Physicochemical Characteristics and Possible Sources of Individual Mineral Particles in a Dust Storm Episode in Beijing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Experimental
3. Results
3.1. Concentration of Pollutants during the Sampling Period
3.2. Types of Mineral Particles
3.3. XRD Analysis
4. Discussion
4.1. Sources of Mineral Aerosol during the Sampling Period
4.2. Mixing State and Aging Characteristics of Mineral Particles
4.3. Elemental Changes in Mineral Particles
4.4. Sulfur in Mineral Particles
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- D’Almeida, G.A. On the variability of desert aerosol radiative characteristics. J. Geophys. Res. Atmos. 1987, 92, 3017–3026. [Google Scholar] [CrossRef]
- Guo, J.; Yin, Y.; Wang, Y.W.; Kang, H.Q.; Xiao, H.; Chen, K.; Hao, J. Numerical study of the dust distribution, source and sink, and transport features over East Asia. Chin. Environ. Sci. 2017, 37, 801–812. [Google Scholar]
- Ginoux, P.; Prospero, J.M.; Torres, O.; Chin, M. Long-term simulation of global dust distribution with the GOCART model: Correlation with North Atlantic Oscillation. Environ. Model. Softw. 2004, 19, 113–128. [Google Scholar] [CrossRef]
- Huang, J.; Guo, J.; Wang, F.; Liu, Z.; Jeong, M.J.; Yu, H.; Zhang, Z. CALIPSO inferred most probable heights of global dust and smoke layers. J. Geophys. Res. Atmos. 2015, 120, 5085–5100. [Google Scholar] [CrossRef] [Green Version]
- Feingold, G.; Mccomiskey, A.; Yamaguchi, T.; Johnson, J.S.; Carslaw, K.S.; Schmidt, K.S. New approaches to quantifying aerosol influence on the cloud radiative effect. Proc. Natl. Acad. Sci. USA 2016, 113, 5812–5819. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Guo, J.; Wang, Y.; Zhao, C.; Zhang, Z.; Min, M.; Miao, Y.; Liu, H.; He, J.; Zhou, S. Warming effect of dust aerosols modulated by overlapping clouds below. Atmos. Environ. 2017, 166, 393–402. [Google Scholar] [CrossRef]
- Wang, H.; Shi, G.Y.; Li, S.Y.; Li, W.; Wang, B.; Huang, Y.B. The impacts of optical properties on radiative forcing due to dust aerosol. Adv. Atmos. Sci. 2006, 23, 431–441. [Google Scholar] [CrossRef]
- Duce, R.A.; Unni, C.K.; Ray, B.J.; Prospero, J.M.; Merrill, J.T. Long-range atmospheric transport of soil dust from Asia to the tropical north pacific: Temporal variability. Science 1980, 209, 1522–1524. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Iwasaka, Y.; Shi, G.; Zang, J.; Hu, M.; Li, C. Separated status of the natural dust plume and polluted air masses in an Asian dust storm event at coastal areas of China. J. Geophys. Res. Atmos. 2005, 110, 95–100. [Google Scholar] [CrossRef]
- Guo, J.; Lou, M.; Miao, Y.; Wang, Y.; Zeng, Z.; Liu, H.; He, J.; Xu, H.; Wang, F.; Min, M. Trans-Pacific transport of dust aerosols from East Asia: Insights gained from multiple observations and modeling. Environ. Pollut. 2017, 230, 1030–1039. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Shao, L.; Zhang, D.; Ro, C.U.; Hu, M.; Bi, X.; Geng, H.; Matsuki, A.; Niu, H.; Chen, J. A review of single aerosol particle studies in the atmosphere of East Asia: Morphology, mixing state, source, and heterogeneous reactions. J. Clean. Prod. 2016, 112, 1330–1349. [Google Scholar] [CrossRef]
- Lei, Y.; Zhang, Q.; He, K.B.; Streets, D.G. Primary anthropogenic aerosol emission trends for China, 1990–2005. Atmos. Chem. Phys. 2011, 11, 931–957. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.Y.; Tong, S.R.; Ge, M.F. Synergistic Effect between SO2 and HCOOH on the Surface of CaO. Acta Chim. Sin. 2015, 73, 131–136. [Google Scholar] [CrossRef]
- Li, W. Chemical modification of dust particles during different dust storm episodes. Aerosol Air Qual. Res. 2012, 12, 1095–1104. [Google Scholar] [CrossRef]
