Magnetic Biomonitoring as a Tool for Assessment of Air Pollution Patterns in a Tropical Valley Using Tillandsia sp.
Abstract
:1. Introduction
2. Experiments
2.1. Study Area
2.2. Sampling
2.3. Magnetic Measurements
2.4. Chemical Analysis and Microscopy Observations
2.5. Statistical Analysis
3. Results and Discussion
3.1. Magnetic Properties
3.2. SEM/EDS and Elemental Analysis
3.3. Statistical Analysis and Land Use Areas
3.4. Magnetic Biomonitoring
4. Conclusions
- The χ values vary in the range from 0.1 to 372.9 × 10−8 m3 kg−1, reflecting very low to very high levels of air pollution in the AMVA. Variation in magnetic particle concentration estimated from susceptibility is characterized by χ values greater than about 100 × 10−8 m3 kg−1 along the bottom of the valley, while residential areas on the valley slopes have lower values, of about 30 × 10−8 m3 kg−1. Municipalities located on the northern part of the AVMA, such as Copacabana, Girardota, and Barbosa, display low magnetic concentration values. Similar values are only obtained in the residential suburbs of Medellín, located in the highest region of the hillside.
- Magnetic mineralogy as well as the magnetic susceptibility signal is dominated by ferrimagnetic phases of low coercivity, i.e., magnetite-like minerals, as indicated by IRM acquisition curves that reach saturation at fields of about 300 mT, and Hcr mean values of 34.2 mT for (R), 36.4 mT for (I), and 35.6 mT for (V) areas.
- Average magnetic grain size estimated from magnetic parameters (χARM versus χ, and anhysteretic ratios) ranges between 0.2 μm and 10 μm, indicating that most of these particles are 1–5 μm in size. Smaller particles dominate in areas with low pollution loadings. Such results are in agreement with SEM observations of 49 iron-rich particles that range between 0.3 and 6.6 μm. Morphologies of Fe-rich particles comprise spherules, semi-spherules, and irregular particles. Spherules seem to be typical of industrial areas (mean size = 2.7 μm); meanwhile, irregular particles are common in vehicular (mean size = 1.2 μm) and residential areas (mean size = 1.5 μm).
- The statistical test shows significant differences (p < 0.01) between residential areas and other ones (I and V) for Hcr and χARM/χ (mineralogy and size-dependent magnetic parameters), as well as for χ, ARM, and SIRM (magnetic concentration-dependent parameters). Such differences are a consequence of the topographic effects and anthropogenic activities developed in different AVMA areas.
- Magnetic proxies of pollution correlate significantly with the concentration of potentially toxic elements PTE and pollution index PLI (R values up to 0.94, p < 0.01), which indicates, in a broad sense, that concentration-dependent magnetic parameters reflect air quality in terms of potentially toxic element particles. Thus, this validates the use of magnetic parameters as pollution proxies in the AMVA.
- The PCA and fuzzy clustering analysis made between magnetic parameters show clusters with distinctive magnetic characteristics that represent the pollutant contribution in residential, vehicular, and industrial areas. Although clusters G1 and G3 are mostly composed of residential and industrial–vehicular samples, cluster G2 is a mix of samples from all land use areas and has magnetic parameters corresponding to intermediate values. This fact indicates the mixed contributions in different land use areas as a consequence of the dispersion of atmospheric pollutants. The groups of PLI show that the most contaminated sites (mean PLI = 5.3, Table 3) are those with a high concentration of higher-coercivity magnetic materials (e.g., χ = 129.0 × 10−8 m3 kg−1) and a relatively coarser grain size. On the other hand, low pollution impacted sites (mean PLI = 1.2) show the lowest concentration of magnetic particles (e.g., χ = 11.9 0 × 10−8 m3 kg−1), finer magnetic grains, and slightly lower-coercivity.
