Origin of Warm SST Bias over the Atlantic Cold Tongue in the Coupled Climate Model FGOALS-g2
Abstract
:1. Introduction
2. Data and Methods
2.1. Model Description
2.2. Data
2.3. Tropical Atlantic Biases of FGOALS-g2
3. Experimental Design of Ocean-Ice Experiments
3.1. Transformation of the FGOALS-g2 Data into Forcing Data for the Ocean-Ice Model
3.2. Experimental Design
3.3. Computing the Contribution Ratio of a Variable Bias
4. Results
4.1. Bias in the Control Runs
4.2. Role of Different Atmospheric Biases
4.3. Role of the Surface Wind Bias
5. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grodsky, S.A.; Carton, J.A.; Nigam, S.; Okumura, Y.M. Tropical Atlantic biases in CCSM4. J. Clim. 2012, 25, 3684–3701. [Google Scholar] [CrossRef]
- Huang, B.; Hu, Z.; Jha, B. Evolution of model systematic errors in the tropical Atlantic basin from coupled climate hindcasts. Clim. Dyn. 2007, 28, 661–682. [Google Scholar] [CrossRef]
- Li, G.; Xie, S.P. Origins of tropical-wide SST biases in CMIP multi-model ensembles. Geophys. Res. Lett. 2012, 39, 22703. [Google Scholar] [CrossRef]
- Richter, I. Climate model biases in the eastern tropical oceans: Causes, impacts and ways forward. Wiley Interdiscip. Rev. Clim. Chang. 2015, 6, 345–358. [Google Scholar] [CrossRef]
- Richter, I.; Xie, S.P.; Wittenberg, A.T.; Masumoto, Y. Tropical Atlantic biases and their relation to surface wind stress and terrestrial precipitation. Clim. Dyn. 2011, 38, 985–1001. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Toniazzo, T.; Woolnough, S. Development of warm SST errors in the southern tropical Atlantic in CMIP5 decadal hindcasts. Clim. Dyn. 2014, 43, 2889–2913. [Google Scholar] [CrossRef]
- Wahl, S.; Latif, M.; Park, W.; Keenlyside, N. On the Tropical Atlantic SST warm bias in the Kiel Climate Model. Clim. Dyn. 2011, 36, 891–906. [Google Scholar] [CrossRef] [Green Version]
- Cabos, W.; Sein, D.V.; Pinto, J.G.; Fink, A.H.; Koldunov, N.V.; Alvarez, F.; Izquierdo, A.; Keenlyside, N.; Jacob, D. The South Atlantic Anticyclone as a key player for the representation of the tropical Atlantic climate in coupled climate models. Clim. Dyn. 2017, 48, 4051–4069. [Google Scholar] [CrossRef]
- Harlaß, J.; Latif, M.; Park, W. Alleviating tropical Atlantic sector biases in the Kiel climate model by enhancing horizontal and vertical atmosphere model resolution: Climatology and interannual variability. Clim. Dyn. 2018, 50, 2605–2635. [Google Scholar] [CrossRef]
- Koseki, S.; Keenlyside, N.; Demissie, T.; Toniazzo, T.; Counillon, F.; Bethke, I.; Ilicak, M.; Shen, M. Causes of the large warm bias in the Angola–Benguela Frontal Zone in the Norwegian Earth System Model. Clim. Dyn. 2018, 50, 4651–4670. [Google Scholar] [CrossRef]
- Small, R.J.; Curchitser, E.; Hedstrom, K.; Kauffman, B.; Large, W.G. The Benguela Upwelling System: Quantifying the Sensitivity to Resolution and Coastal Wind Representation in a Global Climate Model. J. Clim. 2015, 28, 9409–9432. [Google Scholar] [CrossRef]