- Seisel, S.; Rensen, C.B.; Vogt, R.; Zellner, R. Kinetics and mechanism of the uptake of N2O5 on mineral dust at 298 K. Atmos. Chem. Phys. 2005, 5, 3423–3432. [Google Scholar] [CrossRef]
- Laskin, A.; Iedema, M.J.; Ichkovich, A.; Graber, E.R.; Taraniuk, I.; Rudich, Y. Direct observation of completely processed calcium carbonate dust particles. Faraday Discuss. 2005, 130, 453–468. [Google Scholar] [CrossRef] [PubMed]
- Laskin, A.; Wietsma, T.W.; Krueger, B.J.; Grassian, V.H. Heterogeneous chemistry of individual mineral dust particles with nitric acid: A combined CCSEM/EDX, ESEM, and ICP-MS study. J. Geophys. Res. Atmos. 2005, 110, 1223–1242. [Google Scholar] [CrossRef]
- Ma, X.C.; Bi, K.; Tian, H.J.; Jin, H.; Zhang, L.; Huang, M.Y. Aircraft measurements of aerosol characteristics during dust evens in Beijing. Meteorol. Sci. Technol. 2016, 44, 95–103. [Google Scholar]
- Pósfai, M.; Axisa, D.; Tompa, É.; Freney, E.; Bruintjes, R.; Buseck, P.R. Interactions of mineral dust with pollution and clouds: An individual-particle TEM study of atmospheric aerosol from Saudi Arabia. Atmos. Res. 2013, 122, 347–361. [Google Scholar] [CrossRef]
- Patey, M.D.; Achterberg, E.P.; Rijkenberg, M.J.; Pearce, R. Aerosol time-series measurements over the tropical Northeast Atlantic Ocean: Dust sources, elemental composition and mineralogy. Mar. Chem. 2015, 174, 103–119. [Google Scholar] [CrossRef] [Green Version]
- Yigiterhan, O.; Alfoldy, B.Z.; Giamberini, M.; Turner, J.C.; Al-Ansari, E.S.; Abdel-Moati, M.A.; Al-Maslamani, I.A.; Kotb, M.; Elobaid, E.A.; Hassan, H.M. Geochemical composition of aeolian dust and surface deposits from the Qatar Peninsula. Chem. Geol. 2017, 476, 24–45. [Google Scholar] [CrossRef]
- Yeh, C.F.; Lee, C.L.; Brimblecombe, P.; Lai, I.C. Markers of East Asian dust storms in March 2010. Atmos. Environ. 2015, 118, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Shao, L.; Xing, J.; Li, J.; Chang, L.; Li, W. Physicochemical characteristics of individual aerosol particles during the 2015 China Victory Day Parade in Beijing. Atmosphere 2018, 9, 40. [Google Scholar] [CrossRef]
- Li, W.J.; Shao, L.Y.; Buseck, P.R. Haze types in Beijing and the influence of agricultural biomass burning. Atmos. Chem. Phys. 2010, 10, 8119–8130. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, R.; Gomez, M.E.; Yang, L.; Levy, Z.M.; Hu, M.; Lin, Y.; Peng, J.; Guo, S.; Meng, J. Persistent sulfate formation from London Fog to Chinese haze. Proc. Natl. Acad. Sci. USA 2016, 113, 13630–13635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okada, K.; Qin, Y.; Kai, K. Elemental composition and mixing properties of atmospheric mineral particles collected in Hohhot, China. Atmos. Res. 2005, 73, 45–67. [Google Scholar] [CrossRef]
- Xiao, X.H.; Shao, L.Y.; Sun, J.Q.; Zhang, N.; Li, W.J. Mineral compositions of individual particles in the inhalable particulate matter in the Lanzhou Air during heating period. Bull. Miner. Petrol. Geochem. 2007, 26, 64–69. [Google Scholar]
- Rolph, G.; Stein, A.; Stunder, B. Real-time environmental applications and display system: Ready. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Draxler, R.R.; Hess, G.D. An overview of the hysplit-4 modeling system for trajectories. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Fairlie, T.D.; Jacob, D.J.; Dibb, J.E.; Alexander, B. Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution plumes. Atmos. Chem. Phys. 2010, 10, 3999–4012. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Zheng, G.; Wei, C.; Mu, Q.; Zheng, B.; Wang, Z.; Gao, M.; Zhang, Q.; He, K.; Carmichael, G. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Sci. Adv. 2016, 2, e1601530. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Kong, S.; Zhang, Y.; Wang, Y.; Xu, L.; Yan, Q.; Lingaswamy, A.P.; Shi, Z.; Lv, S.; Niu, H. Morphology, composition, and mixing state of primary particles from combustion sources—Crop residue, wood, and solid waste. Sci. Rep. 2017, 7, 5047. [Google Scholar] [CrossRef] [PubMed]
