic
prediction model. Considering the non-stationarity, nonlinearity, and uncertainty of the STII time-series,
we first used the WA to decompose the intensity index into the sub-modes with different frequency
domains. Then we applied the DBN to make a probabilistic prediction for each sub-mode. Finally,
the independent prediction results of each mode were integrated with the wavelet reconstruction.

To further illustrate the advantages of the model, we conducted multiple sets of STII prediction
experiments, fitting experiments, and comparison experiments. The results show that predicting
correlation coefficient reached about 0.6 and fitting correlation coefficient reached 0.97. Moreover,
this model is good at predicting extremums. Therefore, the WA-DBN model exhibits relatively better
performance in prediction of nonlinear uncertainties, as evidence by higher R and smaller RMSE.
The improved performance of the WA-DBN model is attributable to two aspects:

1. The input dataset of predictand is decomposed into separate components based on different
frequencies with WA, allowing removal of noisy data and revealing the quasi-periodic
components in the original time-series.

2. Both the relationship between the predictand and the predictors at the same time and that in
adjacent time slices are considered with DBN model. The expression of casual relationship with
network structure and probability distribution can better deal with the uncertainty of prediction.

We summarize that the WA-DBN model developed and tested in this study has good prediction
skills of monthly STII, which is of great scientific guidance to study the abnormal changes of ST and
its mechanisms. Above all, we propose a new intelligent prediction model based on graph theory
and probability theory, which has wide application prospects with strong generalization ability and
good stability.

Although the WA-DBN probabilistic predicting model works well, there are still some problems.
First, the selection of the predictors of the ST intensity index needs to be further improved. The existing
studies indicate that if the number of predictors exceeds 10, the predicting calculation will be complex,
and the accuracy will not increase significantly with more predictors. If fewer predictors are selected
such as 5, the accuracy will become poor due to loss of information. In this research, we chose 9 most
relevant indicators as predictors. However, the selection of predictors is crucial to prediction, and
we need to improve this work. Second, the accuracy of the long-term prediction in this model is low.
These are also the focus of future work.
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Appendix A

This section contains Tables A1 and A2 supplemental to the main text.

Table A1. Transition probability of DBN (Take d1 as an example).

d1[t]

d1[t + 1] State of Node d1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

State of node d1

1 0.0216 0.0945 0.1261 0.1034 0.0300 0.0595 0.0333 0.0457 0.0209 0.0958 0.0333 0.1433 0.1069 0.0584 0.0273
2 0.0487 0.0265 0.0237 0.0810 0.0257 0.0496 0.0363 0.0754 0.0622 0.1089 0.1322 0.2414 0.0000 0.0566 0.0874
3 0.0842 0.1204 0.0061 0.0595 0.0674 0.0458 0.0340 0.0480 0.0532 0.1058 0.0574 0.1593 0.0159 0.0008 0.1423
4 0.0421 0.1065 0.0759 0.1251 0.0434 0.0118 0.0462 0.0096 0.0063 0.0342 0.0422 0.0354 0.2644 0.0366 0.1205
5 0.1011 0.0469 0.0006 0.0646 0.1125 0.0172 0.0694 0.0489 0.0483 0.0318 0.1656 0.1431 0.0470 0.0471 0.0559
6 0.0479 0.0060 0.0366 0.0047 0.0732 0.0311 0.0829 0.0797 0.0438 0.0317 0.0646 0.1056 0.1533 0.1685 0.0702
7 0.0451 0.0016 0.0262 0.0149 0.0298 0.0298 0.0019 0.0822 0.0874 0.1250 0.0742 0.1462 0.1862 0.1423 0.0072
8 0.0191 0.0483 0.0018 0.0752 0.0501 0.0122 0.0939 0.0515 0.1213 0.1363 0.0483 0.1239 0.0036 0.0770 0.1375
9 0.0211 0.0464 0.0224 0.0443 0.0304 0.0675 0.0985 0.0492 0.0097 0.0161 0.0639 0.0672 0.2843 0.1767 0.0024