- Lubbecke, J.F.; Boning, C.W.; Keenlyside, N.; Xie, S. On the connection between Benguela and equatorial Atlantic Niños and the role of the South Atlantic Anticyclone. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Fennel, W.; Junker, T.; Schmidt, M.A.; Mohrholz, V. Response of the Benguela upwelling systems to spatial variations in the wind stress. Cont. Shelf Res. 2012, 45, 65–77. [Google Scholar] [CrossRef]
- Patricola, C.M.; Chang, P. Structure and dynamics of the Benguela low-level coastal jet. Clim. Dyn. 2017, 49, 2765–2788. [Google Scholar] [CrossRef]
- Richter, I.; Behera, S.K.; Masumoto, Y.; Taguchi, B.; Komori, N.; Yamagata, T. On the triggering of Benguela Niños: Remote equatorial versus local influences. Geophys. Res. Lett. 2010, 37, 114–122. [Google Scholar] [CrossRef]
- Colberg, F.; Reason, C.J.C. A model investigation of internal variability in the Angola Benguela Frontal Zone. J. Geophys. Res. 2007, 112, 112. [Google Scholar] [CrossRef]
- Xu, Z.; Chang, P.; Richter, I.; Tang, G. Diagnosing southeast tropical Atlantic SST and ocean circulation biases in the CMIP5 ensemble. Clim. Dyn. 2014, 43, 3123–3145. [Google Scholar] [CrossRef]
- Lin, B.; Wielicki, B.A.; Chambers, L.H.; Hu, Y.; Xu, K. The iris hypothesis: A negative or positive cloud feedback? J. Clim. 2002, 15, 3–7. [Google Scholar] [CrossRef]
- Miles, T.N.; He, R.; Li, M. Characterizing the South Atlantic Bight seasonal variability and cold-water event in 2003 using a daily cloud-free SST and chlorophyll analysis. Geophys. Res. Lett. 2009, 36, 206–218. [Google Scholar] [CrossRef]
- Williams, K.; Webb, M.J. A quantitative performance assessment of cloud regimes in climate models. Clim. Dyn. 2009, 33, 141–157. [Google Scholar] [CrossRef]
- Hu, Z.Z.; Huang, B.; Pegion, K. Low cloud errors over the southeastern Atlantic in the NCEP CFS and their association with lower-tropospheric stability and air-sea interaction. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Florenchie, P.; Lutjeharms, J.R.E.; Reason, C.J.C.; Masson, S.; Rouault, M. The source of Benguela Niños in the South Atlantic Ocean. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Richter, I.; Xie, S.P. On the origin of equatorial Atlantic biases in coupled general circulation models. Clim. Dyn. 2008, 31, 587–598. [Google Scholar] [CrossRef]
- Richter, I.; Xie, S.; Behera, S.K.; Doi, T.; Masumoto, Y. Equatorial Atlantic variability and its relation to mean state biases in CMIP5. Clim. Dyn. 2014, 42, 171–188. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zhang, L.; Lee, S.; Wu, L.; Mechoso, C.R. A global perspective on CMIP5 climate model biases. Nat. Clim. Chang. 2014, 4, 201–205. [Google Scholar] [CrossRef]
- Chang, C.Y.; Carton, J.A.; Grodsky, S.A.; Nigam, S. Seasonal Climate of the Tropical Atlantic Sector in the NCAR Community Climate System Model 3: Error Structure and Probable Causes of Errors. J. Clim. 2007, 20, 1053–1070. [Google Scholar] [CrossRef] [Green Version]
- Dewitt, D.G. Diagnosis of the tropical Atlantic near-equatorial SST bias in a directly coupled atmosphere-ocean general circulation model. Geophys. Res. Lett. 2005, 32, 1737–1738. [Google Scholar] [CrossRef]
- Okumura, Y.; Xie, S. Interaction of the Atlantic equatorial cold tongue and the African monsoon. J. Clim. 2004, 17, 3589–3602. [Google Scholar] [CrossRef]