- Adachi, K.; Buseck, P.R. Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City. Atmos. Chem. Phys. 2008, 8, 6469–6481. [Google Scholar] [CrossRef] [Green Version]
- Niu, H.; Cheng, W.; Wei, P.; Hu, W. The physiochemical properties of submicron particles from emissions of industrial furnace. World J. Eng. 2016, 13, 218–224. [Google Scholar] [CrossRef]
- Sun, Y.; Zhuang, G.; Tang, A.A.; Wang, Y.; An, Z. Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing. Environ. Sci. Technol. 2006, 40, 3148–3155. [Google Scholar] [CrossRef] [PubMed]
- Men, C.; Liu, R.; Xu, F.; Wang, Q.; Guo, L.; Shen, Z. Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China. Sci. Total Environ. 2018, 612, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Sun, J.; Cao, J.; Zhang, L.; Zhang, Q.; Lei, Y.; Gao, J.; Huang, R.J.; Liu, S.; Huang, Y. Chemical profiles of urban fugitive dust PM2.5 samples in Northern Chinese cities. Sci. Total Environ. 2016, 569, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Zhang, D.; Cao, J.; Guo, X.; Xia, Y.; Zhang, T.; Lu, H.; Cheng, Y. Limited production of sulfate and nitrate on front-associated dust storm particles moving from desert to distant populated areas in northwestern China. Atmos. Chem. Phys. 2017, 17, 1–22. [Google Scholar] [CrossRef]
Sample No. | Sampling Time (BST) | Temperature (°C) | Relative Humidity (%) | Atmospheric Pressure (hPa) | Wind Speed (m/s) | Wind Direction | Filter Types | Remarks |
---|---|---|---|---|---|---|---|---|
1 | 2017.5.3 18:37 | 23.7 | 40.2 | 1006.8 | 4 | SW | The copper TEM grid | Before the Dust Storm |
2 | 2017.5.4 9:01 | 24.7 | 17.5 | 1009.5 | 8 | NW | During the Dust Storm | |
3 | 2017.5.4 12:00 | 27.5 | 13.4 | 1007.8 | 6 | W | ||
4 | 2017.5.4 18:04 | 24.3 | 17.4 | 1004.7 | 2 | NW | ||
5 | 2017.5.5 00:03 | 20.5 | 39.3 | 1004.9 | 5 | W | ||
6 | 2017.5.5 3:00 | 19.2 | 45.2 | 1002.0 | 5 | W | ||
7 | 2017.5.5 9:47 | 19.0 | 24.9 | 1009.1 | 11 | NW | ||
8 | 2017.5.5 12:00 | 21.3 | 17.6 | 1009.8 | 10 | NW | After the Dust Storm | |
9 | 2017.5.4 20:00–2017.5.5 9:00 | 26.0 | 16.7 | 1006.8 | 6 | W | Glass fiber | During the Dust Storm |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Shao, L.; Chang, L.; Xing, J.; Wang, W.; Li, W.; Zhang, D. Physicochemical Characteristics and Possible Sources of Individual Mineral Particles in a Dust Storm Episode in Beijing, China. Atmosphere 2018, 9, 269. https://doi.org/10.3390/atmos9070269
Li J, Shao L, Chang L, Xing J, Wang W, Li W, Zhang D. Physicochemical Characteristics and Possible Sources of Individual Mineral Particles in a Dust Storm Episode in Beijing, China. Atmosphere. 2018; 9(7):269. https://doi.org/10.3390/atmos9070269
Chicago/Turabian StyleLi, Jie, Longyi Shao, Lingli Chang, Jiaoping Xing, Wenhua Wang, Wenjun Li, and Daizhou Zhang. 2018. "Physicochemical Characteristics and Possible Sources of Individual Mineral Particles in a Dust Storm Episode in Beijing, China" Atmosphere 9, no. 7: 269. https://doi.org/10.3390/atmos9070269
APA StyleLi, J., Shao, L., Chang, L., Xing, J., Wang, W., Li, W., & Zhang, D. (2018). Physicochemical Characteristics and Possible Sources of Individual Mineral Particles in a Dust Storm Episode in Beijing, China. Atmosphere, 9(7), 269. https://doi.org/10.3390/atmos9070269