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Abstract: A statistical post-processing method was developed to increase the accuracy of numerical
weather prediction (NWP) and simulation by matching the daily distribution of predicted
temperatures and wind speeds using the generalized linear model (GLM) and parameter correction,
considering an increase in model bias when the range of the prediction time lengthens. The Land
Atmosphere Modeling Package Weather Research and Forecasting model, which provides 12-day
agrometeorological predictions for East Asia, was employed from May 2017 to April 2018.
Training periods occurred one month prior to and after the test period (12 days). A probabilistic
consideration accounts for the relatively short training period. Based on the total and monthly
root mean square error values for each test site, the results show an improvement in the NWP
accuracy after bias correction. The spatial distributions in July and January were compared in
detail. It was also shown that the physical consistency between temperature and wind speed was
retained in the correction procedure, and that the GLM exhibited better performance than the
quantile matching method based on monthly Pearson correlation comparison. The characteristics of
coastal and mountainous sites are different from inland automatic weather stations, indicating that
supplements to cover these distinctive topographic locations are necessary.

Keywords: model output statistics; generalized linear model; quantile matching; parameter
correction; Land-Atmosphere Modeling Package; WRF

1. Introduction

Agricultural and forest management are greatly affected by weather and climatic conditions,
which can be significant during certain time periods. Weather forecasts for agriculture and
forestry sectors should be able to provide medium-range and long-range weather information
in the highest possible resolution. For example, the medium-range prediction of minimum
temperature and wind speed by a model is very important for classifying frost occurrence
and frost-free days [1], and for taking appropriate measures in advance. The National Center
for Agro-Meteorology (NCAM) in Korea developed the Land Atmosphere Modeling Package
(LAMP) version 1.0 [2] through a series of preliminary studies [3,4], with support from the Korea
Meteorological Administration (KMA). Its purpose is to enable user-customized agricultural and
forest management by linking users with appropriate decision support tools and diverse applied
models for drought, flood, landslide, crop growth, disease, insect pest, etc. The NCAM–LAMP
package consists of two components: (1) a Weather Research and Forecasting (WRF) modeling system
coupled with a Noah-Multiparameterization (Noah-MP) land surface model (LSM); and (2) offline,
independently driven, and one-dimensional LSMs optimized for individual sites. Within the LAMP,
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the WRF/Noah-MP system produces seven or more days of agricultural and forest weather forecast
data with a high resolution of less than 1 km. This agrometeorological model product is being offered
as a new service of the NCAM since 2017.

The NCAM WRF/Noah-MP medium-range prediction system is the first operational numerical
modeling system dedicated to agrometeorological services in Korea. The NCAM’s first aim for
this year is to evaluate and increase the prediction accuracy of the coupled WRF/Noah-MP system.
Similar to all numerical modeling systems, it has a high prediction skill within a short time scale.
However, it has limited predictability over time. To overcome these limitations, we have attempted to
reduce the error in the current model by employing statistical techniques to reduce the bias between
LAMP WRF medium-range prediction and automatic weather station (AWS) temperature and wind
speed observations.

Bias corrections to numerical weather prediction (NWP) have been studied using various
techniques. The most general method increases accuracy using a varied model ensemble.
Representatively, there are lagged average forecasting (LAF) [5], which combines the same NWP
model operating with various space–time intervals, and super-ensemble [6,7], which combines varied
NWP models by assigning them various weights. These ensemble techniques have been applied in
many studies, including Matsueda et al., Zhao et al., Pistoia et al., and Hwang et al. [6–10]. However,
the technique is time and computational resource intensive, because using several NWP models
requires numerous calculations and high execution speed.