- Chang, C.; Nigam, S.; Carton, J.A. Origin of the springtime westerly bias in equatorial Atlantic surface winds in the Community Atmosphere Model version 3 (CAM3) simulation. J. Clim. 2008, 21, 4766–4778. [Google Scholar] [CrossRef]
- Meynadier, R.; De Coëtlogon, G.; Leduc-Leballeur, M.; Eymard, L.; Janicot, S. Seasonal influence of the sea surface temperature on the low atmospheric circulation and precipitation in the eastern equatorial Atlantic. Clim. Dyn. 2016, 47, 1127–1142. [Google Scholar] [CrossRef]
- Roehrig, R.; Bouniol, D.; Guichard, F.; Hourdin, F.; Redelsperger, J. The Present and Future of the West African Monsoon: A Process-Oriented Assessment of CMIP5 Simulations along the AMMA Transect. J. Clim. 2013, 26, 6471–6505. [Google Scholar] [CrossRef]
- Brandt, P.; Caniaux, G.; Bourles, B.; Lazar, A.; Dengler, M.; Funk, A.; Hormann, V.; Giordani, H.; Marin, F. Equatorial upper-ocean dynamics and their interaction with the West African monsoon. Atmos. Sci. Lett. 2011, 12, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Chang, P.; Yamagata, T.; Schopf, P.; Behera, S.K.; Carton, J.; Kessler, W.S.; Meyers, G.; Qu, T.; Schott, F.; Shetye, S.; et al. Climate fluctuations of tropical coupled systems—The role of ocean dynamics. J. Clim. 2006, 19, 5122–5174. [Google Scholar] [CrossRef]
- Batté, L.; Déqué, M. Seasonal predictions of precipitation over Africa using coupled ocean-atmosphere general circulation models: Skill of the ENSEMBLES project multimodel ensemble forecasts. Tellus A 2011, 63, 283–299. [Google Scholar] [CrossRef]
- Wen, C.; Xue, Y.; Kumar, A. Ocean–Atmosphere Characteristics of Tropical Instability Waves Simulated in the NCEP Climate Forecast System Reanalysis. J. Clim. 2012, 25, 6409–6425. [Google Scholar] [CrossRef]
- Ding, H.; Keenlyside, N.; Latif, M.; Park, W.; Wahl, S. The impact of mean state errors on equatorial Atlantic interannual variability in a climate model. J. Geophys. Res. 2015, 120, 1133–1151. [Google Scholar] [CrossRef] [Green Version]
- Peter, A.; Henaff, M.L.; Du Penhoat, Y.; Menkes, C.E.; Marin, F.; Vialard, J.; Caniaux, G.; Lazar, A. A model study of the seasonal mixed layer heat budget in the equatorial Atlantic. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Wang, B.; Yu, Y.; Li, L. Improvements in LICOM2. Part I: Vertical Mixing. J. Atmos. Ocean. Technol. 2014, 31, 531–544. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, B.; Huang, W. A ‘self-adjustment’mechanism for mixed-layer heat budget in the equatorial Atlantic cold tongue. Atmos. Sci. Lett. 2017, 18, 82–87. [Google Scholar] [CrossRef]
- Xie, S.P. Oceanic response to the wind forcing associated with the Intertropical Convergence Zone in the northern hemisphere. J. Geophys. Res. Oceans 1994, 99, 20393–20402. [Google Scholar] [CrossRef]
- He, Y.; Wang, B.; Liu, M.; Liu, L.; Yu, Y.; Liu, J.; Li, R.; Zhang, C.; Xu, S.; Huang, W. Reduction of initial shock in decadal predictions using a new initialization strategy. Geophys. Res. Lett. 2017, 44, 8538–8547. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Liu, M.; Yu, Y.; Li, L.; Lin, P.; Dong, L.; Liu, L.; Liu, J.; Huang, W.; Xu, S.; et al. Preliminary evaluations of FGOALS-g2 for decadal predictions. Adv. Atmos. Sci. 2013, 30, 674–683. [Google Scholar] [CrossRef]