- T. recurvata has been demonstrated to be a useful biomonitor of air quality in temperate and dry climates. This study extends it and validates its application in tropical and high precipitation climates such as the AVMA.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Evans, M.; Friedrich, H. Environmental Magnetism: Principles and Applications of Enviromagnetics; Academic Press: Massachusetts, MA, USA, 2003; p. 299. [Google Scholar]
- Chaparro, M.A.E. Estudios de Parámetros Magnéticos de Distintos Ambientes Relativamente Contaminados en Argentina y Antártida; Geofísica UNAM: Coyoacán, México, 2006; p. 107. [Google Scholar]
- Castañeda, M.A.G.; Chaparro, M.A.E.; Chaparro, M.A.E.; Böhnel, H.N. Magnetic properties of Tillandsia recurvata L. and its use for biomonitoring a Mexican metropolitan area. Ecol. Indic. 2016, 60, 125–136. [Google Scholar] [CrossRef]
- Chaparro, M.A.E.; Castañeda, M.A.G.; Gargiulo, J.D.; Wannaz, E.D.; Böhnel, H.N. Estudios magnéticos en colectores naturales (Tillandsia capillaris) de contaminantes en Córdoba, Argentina [“Magnetic studies of pollutants in Tillandsia capillaris from Córdoba, Argentina]. Geos 2014, 34, 70–71. [Google Scholar]
- Marié, D.C.; Chaparro, M.A.E.; Irurzun, M.A.; Lavornia, J.M.; Marinelli, C.; Cepeda, R.; Böhnel, H.N.; Castañeda, M.A.G.; Sinito, A.M. Magnetic mapping of air pollution in Tandil city (Argentina) using the lichen Parmotrema pilosum as biomonitor. Atmos. Pollut. Res. 2016, 7, 513–520. [Google Scholar] [CrossRef]
- Hawksworth, D.L.; Iturriaga, T.; Crespo, A. Líquenes como bioindicadores inmediatos de contaminación y cambios medio-ambientales en los trópicos. Rev. Iberoam. Micol. 2005, 22, 71–82. [Google Scholar] [CrossRef]
- Hunt, C.P.; Moskowitz, B.M.; Banerjee, S.K. Magnetic properties of rocks and minerals. In Rock Physics & Phase Relations: A Handbook of Physical Constants; Ahrens, T.J., Ed.; American Geophysical Union: Washington, DC, USA, 1995; Volume 3, pp. 189–204. [Google Scholar]
- Maher, B.A.; Thompson, R.; Hounslow, M.W. Introduction. In Quaternary Climates, Environments and Magnetism; Maher, B.A., Thompson, R., Eds.; Cambridge University Press: Cambridge, UK, 1999; pp. 1–48. [Google Scholar]
- Chaparro, M.A.E.; Marié, D.C.; Gogorza, C.S.G.; Navas, A.; Sinito, A.M. Magnetic studies and scanning electron microscopy X-ray energy dispersive spectroscopy analyses of road sediments, soils, and vehicle-derived emissions. Stud. Geophys. Geod. 2010, 54, 633–650. [Google Scholar] [CrossRef] [Green Version]
- Hofman, J.; Maher, B.A.; Muxworthy, A.R.; Wuyts, K.; Castanheiro, A.; Samson, R. Biomagnetic monitoring of atmospheric pollution: A review of magnetic signatures from biological sensors. Environ. Sci. Technol. 2017, 51, 6648–6664. [Google Scholar] [CrossRef] [PubMed]
- Maher, B.A.; Moore, C.; Matzka, J. Spatial variation in vehicle-derived metal pollution identified by magnetic and elemental analysis of road side tree leaves. Atmos. Environ. 2008, 42, 364–373. [Google Scholar] [CrossRef] [Green Version]
- Fabian, K.; Reimann, C.; McEnroe, S.A.; Willemoes-Wissing, B. Magnetic properties of terrestrial moss (Hylocomium splendens) along a north-south profile crossing the city of Oslo. Nor. Sci. Total Environ. 2011, 409, 2252–2260. [Google Scholar] [CrossRef] [PubMed]