As an alternative, studies on statistical bias correction using a single NWP model have been
conducted. Glahn et al. [11] corrected the predicted precipitation and temperature by configuring
Model Output Statistics (MOS), which consider the linear relationship between predicted and real
values. In a subsequent study, Lorenz [12] observed relationships other than linear ones and established
a nonlinear MOS that showed better performance than the simple linear MOS. Based on these studies,
MOS using a linear regression [13–15] and artificial neural network [16,17], the generalized additive
model (GAM) [18], and nonlinear transformation [19] have been used for temperature bias corrections.
Seo et al. [20] developed an MOS model to correct daytime maximum/minimum temperature,
applying it to the KMA’s Global Data Assimilation. In contrast, wind speed has been corrected
differently due to its skewness. Odo et al. [21] observed that the wind speed in Nigeria formed a
Weibull distribution. Kim et al. [22] found that the wind speed in South Korea has a nearly log-normal
distribution, and devised a log-transformed linear regression. Zamo et al. [23] corrected the wind
speed in France using a GAM, which is semiparametric and nonlinear as well.

However, MOS is limited because it identifies a statistical relationship based on predicted and
real values using long-term data, while operational NWP models usually have short-term period data
that vary. There is a danger of distortion while using a single MOS because when the NWP model
changes in configuration or physics, statistical correlations between the prediction and the observation
also change, which damages consistent relationships. However, the MOS based on short-term data
can consider abnormal or abrupt phenomena, such as typhoons. To overcome the limitations of
deterministic methods, probabilistic methods have been proposed. Piani et al. [24,25] corrected the
predicted daily temperature means with the observation data, applying the same correction to the
daily maximum/minimum temperatures using 12 MOS. Importantly, this method considers various
relationships between the predicted and real values, and stochastically complements MOS. However,
the disadvantage of this technique is that the predicted value is the only explanatory variable in MOS,
and lacks a bias correction for daily difference.

For the above reasons, we propose in this paper a method to correct the daily distribution of the
predicted near-surface temperature and wind speed from LAMP WRF to KMA AWS. LAMP WRF
provides 12-day predictions with three to four-day intervals. It does not have prior information because
it was produced after March 2017. To minimize distortion from short-term MOS, ensembles with
variables other than the predicted ones were used to correct individual daily distributions. Using the
corrections, the cumulative probability values of the predicted data were applied to the corrected
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distribution to reflect the daily difference for a specific time-site that cannot be considered by a
single MOS.

2. Data and Methodology

The LAMP WRF medium-range prediction data for model domain 3 (D03) from May 2017 to April
2018 were used. More detailed information on the model domain and physical parameterization is
presented in Figure 1 and Table 1. We compared the 2-m temperature and 10-m wind speed prediction
data for the location closest to AWS, considering them as the estimated values for that AWS, with the
real observation data used to quantify the magnitude of the bias. Wilcke et al. [26] stated that correction
biases mainly occur due to low quality observational data. Therefore, minimizing topographic
differences between the observation and LAMP grid data was required. AWS sites with height
differences of less than 500 m from the model terrain height were selected. Observations at a
diurnal temperature range of below 5 ◦C or above 30 ◦C were considered unrealistic and removed
as missing values. This led to a total of 628 selected sites with a horizontal resolution of 8.8 km.
The LAMP-predicted values are affected by both the time elapsed from the initial time and the month
(season), displaying differences in prediction patterns. Considering this characteristic, we divided
the LAMP prediction length into 12 days so that 12 statistical models corrected the entire WRF model
prediction. We set 69–91 h and 261–283 h (from 06 LST on the previous day to 04 LST) from the initial
time as the test time slots (Figure 2a). These two time periods were selected since they can be regarded
as short and medium-range prediction limits, respectively, from an operational point of view of NWP
at KMA. Moreover, our bias correction scheme exhibits a stable and reasonable performance for other
prediction hours (e.g., 189–211 h), as well as most of the months and sites (figure not shown).
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Figure 1. National Center for Agro-Meteorology (NCAM)–Land Atmosphere Modeling Package
(LAMP) Weather Research and Forecasting (WRF)/ Noah-Multiparameterization (Noah-MP) model
(version 1.5) domains.