- Huang, W.; Wang, B.; Li, L.; Dong, L.; Lin, P.; Yu, Y.; Zhou, T.; Liu, L.; Xu, S.; Xia, K.; et al. Variability of atlantic meridional overturning circulation in FGOALS-g2. Adv. Atmos. Sci. 2014, 31, 95–109. [Google Scholar] [CrossRef]
- Li, L.; Wang, B.; Dong, L.; Liu, L.; Pu, Y.; Shen, S.; Huang, W.; Sun, W.; Wang, Y.; Shi, X. The Grid-Point Atmospheric Model of IAP LASG—Version 2: GAMIL2. In Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community; Springer: Berlin/Heidelberg, Germany, 2014; pp. 9–13. [Google Scholar]
- Li, L.; Lin, P.; Yu, Y.; Wang, B.; Zhou, T.; Liu, L.; Liu, J.; Bao, Q.; Xu, S.; Huang, W.; et al. The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2. Adv. Atmos. Sci. 2013, 30, 543–560. [Google Scholar] [CrossRef]
- Craig, A.P.; Jacob, R.; Kauffman, B.; Bettge, T.; Larson, J.; Ong, E.; Ding, C.; He, Y. CPL6: The New Extensible, High Performance Parallel Coupler for the Community Climate System Model. Int. J. High Perform. Comput. Appl. 2005, 19, 309–327. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Wan, H.; Ji, Z.; Zhang, X.; Yu, R.; Yu, Y.; Liu, H. Design of a new dynamical core for global atmospheric models based on some efficient numerical methods. Sci. China Ser. A Math. 2004, 47, 4–21. [Google Scholar] [CrossRef]
- Yu, Y.; Zhi, H.; Wang, B.; Wan, H.; Li, C.; Liu, H.; Li, W.; Zheng, W.; Zhou, T. Coupled model simulations of climate changes in the 20th century and beyond. Adv. Atmos. Sci. 2008, 25, 641–654. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Wang, B.; Li, L.; Yu, Y. Improvements in LICOM2. Part II: Arctic Circulation. J. Atmos. Ocean. Technol. 2014, 31, 233–245. [Google Scholar] [CrossRef]
- Bellenger, H.; Guilyardi, É.; Leloup, J.; Lengaigne, M.; Vialard, J. ENSO representation in climate models: From CMIP3 to CMIP5. Clim. Dyn. 2014, 42, 1999–2018. [Google Scholar] [CrossRef]
- Kim, S.T.; Cai, W.; Jin, F.; Yu, J. ENSO stability in coupled climate models and its association with mean state. Clim. Dyn. 2014, 42, 3313–3321. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J. Shortwave cloud radiative forcing on major stratus cloud regions in AMIP-type simulations of CMIP3 and CMIP5 models. Adv. Atmos. Sci. 2013, 30, 884–907. [Google Scholar] [CrossRef]
- Liu, H.; Lin, P.; Yu, Y.; Wang, F.; Liu, X.; Zhang, X. LASG/IAP Climate System Ocean Model Version 2: LICOM2. In Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community; Zhou, T., Yu, Y., Liu, Y., Wang, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 15–26. [Google Scholar]
- Oleson, K.; Dai, Y.J.; Bonan, G.B.; Bosilovichm, M.; Dickinson, R.; Dirmeyer, P.; Hoffman, F.; Houser, P.; Levis, S.; Niu, G.Y.; et al. Technical Description of the Community Land Model (CLM); NCAR/TN-461+STR; NCAR: Boulder, CO, USA, 2004. [Google Scholar]
- Madec, G.; Delecluse, P.; Imbard, M.; Levy, C. Ocean General Circulation Model Reference Manual; Note du Pôle de Modélisation; LODYC: Paris, France, 1997. [Google Scholar]