- El-Khatib, A.A.; Abd El-Rahman, A.M.; El-Sheikh, O.M. Biomagnetic monitoring of air pollution using dust particles of urban tree leaves at Upper Egypt. Assiut Univ. J. Bot. 2012, 41, 111–130. [Google Scholar]
- Chaparro, M.A.E.; Lavornia, J.M.; Chaparro, M.A.E.; Sinito, A.M. Biomonitors of urban air pollution: Magnetic studies and SEM observations corticolous foliose and micro-foliose lichens and their suitability for magnetic monitoring. Environ. Pollut. 2013, 172, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Salo, H.; Mäkinen, J. Magnetic biomonitoring by moss bags for industry-derived air pollution in SW Finland. Atmos. Environ. 2014, 97, 19–27. [Google Scholar] [CrossRef]
- Vukovic, G.; Anici, U.M.; Tomasevic, M.; Samson, R.; Popovic, A. Biomagnetic monitoring of urban air pollution using moss bags (Sphagnum girgensohnii). Ecol. Indic. 2015, 52, 40–47. [Google Scholar] [CrossRef]
- Kodnik, D.; Winkler, A.; Carniel, F.C.; Tretiach, M. Biomagnetic monitoring and element content of lichen transplants in a mixed land use area of NE Italy. Sci. Total Environ. 2017, 595, 858–867. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.A.C. Epiphytic bromeliads. In Vascular Plants as Epiphytes; Springer: Berlin, Germany, 1989; pp. 109–138. [Google Scholar]
- Schrimpff, E. A pollution patterns in two cities of Colombia, South America, according to trace substances content of an epiphyte (Tillandsia recurvata L.). Water Air Soil Pollut. 1984, 21, 279–315. [Google Scholar] [CrossRef]
- Ramírez, M.; Oviedo, J.C.; Salazar, S.; Giraldo, W. Biomonitoreo de metales pesados empleando herramientas del SIG en el Valle de Aburrá. Rev. Investig. Apl. 2008, 3, 7–14. [Google Scholar]
- Jaramillo, M.M.; Botero, L.R. Comunidades liquénicas como bioindicadores de calidad del aire del Valle de Aburrá. Gest. Ambient. 2010, 13, 97–110. [Google Scholar]
- Brauer, M.; Hoek, G.; Vliet, V.P.; Meliefste, K.; Fischer, P.H.; Wijga, A.; Koopman, L.P.; Neijens, H.J.; Gerritsen, J.; Kerkhof, M.; et al. Air pollution from traffic and the development of respiratory infections and asthmatic and allergic symptoms in children. Am. J. Respir. Crit. Care Med. 2002, 166, 1092–1098. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wang, X.; Maher, B.A.; Li, F.; Xu, C.; Liu, X.; Sun, X.; Zhang, Z. Reprint of: The spatial-temporal characteristics and health impacts of ambient fine particulate matter in China. J. Clean. Prod. 2017, 163, S352–S358. [Google Scholar] [CrossRef]
- Maher, B.A.; Ahmed, I.A.M.; Karloukovski, V.; MacLaren, D.A.; Foulds, P.G.; Allsop, D.; Mann, D.M.A.; Torres-Jardón, R.; Calderon-Garciduenas, L. Magnetite pollution nanoparticles in the human brain. Proc. Natl. Acad. Sci. USA 2016, 113, 10797–10801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DANE, 2005. Available online: https://www.dane.gov.co/ (accessed on 23 February 2018).
- AMVA-UPB. Inventario de Emisiones Atmosféricas del Valle de Aburrá, Actualización 2015. Available online: http://www.metropol.gov.co/CalidadAire/Paginas/bibliotecaaire3.aspx (accessed on 27 October 2017).