The correction was based on the assumption that the daily mean distribution of temperature
was close to Gaussian, while the distribution of wind speed was close to log normal. Moreover,
it was assumed that the daily distribution of the two variables asymptotically followed Gaussian.
The distribution consists of two parameters: location and scale. By correcting these parameters,
the daily LAMP WRF distributions are corrected to the daily AWS distributions. Assuming that
the daily temperature means are also close to a Gaussian distribution, the location parameter was
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corrected using a simple generalized linear model (GLM), which takes the daily AWS mean as a
response variable. The correction of the wind speed parameter was carried out differently because of
its skewness. To correct the wind speed parameter, log transformation of the wind speed was used.
Variables that show high correlations with observations, such as longitude, latitude, altitude, and daily
LAMP variations, were used as explanatory variables in GLM MOS equations to correct each time slot.
Individual GLM MOS members can show uncertainty in predicting the relationship between NWP and
observational data because of the short-term training period. Therefore, the simple average ensemble,
considering average relationships between predictor and explanatory variables, complemented such
uncertainty by combining all of the MOS member results after each MOS was generated. The scale
parameter was corrected in a manner similar to that of the location parameter. However, the corrected
location parameter was added as the explanatory variable to remove unrealistic outputs when the two
parameters are corrected separately. The distribution characteristics of temperature and wind speed
vary depending on the season and the model integration time. Therefore, prediction data far from the
current month are not representative of the bias of the current day. Hence, the data period for MOS
training was set from one month prior to and after each dataset, with the test period being from May
2017 to April 2018. As the training and test data are independent, the performance of the GLM MOS
model can be approximately verified.Atmosphere 2018, 9, x FOR PEER REVIEW  6 of 15 
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Figure 2. Bias correction for temperature and wind speed in this study. (a) Diagram of the Model
Output Statistics (MOS) ensemble for parameter correction. (b) Probability density functions for daily
temperature, and (c) cumulative density functions for daily temperature. The black line distribution is
the original LAMP WRF data, i.e., uncorrected prediction, and the red line is the corrected LAMP WRF
data. The grey and red regions have the same area. Each grey point is corrected to a red point.
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Table 1. NCAM–LAMP WRF/Noah-MP model (version 1.5) specifications.

Domain
Domain 1 Domain 2 Domain 3 Domain 4

(D01) (D02) (D03) (D04)

Model version WRF–ARW v3.7.1 with Noah-MP land surface model

Domain size
(horizontal resolution)

175 × 151 250 × 250 250 × 250 130 × 130
(21,870 m) (7290 m) (2430 m) (810 m)

Vertical levels 39 39 39 39

Topography and land use
data resolution
(data source)

30” 30” 30” 1/3”

(USGS) (USGS) (USGS) (Ministry of
Environment)

Initial and boundary
conditions

UM–GDAPS
(Unified Model—Global Data Assimilation and Prediction System at Korea

Meteorological Administration)

Shortwave radiation scheme Goddard shortwave

Longwave radiation scheme RRTM

Microphysics scheme WSM6

Cumulus scheme New Kain–Fritsch New Kain–Fritsch Off Off

Planetary boundary layer
scheme Shin–Hong

The final form of the MOS proposed in the study is as follows:

y1 = β1x1, (1)

y1 = β1x1 + β2
√

x2 + β3
√

x3, (2)

y1 = β1x1 + β2
√

x4 × β3
√

x5 + β4
√

x6 × β5
√

x7, (3)

y1 = β1x1 + β2
√

x1
′, (4)

log
(
y1
′) = β′1 log

(
x1
′), (5)

log
(
y1
′) = β′1 log

(
x1
′)+ β′2x2

′, (6)

log
(
y1
′) = β′1 log

(
x1
′)+ β′2 log(x4)× β′3 log(x5) + β′4 log(x6)× β′5 log(x7), (7)

log(y2) = c1 log(z1), (8)

log(y2) = c1z1 log(z1) + c2
√

z2 + c3x3, (9)

log(y2) = c1 log(z1) + c2
√

z4 + c4
√

z5 × c5
√

z6, (10)

log(y2) = c1 log(z1) + c2
√

z1
′, (11)

log
(
y2
′) = c′1 log(z1

′), (12)

log
(
y2
′) = c′1 log(z1

′) + c′2z2
′, (13)

log
(
y2
′) = c′1 log(z1

′) + c′2 log(z4) + c′4 log(z5)× c′5 log(z6) (14)