- Madec, G. NEMO Ocean Engine: Notes du Pole de Modélisation 27; Institut Pierre-Simon Laplace (IPSL): Paris, France, 2008. [Google Scholar]
- Vancoppenolle, M.; Bouillon, S.; Fichefet, T.; Goosse, H.; Lecomte, O.; Maqueda, M.M.; Madec, G. LIM The Louvain-la-Neuve Sea Ice Model, Note du Pole de Modélisation; Institut Pierre-Simon Laplace (IPSL): Paris, France, 2012. [Google Scholar]
- Large, W.G.; Yeager, S.G. The global climatology of an interannually varying air–sea flux data set. Clim. Dyn. 2009, 33, 341–364. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Conkright, M.E.; Locarnini, R.A.; Garcia, H.E.; O’Brien, T.D.; Boyer, T.P.; Stephens, C.; Antonov, J.I. World Ocean Atlas 2001: Objective Analyses, Data Statistics, and Figures: CD-ROM Documentation; NODC: Washington, DC, USA, 2002. [Google Scholar]
- Levitus, S.; Burgett, R.; Boyer, T.P. World Ocean Atlas 1994 Volume 3: Salinity; NOAA Atlas NESDIS 3; NODC: Washington, DC, USA, 1994. [Google Scholar]
- Levitus, S.; Boyer, T.P. World Ocean Atlas 1994 Volume 4: Temperature; NOAA Atlas NESDIS 4; NODC: Washington, DC, USA, 1994. [Google Scholar]
- Jones, C.; Peterson, P.; Gautier, C. A new method for deriving ocean surface specific humidity and air temperature: An artificial neural network approach. J. Appl. Meteorol. 1999, 38, 1229–1245. [Google Scholar] [CrossRef]
- Jourdan, D.; Gautier, C. Comparison between global latent heat flux computed from multisensor (SSM/I and AVHRR) and from in situ data. J. Atmos. Ocean. Technol. 1995, 12, 46–72. [Google Scholar] [CrossRef]
- Konda, M.; Imasato, N.; Shibata, A. A new method to determine near-sea surface air temperature by using satellite data. J. Geophys. Res. Oceans 1996, 101, 14349–14360. [Google Scholar] [CrossRef]
- Liu, W.T. Statistical relation between monthly mean precipitable water and surface-level humidity over global oceans. Mon. Weather Rev. 1986, 114, 1591–1602. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Fan, J.; Leung, L. Application of an Online-Coupled Regional Climate Model, WRF-CAM5, over East Asia for Examination of Ice Nucleation Schemes: Part II. Sensitivity to Heterogeneous Ice Nucleation Parameterizations and Dust Emissions. Climate 2015, 3, 753–774. [Google Scholar] [CrossRef] [Green Version]
- Seo, H.; Jochum, M.; Murtugudde, R.; Miller, A.J. Effect of ocean mesoscale variability on the mean state of tropical Atlantic climate. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Shinoda, T.; Lin, J.; Kiladis, G.N. Sea Surface Temperature Biases under the Stratus Cloud Deck in the Southeast Pacific Ocean in 19 IPCC AR4 Coupled General Circulation Models. J. Clim. 2011, 24, 4139–4164. [Google Scholar] [CrossRef]
Component | Abbreviation | Full Name |
---|---|---|
Atmospheric | GAMIL2 | Grid-Point Atmospheric Model of IAP LASG–Version 2 [45] |
Ocean | LICOM2 | LASG IAP climate system ocean model Version 2 [54] |
Land | CLM3 | Community Land Model from the National Center for Atmospheric Research [55] |
Sea ice | CICE4-LASG | (an improved version of) CICE4.0 (Los Alamos sea ice model Version 4.0) |
Surface Variable | Model | Largest Bias | RMSE | Pattern Correlation of the Bias with FGOALS-g2 | Region and Season |