10 0.0119 0.0605 0.0650 0.0593 0.0031 0.0474 0.0364 0.0084 0.0348 0.0095 0.0440 0.2152 0.2097 0.0148 0.1800
11 0.0581 0.0558 0.0032 0.0264 0.0573 0.0028 0.0267 0.0368 0.1084 0.0731 0.0208 0.0334 0.1295 0.0685 0.2992
12 0.0567 0.0078 0.0159 0.0021 0.0802 0.0649 0.0204 0.0409 0.0775 0.0919 0.0118 0.0424 0.0538 0.4025 0.0312
13 0.0348 0.0121 0.0473 0.0070 0.0004 0.0506 0.0356 0.0518 0.0356 0.0809 0.0473 0.0013 0.3053 0.1681 0.1219
14 0.0531 0.0196 0.0071 0.0205 0.0525 0.0559 0.0140 0.0470 0.0966 0.0154 0.1670 0.2083 0.0627 0.0790 0.1014
15 0.0544 0.0269 0.0920 0.0293 0.0875 0.0058 0.0046 0.0054 0.0501 0.1055 0.0522 0.1092 0.2252 0.0271 0.1248
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Table A2. Monthly predicted probability distribution of d1 (The maximum probability of probability distribution for each month is highlighted).

State
Month

1 2 3 4 5 6 7 8 9 10

1 1.77 × 10−31 1.84 × 10−22 2.58 × 10−38 7.61 × 10−28 4.06 × 10−33 1.96 × 10−32 5.13 × 10−31 2.42 × 10−31 2.75 × 10−34 1.44 × 10−35

2 4.30 × 10−15 6.15 × 10−25 9.92 × 10−30 1.16 × 10−9 5.74 × 10−23 1.62 × 10−21 2.34 × 10−13 1.86 × 10−30 2.09 × 10−21 1.18 × 10−27

3 1.23 × 10−8 2.95 × 10−7 1.30 × 10−26 1.78 × 10−12 1.42 × 10−14 3.85 × 10−22 1.48 × 10−15 3.50 × 10−15 1.23 × 10−5 4.82 × 10−8

4 3.71 × 10−5 0.96607572 1.86 × 10−10 0.04711185 1.99 × 10−8 4.68 × 10−12 3.71 × 10−9 1.30 × 10−11 9.51 × 10−8 6.19 × 10−6

5 1.15 × 10−9 0.00024291 1.51 × 10−8 3.08 × 10−5 0.61559523 1.19 × 10−7 1.18 × 10−7 0.00059951 0.00021533 0.7366376
6 0.00017127 0.03368107 0.99670829 8.29 × 10−5 0.35914973 0.13090291 2.02 × 10−5 0.99737456 0.99907177 0.18456279
7 0.99968979 9.37 × 10−12 3.18 × 10−6 0.12481569 0.00022297 0.00131173 0.99986409 4.70 × 10−9 0.00070003 0.00034761
8 0.00010175 1.07 × 10−12 2.85 × 10−19 7.14 × 10−5 1.30 × 10−5 0.86778512 6.07 × 10−5 2.12 × 10−15 1.59 × 10−14 4.45 × 10−13

9 2.23 × 10−8 1.89 × 10−15 0.00328851 0.82788733 0.0250191 1.14 × 10−7 8.20 × 10−9 0.00202593 4.30 × 10−7 0.07844577
10 5.79 × 10−8 9.98 × 10−27 1.97 × 10−15 1.45 × 10−12 2.37 × 10−13 3.61 × 10−19 5.49 × 10−5 1.01 × 10−14 1.10 × 10−18 1.92 × 10−15

11 9.39 × 10−24 6.20 × 10−31 6.15 × 10−30 1.18 × 10−31 2.45 × 10−25 2.17 × 10−18 2.93 × 10−27 1.45 × 10−33 6.63 × 10−33 4.81 × 10−31

12 1.82 × 10−18 3.21 × 10−35 1.52 × 10−32 4.61 × 10−29 2.24 × 10−21 1.40 × 10−31 3.40 × 10−29 8.46 × 10−35 4.39 × 10−21 8.99 × 10−28

13 2.66 × 10−27 1.18 × 10−30 1.63 × 10−37 4.44 × 10−23 8.72 × 10−31 1.06 × 10−31 5.38 × 10−30 1.75 × 10−33 2.64 × 10−24 9.63 × 10−31

14 1.77 × 10−31 2.35 × 10−35 2.58 × 10−38 1.50 × 10−32 1.43 × 10−35 8.70 × 10−35 1.17 × 10−31 7.75 × 10−35 2.75 × 10−34 5.76 × 10−36

15 1.75 × 10−26 2.35 × 10−35 2.29 × 10−29 1.50 × 10−27 1.43 × 10−30 8.70 × 10−35 1.17 × 10−21 7.87 × 10−30 5.63 × 10−29 5.76 × 10−31
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