Here, the temperature location parameter MOS are represented in Equations (1)–(4), while the
scale parameter MOS for the same variable are shown in Equations (5)–(7). The wind speed location
parameter MOS are shown in Equations (8)–(11), while the scale parameter for wind speed MOS are
seen in Equations (12)–(14). Then, y1 = temperature average, y1

′ = temperature variation, x1 = predicted
temperature average, x2 = predicted water vapor mixing ratio at 2 m (Q2), x3 = predicted soil
temperature (TSLB), x4 = observed altitude, x5 = grid point altitude, x6 = latitude, x7 = longitude,
x1
′ = predicted temperature variation, x2

′ = average temperature obtained from the correction location
parameter ensemble, and βi, β′i (i = 1, 2, . . . , 5) = coefficients corresponding to each temperature MOS
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variable. Finally, y2 = wind speed average, y2
′ = wind speed variation, z1 = predicted wind speed

mean, z2 = predicted planetary boundary layer height (PBLH), z3 = predicted leaf area index (LAI),
z4 = observed altitude, z5 = latitude, z6 = longitude, z1

′ = predicted wind speed variation, z2
′ = average

wind speed that comes from correction location parameter ensemble, and ci, c′i (i = 1, 2, . . . , 5) =
coefficients corresponding to each wind speed MOS variable.

Variations in sunshine duration change the cumulative probability value corresponding to the
daily distribution. Therefore, the cumulative probabilities of the observed values at particular times on
various dates also differ. Assuming that LAMP WRF reflects the sunshine variation characteristics,
x′ is set as the final correction that satisfies CDFraw(x) = CDFcorrected(x′) for a predicted value x after
calculating the cumulative probabilities for each predicted time slot on various days. Equations (15)
and (16) are used assuming that the observed and predicted distributions are Gaussian, which is a
theoretical distribution. One potential concern is that the wind speed output derived can be a negative
value, which is not possible in reality. Therefore, additional post-processing is carried out to change
negative values to 0. In the form below, x = observed temperature or wind speed value for each site
on a given date and time, where m = temperature or wind speed location parameter at each site on a
given date, and σ2 = temperature or wind speed scale parameter at each site on a given date.

PDF (x) =
1√

2πσ2
exp (− (x−m)2

2σ2 ), (15)

CDF (x) =
∫ 1√

2πσ2
exp (− (x−m)2

2σ2 ) dx (16)

3. Results and Discussion

3.1. Temperature

We evaluated the hourly predicted data from LAMP for the test period from May 2017 to April
2018 at 628 sites. Figure 3a shows a comparison of the mean root mean square error (RMSE) for
the corrected location parameter. For the 69–91 h time range, the RMSE for the corrected data were
lower after correction, except for October and November. In particular, the effects of correction were
noticeable in September, December, and January, with large biases before the correction, compared with
other months. For the 261–283 h time range, the effects were noticeable in October, November,
and December. Figure 3b is a comparison of the mean RMSE for the scale parameter using the
bias corrected with the location parameter. Compared with the location parameter, there was a
large fluctuation in estimating the scale parameter, which disturbed the bias correction performance.
For 69–91 h, a correction effect was observed, except for November. Similarly, for 261–293 h, effects were
observed in all of the months except February. Biases in the corrected scale parameter increase for
several months due to a lack of information explaining the variation in and shortage of past experience
data. Therefore, further evaluations are required in the future. Figure 3c shows the correction result
for entire hourly predicted LAMP data using the distribution corrected with the location and scale
parameters. For 69–91 h, the corrected RMSE values were lower than the uncorrected data, except for
October and November. However, the bias correction performance appeared stable, as the differences
between the corrected and uncorrected data RMSE values for the two months appeared to be small.
The 261–283 h range showed a decrease in the RMSE in all of the months except September. Overall,
the corrected RMSE values for the 69–91 h range were lower than the uncorrected ones by 9%, while the
261–283 h range also showed a 13% improvement.