- Hermelin, M. Valle de Aburrá, ¿Quo vadis? Gest. Ambient. 2007, 10, 8–9. [Google Scholar]
- Mejía, O. Un Modelo Estacionario de Circulación Atmosférica Diurna en el Valle de Aburrá Para Época de Verano. Master’s Thesis, Universidad de Antioquia, Antioquia, Colombia, December 2002. [Google Scholar]
- King, J.; Banerjee, S.K.; Marvin, J.; Ozdemir, O. A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: Some results from lake sediments. Earth Planet. Sci. Lett. 1982, 59, 404–419. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy metals levels in estuaries and the formation of a pollution index. Helgol. Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef]
- Box, G.E.P.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. 1964, 26, 211–234. [Google Scholar]
- Valente de Oliveira, J.; Pedrycz, W. Advances in Fuzzy Clustering and Its Applications; John Wiley & Sons: Chichester, UK, 2007. [Google Scholar]
- Dearing, J.; Dann, R.; Hay, K.; Lees, J.; Loveland, P.; Maher, B.; O’Grady, K. Frequency-dependent susceptibility measurements of environmental materials. Geophys. J. Int. 1996, 124, 228–240. [Google Scholar] [CrossRef] [Green Version]
- Gargiulo, J.D.; Kumar, S.R.; Chaparro, M.A.E.; Chaparro, M.A.E.; Natal, M.; Rajkumar, P. Magnetic properties of air suspended particles in thirty eight cities from south India. Atmos. Pollut. Res. 2016, 7, 626–637. [Google Scholar] [CrossRef]
- Peters, C.; Dekkers, M. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Phys. Chem. Earth 2003, 28, 659–667. [Google Scholar] [CrossRef]
- Liu, Q.S.; Roberts, A.P.; Torrent, J.; Horng, C.S.; Larrasoaña, J.C. What do the HIRM and S-ratio really measure in environmental magnetism? Geochem. Geophys. Geosy. 2007, 8. [Google Scholar] [CrossRef]
- Chaparro, M.A.E.; Lirio, J.M.; Nuñez, H.; Gogorza, C.S.G.; Sinito, A.M. Preliminary magnetic studies of lagoon and stream sediments from Chascomús Area (Argentina)-magnetic parameters as pollution indicators and some results of using an experimental method to separate magnetic phases. Environ. Geol. 2005, 49, 30–43. [Google Scholar] [CrossRef]
- Frank, U.; Nowaczyk, N.R. Mineral magnetic properties of artificial samples systematically mixed from haematite and magnetite. Geophys. J. Int. 2008, 175, 449–461. [Google Scholar] [CrossRef] [Green Version]
- Chan, D.; Stachowiak, G. Review of automotive brake friction materials. J. Automob. Eng. 2004, 218, 953–966. [Google Scholar] [CrossRef]
- Mosleh, M.; Blau, P.J.; Dumitrescu, D. Characteristics and morphology of wear particles from laboratory testing of disk brake materials. Wear 2004, 256, 1128–1134. [Google Scholar] [CrossRef]
- Petrovský, E.; Elwood, B.B. Magnetic monitoring of air, land and water pollution. In Quaternary Climates, Environment and Magnetism; Maher, B.A., Thompson, R., Eds.; Cambridge University Press: Cambridge, UK, 1999; pp. 279–322. [Google Scholar]