---|---|---|---|---|---|
SST (°C) | FGOALS-g2 | 4.63 | 2.25 | 1.00 | ACT region JJA |
ensemble mean | 4.43 | 2.38 | 0.99 | ||
20 CMIP5 models | 3.20~6.79 | 1.44~3.60 | 0.69~0.99 | ||
zonal wind (m s−1) | FGOALS-g2 | 3.15 | 2.52 | 1.00 | (5° S–5° N; 40° W–5° W) MAM |
ensemble mean | 2.76 | 2.03 | 0.90 | ||
20 CMIP5 models | 2.14~6.01 | 1.03~4.44 | 0.39~0.90 | ||
meridional wind (m s−1) | FGOALS-g2 | 3.51 | 2.21 | 1.00 | ACT region MAM |
ensemble mean | 2.59 | 1.72 | 0.99 | ||
20 CMIP5 models | 1.68~5.30 | 1.07~2.86 | 0.54~0.99 | ||
precipitation (mm day−1) | FGOALS-g2 | 6.51 | 3.57 | 1.00 | ACT region JJA |
ensemble mean | 5.20 | 3.09 | 0.88 | ||
20 CMIP5 models | 2.80~12.60 | 1.96~6.02 | 0.30~0.88 | ||
shortwave radiation (W m−2) | FGOALS-g2 | −41.87 | 26.76 | 1.00 | ACT region JJA |
ensemble mean | −35.74 | 18.91 | 0.98 | ||
20 CMIP5 models | −72.07~−23.62 | 17.63~−41.42 | 0.39~0.97 |
Experiments | Type | Forcing | Blending Forcing (Only Used in Monthly Mean Component) | Blending Area |
---|---|---|---|---|
H_CCM | Control (Historical run) | -- | -- | None |
CTRL_OI | Control | CORE-II | None | None |
H_All_OI | Control | CORE-II | 10 m wind, specific humidity, air temperature, shortwave radiation and precipitation | Global |
H_UVQTR_OI | Sensitivity | CORE-II | 10 m wind, specific humidity, air temperature, shortwave radiation | Global |
H_UVQT_OI | Sensitivity | CORE-II | 10 m wind, specific humidity, air temperature | Global |
H_UV_OI | Sensitivity | CORE-II | 10 m wind | Global |
H_U_OI | Sensitivity | CORE-II | 10 m zonal wind | Global |
H_V_OI | Sensitivity | CORE-II | 10 m meridional wind | Global |
H_U(MAM_Eq)_OI | Sensitivity | CORE-II | 10 m zonal wind during MAM | Along the equator |
(5° S–5° N) | ||||
H_V(MAM_STA)_OI | Sensitivity | CORE-II | 10 m meridional wind during MAM | Southern tropical Atlantic |
(25° S–3° N, 40° W–20° E) | ||||
H_V(JJA_STA)_OI | Sensitivity | CORE-II | 10 m meridional wind during JJA | (25° S–3° N, 40° W–20° E) |
H_V(SON_STA)_OI | Sensitivity | CORE-II | 10 m meridional wind during SON | (25° S–3° N, 40° W–20° E) |
H_V(DJF)_OI | CORE-II | CORE-II | 10 m meridional wind during DJF | (25° S–3° N, 40° W–20° E) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Huang, W.; Wang, B.; Yang, Z.; He, X.; Qiu, T. Origin of Warm SST Bias over the Atlantic Cold Tongue in the Coupled Climate Model FGOALS-g2. Atmosphere 2018, 9, 275. https://doi.org/10.3390/atmos9070275
Shi Y, Huang W, Wang B, Yang Z, He X, Qiu T. Origin of Warm SST Bias over the Atlantic Cold Tongue in the Coupled Climate Model FGOALS-g2. Atmosphere. 2018; 9(7):275. https://doi.org/10.3390/atmos9070275
Chicago/Turabian StyleShi, Yanyan, Wenyu Huang, Bin Wang, Zifan Yang, Xinsheng He, and Tianpei Qiu. 2018. "Origin of Warm SST Bias over the Atlantic Cold Tongue in the Coupled Climate Model FGOALS-g2" Atmosphere 9, no. 7: 275. https://doi.org/10.3390/atmos9070275
APA StyleShi, Y., Huang, W., Wang, B., Yang, Z., He, X., & Qiu, T. (2018). Origin of Warm SST Bias over the Atlantic Cold Tongue in the Coupled Climate Model FGOALS-g2. Atmosphere, 9(7), 275. https://doi.org/10.3390/atmos9070275