Prediction Powerij =

√
1

nij
∑

nij
i=1 (correctedij − real valueij)

2√
1

nij
∑

nij
i=1 (uncorrectedij − real valueij)

2
. (17)
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The prediction power evaluates the model predictions for each site. It is the ratio of the corrected
mean RMSE to the uncorrected RMSE. Values closer to 0 indicate that the model provides more
accurate predictions. Here, i = the entire duration of the test period, and j = the AWS observation
site. Figure 3d,e illustrates the prediction powers for 69–91 h and 261–283 h, respectively. There are
87% sites with prediction powers <1 in the 69–91 h range, with 94% in the 261–283 h range. It means
that 87% of the 628 sites have a lower corrected RMSE than uncorrected RMSE, while 94% have the
same result in the 261–283 h range. In Figure 4a, the highlighted spots are sites with prediction power
>1.2, which indicates poor performance on average. These spots are located on the coast or the islands.
Since most of the AWS sites used in the corrected model are located inland, sufficient information
is not available to explain coastal areas. For example, the land cover representation in the WRF
model is not reasonable, with small islands near the coastline being recognized as water in the model,
resulting in large thermodynamic differences between the observation and the simulation. Therefore,
the established bias correction model is the most appropriate for inland South Korea.
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The kriging interpolation method is used to compare the degree of spatial correction inland:

n

∑
j=1

λjCkj = Cko,
n

∑
j=1

λj (k = 1, . . . , n) (18)

Here, Cko = standard deviation of the uncorrected or corrected error of a grid point, Ckj = an
observation with locational information, λj = the weight of Ckj to Cko. The details of the interpolation
are omitted. Figure 5 shows the spatial distribution of the mean absolute error (MAE) in temperature
for July and January. As in Figure 3, the decrease in the RMSE in July (summer) and January (winter)
is shown across both time ranges. Overall, the RMSE decreased by 6% in the 69–91 h range, while a 3%
increase in the RMSE occurred in the 261–283 h range in July. However, in the 69–91 h range, only 50%
of the sites had a lower mean RMSE than uncorrected, which led to a relatively low performance in the
southwestern part of the interpolated spatial map, regardless of the total mean RMSE improvement.
The maximum value of error among all of the sites in the 69–91 h range was 3.04 in the corrected RMSE,
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whereas it was 3.34 in the uncorrected one. Thus, it can be concluded that bias correction prevents the
predicted temperature from producing a significant error. In the 261–283 h range, 89% of the sites had
a lower mean RMSE than the raw value, with a maximum error of 5.64 among all of the sites (5.72 in
the uncorrected). In January, the overall RMSE decreased by 9.5% in the 69–91 h range, and by 9.2% in
the 261–283 h range. In addition, 69% of the sites had a lower RMSE than the raw value in the 69–91 h
range, showing improvement in 78% of the sites in the other time range. The maximum corrected
error is 5.16, whereas it is 5.86 in the uncorrected data in the 69–91 h range. In the other time range,
the maximum corrected error is 6.65, while the uncorrected is 6.68. In summary, the performance of
bias correction in July and January improves the mean of RMSE for most of the sites, and decreases the
error ranges.
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3.2. Wind Speed

Wind speed was corrected using a method similar to that of temperature. The location parameter
correction provided a lower corrected RMSE than the uncorrected RMSE for both time ranges.
Specifically, the RMSE of the mean and the variance dropped significantly in July and September,
which led to an overall improvement in the RMSE for the 69–91 h time range. While there was some
variability in the uncorrected RMSE based on the location and scale parameter, the corrected RMSE was
below three for all of the months and time ranges, indicating general stability. There was a significant
improvement in the 261–283 h range, where the uncorrected July RMSE was >5, while the corrected
RMSE reduced to nearly 2. In summary, the corrected wind speed model provided consistent and
accurate results, as indicated by the low corrected RMSE values and small error variations compared
to the uncorrected values. Figure 6c shows all of the hourly predicted wind speed data, displaying an
improvement for most of the months and time ranges. Comparing the uncorrected and corrected
RMSE values, the RMSE improved by 43% for the 69–91 h time range and 55% for the 261–283 h range.
As seen in Figure 6d,e, 84% of the sites in the 69–91 h range had prediction powers <1, while 93%
of the sites in the 261–283 h range had a lower mean RMSE than the uncorrected data. In Figure 3b,
sites with prediction powers >1.2 are marked, showing that most were located in coastal, mountainous,
and island environments, which are similar to the temperature correction results. These areas have
topographic conditions that are different from inland areas. Therefore, the bias correction for these
geographical features should be pursued in the future after collecting sufficient information from
these sites.