- Chaparro, M.A.E.; Gargiulo, J.D.; Irurzun, M.A.; Chaparro, M.A.E.; Lecomte, K.L.; Böhnel, H.N.; Córdoba, F.E.; Vignoni, P.A.; Czalbowski, N.T.M.; Lirio, J.M.; et al. El uso de parámetros magnéticos en estudios paleolimnológicos en Antártida. Lat. Am. J. Sedimentol. Basin Anal. 2014, 21, 77–96. [Google Scholar]
- Salo, H.; Bucko, M.S.; Vaahtovuo, E.; Limo, J.; Mäkinen, J.; Pesonen, L.J. Biomonitoring of air pollution in SW Finland by magnetic and chemical measurements of moss bags and lichens. J. Geochem. Explor. 2012, 115, 69–81. [Google Scholar] [CrossRef]
- Blundell, A.; Hannam, J.A.; Dearing, J.A.; Boyle, J.F. Detecting atmospheric pollution in surface soils using magnetic measurements: A reappraisal using an England and Wales database. Environ. Pollut. 2009, 157, 2878–2890. [Google Scholar] [CrossRef] [PubMed]
- Kukier, U.; Fauziah, I.C.; Summer, M.E.; Miller, W.P. Composition and element solubility of magnetic and non-magnetic fly ash fractions. Environ. Pollut. 2003, 123, 255–266. [Google Scholar] [CrossRef]
- Bidegain, J.C.; Chaparro, M.A.E.; Marié, D.C.; Jurado, S. Air pollution caused by manufacturing coal from petroleum coke in Argentina. Environ. Earth Sci. 2011, 62, 847–855. [Google Scholar] [CrossRef]
- Sagnotti, L.; Taddeucci, J.; Winkler, A.; Cavallo, A. Compositional, morphological, and hysteresis characterization of magnetic airborne particulate matter in Rome, Italy. Geochem. Geophys. Geosyst. 2009, 10, Q08Z06. [Google Scholar] [CrossRef]
Samples | Χ (10−8 m3 kg−1) | ARM (10−6 A m2 kg−1) | SIRM (10−3 A m2 kg−1) | Hcr (mT) | S-ratio (a.u.) | SIRM/χ (kA/m) | χARM/χ (a.u.) | ARM/SIRM (a.u.) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Residential (n = 91) | |||||||||||||||||||
min | 0.1 | 2.9 | 0.3 | 26.2 | 0.90 | 5.5 | 0.9 | 0.009 | |||||||||||
max | 88.8 | 141.8 | 8.5 | 40.3 | 1.00 | 23.7 | 10.8 | 0.023 | |||||||||||
mean | 27.3 | 38.4 | 2.5 | 34.2 | 10.7 | 2.1 | 0.015 | ||||||||||||
s.d. | 20.9 | 24.8 | 1.6 | 2.8 | 3.1 | 1.2 | 0.002 | ||||||||||||
Industrial (n = 22) | |||||||||||||||||||
min | 19.7 | 25.2 | 2.0 | 32.5 | 0.91 | 6.7 | 0.6 | 0.011 | |||||||||||
max | 267.9 | 282.1 | 21.7 | 42.7 | 1.00 | 13.5 | 2.2 | 0.016 | |||||||||||
mean | 100.8 | 121.7 | 9.5 | 36.4 | 9.7 | 1.5 | 0.013 | ||||||||||||
s.d. | 64.9 | 73.2 | 5.9 | 2.4 | 1.8 | 0.4 | 0.001 | ||||||||||||
Vehicular (n = 69) | |||||||||||||||||||
min | 6.2 | 14.1 | 0.9 | 23.8 | 0.83 | 5.1 | 0.4 | 0.012 | |||||||||||
max | 372.9 | 353.0 | 25.0 | 42.1 | 1.00 | 14.7 | 2.7 | 0.019 | |||||||||||
mean | 93.5 | 101.4 | 7.1 | 35.6 | 8.3 | 1.5 | 0.015 | ||||||||||||
s.d. | 81.0 | 74.6 | 5.4 | 3.8 | 1.7 | 0.4 | 0.001 | ||||||||||||
Control (n = 3) | |||||||||||||||||||
min | 2.1 | 7.7 | 0.5 | 33.6 | 0.91 | 12.4 | 2.5 | 0.015 | |||||||||||
max | 6.6 | 13.3 | 0.8 | 34.2 | 0.97 | 23.8 | 5.0 | 0.016 | |||||||||||
mean | 4.3 | 10.8 | 0.7 | 33.8 | 17.7 | 3.3 | 0.016 | ||||||||||||
s.d. | 2.2 | 2.9 | 0.2 | 0.3 | 5.7 | 1.4 | 0.001 | ||||||||||||