Atmosphere 2018, 9, 291 9 of 14

Atmosphere 2018, 9, x FOR PEER REVIEW  9 of 15 

 

consistent and accurate results, as indicated by the low corrected RMSE values and small error 
variations compared to the uncorrected values. Figure 6c shows all of the hourly predicted wind 
speed data, displaying an improvement for most of the months and time ranges. Comparing the 
uncorrected and corrected RMSE values, the RMSE improved by 43% for the 69–91-h time range and 
55% for the 261–283-h range. As seen in Figure 6d,e, 84% of the sites in the 69–91-h range had 
prediction powers <1, while 93% of the sites in the 261–283-h range had a lower mean RMSE than the 
uncorrected data. In Figure 3b, sites with prediction powers >1.2 are marked, showing that most were 
located in coastal, mountainous, and island environments, which are similar to the temperature 
correction results. These areas have topographic conditions that are different from inland areas. 
Therefore, the bias correction for these geographical features should be pursued in the future after 
collecting sufficient information from these sites. 

 
Figure 5. Spatial distributions of temperature MAEs in July 2017 and January 2018. Results are for (a) 
uncorrected 69–91 h in July 2017, (b) corrected 69–91 h in July 2017, (c) uncorrected 261–283 h in July 
2017, (d) corrected 261–283 h in July 2017, (e) uncorrected 69–91 h in January 2018, (f) corrected 69–91 
h in January 2018, (g) uncorrected 261–283 h in January 2018 and (h) corrected 261–283 h in January 
2018. 

Figure 5. Spatial distributions of temperature MAEs in July 2017 and January 2018. Results are for (a)
uncorrected 69–91 h in July 2017, (b) corrected 69–91 h in July 2017, (c) uncorrected 261–283 h in July
2017, (d) corrected 261–283 h in July 2017, (e) uncorrected 69–91 h in January 2018, (f) corrected 69–91 h
in January 2018, (g) uncorrected 261–283 h in January 2018 and (h) corrected 261–283 h in January 2018.

Atmosphere 2018, 9, x FOR PEER REVIEW  10 of 15 

 

 
Figure 6. Bias-corrected results for daily wind speed. (a) RMSE of the daily wind speed mean, (b) 
RMSE of daily wind speed variance, and (c) total wind speed RMSE: 69–91 h uncorrected (solid black 
line), 69–91 h corrected (solid red line), 261–283 h uncorrected (dashed black line), 261–283 h corrected 
(dashed red line). The ratio of root mean square (‘RR’) for each time slot is in the middle. The ratio of mean 
corrected RMSE to uncorrected RMSE for each site in (d) the 69–91 h range and (e) the 261–283 h range. 

3.2. Wind Speed 

Figure 7 illustrates the spatial distribution of wind speed results, indicating an improvement in 
the MAE for the two time ranges in January and July. More significant improvements were observed 
in July. While 90% of the sites showed lower corrected mean RMSE than the uncorrected data in the 
69–91-h time range, 97% of the sites showed an improvement in the 261–283-h range. However, the 
maximum error value was higher than that for the uncorrected data, requiring further studies. The 
overall RMSE improvement showed a 59% decrease in the 69–91-h range, and an 88% decrease in the 
261–283-h range in July. In January, 60% of the sites showed an improvement in the 69–91-h range, 
while 80% of sites showed an improvement in the 261–283-h range. The maximum error of the sites 
was reduced from 13.8 to 6.8 in the 69–91 h range, while the value became slightly higher in the 261–283 
h range. However, it was small and could be neglected. In summary, the bias correction of wind speed in 
January and July significantly improved the mean RMSE in most of the sites, as well as the total RMSE. 

Figure 6. Bias-corrected results for daily wind speed. (a) RMSE of the daily wind speed mean, (b) RMSE
of daily wind speed variance, and (c) total wind speed RMSE: 69–91 h uncorrected (solid black line),
69–91 h corrected (solid red line), 261–283 h uncorrected (dashed black line), 261–283 h corrected
(dashed red line). The ratio of root mean square (‘RR’) for each time slot is in the middle. The ratio
of mean corrected RMSE to uncorrected RMSE for each site in (d) the 69–91 h range and (e) the
261–283 h range.
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Figure 7 illustrates the spatial distribution of wind speed results, indicating an improvement in
the MAE for the two time ranges in January and July. More significant improvements were observed
in July. While 90% of the sites showed lower corrected mean RMSE than the uncorrected data in
the 69–91 h time range, 97% of the sites showed an improvement in the 261–283 h range. However,
the maximum error value was higher than that for the uncorrected data, requiring further studies.
The overall RMSE improvement showed a 59% decrease in the 69–91 h range, and an 88% decrease
in the 261–283 h range in July. In January, 60% of the sites showed an improvement in the 69–91 h
range, while 80% of sites showed an improvement in the 261–283 h range. The maximum error of the
sites was reduced from 13.8 to 6.8 in the 69–91 h range, while the value became slightly higher in the
261–283 h range. However, it was small and could be neglected. In summary, the bias correction of
wind speed in January and July significantly improved the mean RMSE in most of the sites, as well as
the total RMSE.Atmosphere 2018, 9, x FOR PEER REVIEW  11 of 15 
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Figure 7. Spatial distributions of wind speed MAEs in July 2017 and January 2018. Results are for (a)
uncorrected 69–91 h in July 2017, (b) corrected 69–91 h in July 2017, (c) uncorrected 261–283 h in July
2017, (d) corrected 261–283 h in July 2017, (e) uncorrected 69–91 h in January 2018, (f) corrected 69–91 h
in January 2018, (g) uncorrected 261–283 h in January 2018 and (h) corrected 261–283 h in January 2018.

3.3. Performance of Bias Correction and Discussions

The evaluation of physical consistencies of temperature and wind speed is shown in Figure 8a–c.
While the uncorrected model results tended to overpredict the wind speed, the scale of correction of
wind speed reduced, indicating that the corrected model results had consistencies similar to the real
observation. Nevertheless, the correction had a tendency of not capturing strong winds over 4 m s−1.

Cumulative probabilities calculated from the LAMP WRF daily distributions were used
to substitute for the cumulative probabilities from the daily distributions corrected using the
parameter MOS ensembles. The GLM-based bias correction is similar to the quantile matching
(QM) algorithm [26,27], as the cumulative probabilities from the uncorrected model are used in the
corrected distribution. The difference is that the bias correction used in this study assumed theoretical
distribution for the daily distribution, while QM considered the empirical distribution for the entire
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training period. Figure 8d,e shows a comparison of Pearson correlation between the GLM-based bias
correction and QM. The training data used in QM correction was the same as those used in the GLM
bias correction, considering seasonal differences. With regard to temperature, our bias correction
showed better performance across all of the months than QM. Similarly, wind speed also showed
better performance. However, it had lower correlation than QM from August to December in the
69–91 h range. The bias correction using GLM showed better performance in predicting across a wide
range of regions, reducing the time required. However, it does not necessarily mean that QM lacks
correction skills, because QM is focused on a small space. QM is usually applied for every single
station separately. The aim of this study was to correct the entire inland area of South Korea. Therefore,
we assumed the area as one block [27], and evaluated the performance between QM and the bias
correction that we developed.
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Figure 8. Scatter plot of temperature and wind speed during the period of May 2017–April 2018 for (a)
the observed, (b) the uncorrected and corrected LAMP for 69–91 h, (c) same as (b), but for 261–283 h.
(d) and (e) show monthly Pearson correlation of bias correction with a generalized linear model (GLM)
and a quantile matching (QM) method in the 69–91 h range (orange for GLM, sky blue for QM) and
261–283 h range (red for GLM, blue for QM).