Samples | Ba | Co | Cr | Cu | Fe | Mo | Ni | Pb | Sb | Sn | V | Zn | PLI | ||||||
(mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (a.u.) | |||||||
Residential (n = 19) | |||||||||||||||||||
min | 26.0 | 0.11 | 5.3 | 7.0 | 8.0 | 0.2 | 2.0 | 2.0 | 0.9 | 0.0 | 1.2 | 41.0 | 0.8 | ||||||
max | 158.0 | 8.00 | 193.0 | 47.0 | 183.0 | 1.2 | 105.0 | 38.0 | 5.6 | 7.9 | 19.0 | 255.0 | 5.3 | ||||||
mean | 80.6 | 1.24 | 35.4 | 19.8 | 47.1 | 0.5 | 15.6 | 9.7 | 2.2 | 1.6 | 7.8 | 119.1 | 2.2 | ||||||
s.d | 41.4 | 1.73 | 42.0 | 11.9 | 37.1 | 0.3 | 22.8 | 8.9 | 1.2 | 1.8 | 4.7 | 67.1 | 1.2 | ||||||
Industrial (n = 8) | |||||||||||||||||||
min | 88.0 | 0.08 | 20.0 | 17.0 | 30.0 | 0.4 | 8.0 | 10.0 | 2.0 | 0.9 | 5.2 | 86.0 | 2.0 | ||||||
max | 549.0 | 1.00 | 122.0 | 100.0 | 189.0 | 2.5 | 35.0 | 60.0 | 9.9 | 12.0 | 30.0 | 577.0 | 6.9 | ||||||
mean | 276.3 | 0.57 | 48.1 | 54.6 | 85.5 | 1.6 | 18.3 | 27.0 | 5.9 | 6.9 | 15.4 | 302.4 | 4.9 | ||||||
s.d | 159.9 | 0.30 | 33.0 | 32.6 | 48.0 | 0.7 | 8.5 | 18.4 | 2.7 | 4.1 | 7.4 | 166.5 | 1.8 | ||||||
Vehicular (n = 23) | |||||||||||||||||||
min | 72.0 | 0.08 | 9.4 | 14.0 | 18.0 | 0.4 | 5.0 | 2.0 | 0.2 | 0.7 | 2.8 | 71.0 | 1.8 | ||||||
max | 505.0 | 4.30 | 174.0 | 209.0 | 181.0 | 6.3 | 80.0 | 70.0 | 20.0 | 46.0 | 33.0 | 333.0 | 10.7 | ||||||
mean | 241.6 | 0.93 | 65.6 | 59.3 | 87.0 | 1.6 | 23.0 | 24.2 | 6.4 | 8.9 | 13.6 | 210.5 | 4.7 | ||||||
s.d | 130.3 | 1.18 | 39.5 | 45.9 | 43.0 | 1.4 | 15.9 | 19.2 | 4.6 | 10.9 | 7.1 | 77.1 | 2.1 |
Variable | χ | ARM | SIRM | Hcr | SIRM/χ | χARM/χ | ARM/SIRM | Ba | Co | Cr |
---|---|---|---|---|---|---|---|---|---|---|
χ | 1 | |||||||||
ARM | 0.955 ** | 1 | ||||||||
SIRM | 0.939 ** | 0.991 ** | 1 | |||||||
Hcr | 0.341 * | 1 | ||||||||
SIRM/χ | −0.474 ** | −0.386 ** | −0.346 * | −0.382 ** | 1 | |||||
χARM/χ | −0.460 ** | −0.394 ** | −0.384 ** | −0.300 * | 0.844 ** | 1 | ||||
ARM/SIRM | −0.370 ** | 1 | ||||||||
Ba | 0.880 ** | 0.859 ** | 0.846 ** | 0.499 ** | −0.449 ** | −0.423** | 1 | |||
Co | −0.618 ** | 1 | ||||||||
Cr | 0.641 ** | 0.698 ** | 0.678 ** | 0.494 ** | 0.576 ** | 1 | ||||
Cu | 0.880 ** | 0.752 ** | 0.725 ** | 0.484 ** | −0.467 ** | −0.438 ** | 0.814 ** | 0.424 ** | ||
Fe | 0.785 ** | 0.824 ** | 0.819 ** | −0.295 * | −0.354 * | −0.318 * | 0.521 ** | 0.635 ** | ||
Mo | 0.897 ** | 0.780 ** | 0.750 ** | 0.485 ** | −0.434 ** | −0.403 ** | 0.808 ** | 0.432 ** | ||
Ni | 0.440 ** | 0.539 ** | 0.526 ** | −0.416 ** | 0.285 * | 0.775 ** | 0.930 ** | |||
Pb | 0.645 ** | 0.667 ** | 0.666 ** | −0.302 * | −0.280 * | 0.604 ** | 0.673 ** | |||
Sb | 0.828 ** | 0.678 ** | 0.641 ** | 0.506 ** | −0.539 ** | −0.462 ** | 0.748 ** | 0.348 * | ||
Sn | 0.827 ** | 0.668 ** | 0.633 ** | 0.461 ** | −0.401 ** | −0.341 * | 0.713 ** | 0.337 * | ||
V | 0.686 ** | 0.744 ** | 0.752 ** | −0.314 * | −0.388 ** | 0.686 ** | 0.630 ** | |||
Zn | 0.588 ** | 0.653 ** | 0.658 ** | 0.391 ** | −0.303 * | −0.302 * | 0.686 ** | |||