The general problem of bias correction in this and similar studies is referred to as the “Mars
problem” by Maraun and Widmann [28]. Theoretically, we may obtain data from Mars, fit the
data to some place on Earth, and obtain a perfect validation score. However, there is probably
no physical correlation between the phenomena seen by the model and those observed in reality.
Maraun and Widmann point out the dangers of cross-validation of bias-corrected climate simulation,
mainly due to the realization of internal variability in the observations and climate model. For example,
badly bias-corrected air temperature on the coast may change local atmospheric circulations such
as sea breezes due to the change in the horizontal temperature contrast between the land and sea.
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To clearly address this issue, some geophysics and thermodynamics calculations would be required.
However, this is beyond the scope of the present research, and incidentally does not impact the
results obtained from the above method, as it is not assimilated in the WRF simulation [29]. On the
other hand, the LAMP WRF model deals with medium-range (12-day) predictions, which start from
the initial model fields, instead of climate projections. During model integration, the possibility of
internal instability and uncertainty also gradually increases, while a free-running state can partly
or completely occur within the domain. However, in our study, the bias-corrected results of the
model variables were not used to update or modify the other related model variables. One of the
short-term practical methods to resolve this potential problem in both statistical bias correction and
NWP viewpoints is to expand the outermost domain so that the initial state and inflow boundary
information is retained as much as possible. Secondly, we need to adopt higher-resolution land-cover
and terrain maps to realistically represent coastal and mountainous areas. Thirdly, we must provide the
local agrometeorological community and the corresponding users with model verification information
on the accuracy of the previous 12-day model prediction on a regular basis. Finally, we can improve
the downscaling strategy through a perfect initial/boundary conditions approach (i.e., with the use of
ERA-5 or ERA-Interim as the initial/boundary conditions).

4. Summary and Concluding Remarks

Predicted daily distributions from the LAMP WRF/Noah-MP model were corrected to the
daily data distributions from the observed sites with the goal of decreasing errors in temperature
and wind speed. A Gaussian distribution was assumed, as this is close to the daily distribution
of the two measured variables. Using an MOS ensemble that corrects the parameters, we consider
multiple relations between the predicted and observational data. Our results show the impacts of
both the location and scale parameter corrections, considering their association. Comparing the
corrected and the uncorrected RMSE for the location parameter over the 69–91 h and 261–283 h
ranges, overall improvements were obtained with only a few excluded months. Similar results were
observed when comparing the scale parameter RMSE values before and after correction. Although
some exceptions exist with a small magnitude of error, the total RMSE of the corrected prediction is
improved compared to the uncorrected LAMP. RMSE improvements for hourly data were observed as
a result, while the non-stationarity of errors remained due to the fluctuation error of the uncorrected
model, which requires further study.

A comparison of spatial distribution using the kriging interpolation revealed that temperature
correction provides the most accurate improvement in inland areas. Wind speed was corrected
using the same method as temperature. However, its location parameter was assumed to follow
log-normal distribution. The corrected results show significant improvements in the two parameter
corrections, which provide more accurate prediction data. Furthermore, we found that, based on the
spatial distribution of wind speed, the MAE decreases toward the east and inland. Comparing the
temperature/wind speed prediction power for each site tested, most of the sites showed an
improvement in the mean RMSE across both of the time ranges. Physical consistency existed between
the corrected variables, i.e., temperature and wind speed, as it resembles the observed data more than
uncorrected LAMP. Moreover, compared with another bias correction, QM, the Pearson correlation of
bias correction using GLM obtains a higher score. This means that the GLM result has more relevance
with observational data.

In summary, the method proposed in this study is distinct from prior studies in that it uses a stochastic
bias correction with short-term data, reflecting daily differences. We believe that the method may be
used in other types of NWP models, as well as NCAM WRF/Noah-MP. Finally, sites at locations that
are topography different from the normal inland areas showed a poorer average prediction performance.
Investigating the characteristics of these sites should be a priority in the future studies of bias correction.
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