PLI | 0.933 ** | 0.905 ** | 0.880 ** | 0.323 ** | −0.487 ** | −0.451 ** | −0.192 * | 0.891 ** | 0.693 ** | |
Variable | Cu | Fe | Mo | Ni | Pb | Sb | Sn | V | Zn | PLI |
Cu | 1 | |||||||||
Fe | 0.449 ** | 1 | ||||||||
Mo | 0.953 ** | 0.479 ** | 1 | |||||||
Ni | 0.557 ** | 1 | ||||||||
Pb | 0.521 ** | 0.546 ** | 0.481 ** | 0.549 ** | 1 | |||||
Sb | 0.895 ** | 0.283 * | 0.913 ** | 0.398 ** | 1 | |||||
Sn | 0.938 ** | 0.390 ** | 0.960 ** | 0.393 ** | 0.918 ** | 1 | ||||
V | 0.541 ** | 0.700 ** | 0.539 ** | 0.498 ** | 0.616 ** | 0.317 * | 0.422 ** | 1 | ||
Zn | 0.515 ** | 0.543 ** | 0.411 ** | 0.514 ** | 0.438 ** | 0.43 ** | 1 | |||
PLI | 0.868 ** | 0.785 ** | 0.869 ** | 0.510 ** | 0.737 ** | 0.807 ** | 0.778 ** | 0.670 ** | 0.677 ** | 1 |
Variable | Fuzzy Clustering Analysis | Principal Component Analysis | ||||
---|---|---|---|---|---|---|
G1 | G2 | G3 | PC1 | PC2 | PC3 | |
N | I = 0 V = 6 R = 43 | I = 6 V = 28 R = 37 | I = 16 V = 32 R = 12 | |||
χ (10−8 m3 kg−1) | 11.9 | 36.3 | 129.0 | 23.05 (0.95) | 0.69 (0.01) | 3.06 (0.03) |
ARM (10−6 A m2 kg−1) | 24.9 | 50.2 | 139.4 | 19.52 (0.81) | 4.1 (0.04) | 16.26 (0.15) |
SIRM (10−3 A m2 kg−1) | 1.6 | 3.3 | 10.2 | 20.23 (0.84) | 7.94 (0.08) | 8.44 (0.08) |
Hcr (mT) | 34.0 | 34.6 | 36.4 | 4.83 (0.2) | 17.75 (0.19) | 0.49 (0) |
SIRM/χ (kA/m) | 14.28 | 9.32 | 8.18 | 15.06 (0.62) | 23.1 (0.24) | 3.24 (0.03) |
χARM/χ (a.u.) | 2.72 | 1.73 | 1.38 | 14.05 (0.58) | 6 (0.06) | 25.37 (0.23) |
ARM/SIRM (a.u.) | 0.016 | 0.015 | 0.014 | 3.27 (0.14) | 40.42 (0.43) | 43.14 (0.39) |
mean PLI (CV%) (a.u.) | 1.207 (57.0) | 2.386 (78.0) | 5.291 (5.2) | -- | -- | -- |
PLI min–max (a.u.) | 0.820–1.560 | 1.290–3.620 | 1.830–10.740 | -- | -- | -- |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mejía-Echeverry, D.; Chaparro, M.A.E.; Duque-Trujillo, J.F.; Chaparro, M.A.E.; Castañeda Miranda, A.G. Magnetic Biomonitoring as a Tool for Assessment of Air Pollution Patterns in a Tropical Valley Using Tillandsia sp. Atmosphere 2018, 9, 283. https://doi.org/10.3390/atmos9070283
Mejía-Echeverry D, Chaparro MAE, Duque-Trujillo JF, Chaparro MAE, Castañeda Miranda AG. Magnetic Biomonitoring as a Tool for Assessment of Air Pollution Patterns in a Tropical Valley Using Tillandsia sp. Atmosphere. 2018; 9(7):283. https://doi.org/10.3390/atmos9070283
Chicago/Turabian StyleMejía-Echeverry, Daniela, Marcos A. E. Chaparro, José F. Duque-Trujillo, Mauro A. E. Chaparro, and Ana G. Castañeda Miranda. 2018. "Magnetic Biomonitoring as a Tool for Assessment of Air Pollution Patterns in a Tropical Valley Using Tillandsia sp." Atmosphere 9, no. 7: 283. https://doi.org/10.3390/atmos9070283
APA StyleMejía-Echeverry, D., Chaparro, M. A. E., Duque-Trujillo, J. F., Chaparro, M. A. E., & Castañeda Miranda, A. G. (2018). Magnetic Biomonitoring as a Tool for Assessment of Air Pollution Patterns in a Tropical Valley Using Tillandsia sp. Atmosphere, 9(7), 283. https://doi.org/10.3390/atmos9070283