Extreme Wave Storms and Atmospheric Variability at the Spanish Coast of the Bay of Biscay
Abstract
:1. Introduction
2. Study Area, Material and Methods
3. Results
3.1. Identification, Characterization, and Classification of Extreme Wave Events
3.2. Atmospheric Controls Upon Wave Storms
3.3. Analysis of Long-Term Variability in Storminess
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morton, R.A.; Gibeaut, J.C.; Paine, J.G. Meso-scale transfer of sand during and after storms: Implications for prediction of shoreline movement. Mar. Geol. 1995, 126, 161–179. [Google Scholar] [CrossRef]
- Bouws, E.; Jannink, D.; Komen, G.J. The increasing wave height in the North Atlantic Ocean. Bull. Am. Meteorol. Soc. 1996, 77, 2275–2277. [Google Scholar] [CrossRef]
- Woolf, D.K.; Challenor, P.G.; Cotton, P.D. Variability and predictability of the North Atlantic wave climate. J. Geophys. Res. 2002, 107, 3145. [Google Scholar] [CrossRef]
- Izaguirre, C.; Méndez, F.J.; Menéndez, M.; Losada, I.J. Global extreme wave height variability based on satellite data. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Dodet, G.; Bertin, X.; Taborda, R. Wave climate variability in the North-East Atlantic Ocean over the last six decades. Ocean Model. 2010, 31, 120–131. [Google Scholar] [CrossRef]
- Semedo, A.; Suselj, K.; Rutgersson, A.; Sterl, A. A global view on the wind sea and swell climate and variability from ERA-40. J. Clim. 2011, 24, 1461–1479. [Google Scholar] [CrossRef]
- Bertin, X.; Prouteau, E.; Letetrel, C. A significant increase in wave height in the North Atlantic Ocean over the 20th century. Glob. Planet. Chang. 2013, 106, 77–83. [Google Scholar] [CrossRef]
- Castelle, B.; Dodet, G.; Masselink, G.; Scott, T. Increased winter-mean wave height, variability, and periodicity in the northeast Atlantic over 1949–2017. Geophys. Res. Lett. 2018, 45, 3586–3596. [Google Scholar] [CrossRef]
- Dupuis, H.; Michel, D.; Sottolichio, A. Wave climate evolution in the Bay of Biscay over two decades. J. Mar. Syst. 2006, 63, 105–114. [Google Scholar] [CrossRef]
- Charles, E.; Idier, D.; Thiebot, J.; Le Cozannet, G.; Pedreros, R. Present wave climate of the Bay of Biscay: Spatiotemporal variability and trends from 1958 to 2001. J. Clim. 2012, 25, 2020–2039. [Google Scholar] [CrossRef]
- Paris, F.; Lecacheux, S.; Idier, D.; Charles, E. Assessing wave climate trends in the Bay of Biscay through an intercomparison of wave hindcasts and reanalyses. Ocean Dyn. 2014, 64, 1247–1267. [Google Scholar] [CrossRef]
- Lerma, A.N.; Bulteau, T.; Lecacheux, S.; Idier, D. Spatial variability of extreme wave height along the Atlantic and channel French coast. Ocean Eng. 2015, 97, 175–185. [Google Scholar] [CrossRef]
- Ulazia, A.; Penalba, M.; Ibarra-Berastegui, G.; Ringwood, J.; Saénz, J. Wave energy trends over the Bay of Biscay and the consequences for wave energy converters. Energy 2017, 141, 624–634. [Google Scholar] [CrossRef]
- Le Cozannet, G.; Lecacheux, S.; Delvallée, E.; Desramaut, N.; Oliveros, C.; Pedreros, R. Teleconnection pattern influence on sea-wave climate in the Bay of Biscay. J. Clim. 2011, 24, 641–652. [Google Scholar] [CrossRef]
- Bromirski, P.D.; Cayan, D.R. Wave power variability and trends across the North Atlantic influenced by decadal climate patterns. J. Geophys. Res. Oceans 2015, 120, 3419–3443. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Asensio, A.; Tsimplis, M.N.; Marcos, M.; Feng, X.; Gomis, D.; Jordà, G.; Josey, S.A. Response of the North Atlantic wave climate to atmospheric modes of variability. Int. J. Climatol. 2016, 36, 1210–1225. [Google Scholar] [CrossRef]
- Rivas, V.; Cendrero, A. Human influence in a low-hazard coastal area: An approach to risk assessment and proposal of mitigation strategies. J. Coast. Res. 1994, SI 12, 289–298. Available online: https://www.jstor.org/ stable/25735605 (accessed on 14 June 2018).
- García Codron, J.C.; Rasilla Álvarez, D.F. Coastline retreat, sea level variability and atmospheric circulation in Cantabria (Northern Spain). J. Coast. Res. 2006, SI 48, 49–54. Available online: https://www.jstor.org/stable/25737381 (accessed on 14 June 2018).
- Chust, G.; Caballero, A.; Marcos, M.; Liria, P.; Hernández, C.; Borja, Á. Regional scenarios of sea level rise and impacts on Basque (Bay of Biscay) coastal habitats, throughout the 21st century. Estuar. Coast. Shelf Sci. 2010, 87, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Garmendia Pedraja, C.; Rasilla Álvarez, D.F.; Rivas Mantecón, V. Distribución espacial de los daños producidos por los temporales de invierno 2014 en la costa norte de España: Peligrosidad. vulnerabilidad y exposición. Estudios Geográficos 2017, 78, 71–104. [Google Scholar] [CrossRef]
- Jenkinson, A.F.; Collison, F.P. An Initial Climatology of Gales over the North Sea. In Synoptic Climatology Branch Memorandum, No. 62; Meteorological Office: Bracknell, UK, 1977. [Google Scholar]
- Masselink, G.; Castelle, B.; Scott, T.; Dodet, G.; Suanez, S.; Jackson, D.; Floc’h, F. Extreme wave activity during 2013/2014 winter and morphological impacts along the Atlantic coast of Europe. Geophys. Res. Lett. 2016, 43, 2135–2143. [Google Scholar] [CrossRef] [Green Version]
- Ciavola, P.; Coco, G. Coastal Storms: Processes and Impacts; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017. [Google Scholar]
- Zhang, K.; Douglas, B.C.; Leatherman, S.P. Twentieth-Century Storm Activity along the U.S. East Coast. J. Clim. 2000, 13, 1748–1761. [Google Scholar] [CrossRef]
- Dolan, R.; Davis, R.E. An Intensity Scale for Atlantic Coast Northeast Storms. J. Coast. Res. 1992, 8, 840–853. [Google Scholar]
- Serreze, M.C. Climatological aspects of cyclone development and decay in the Arctic. Atmos. Ocean 1995, 33, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.L.; Swail, V.R.; Zwiers, F.W. Climatology and Changes of Extratropical Cyclone Activity: Comparison of ERA-40 with NCEP–NCAR Reanalysis for 1958–2001. J. Clim. 2006, 19, 3145–3166. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef]
- Yarnal, B. Synoptic Climatology in Environmental Analysis; Belhaven Press: London, UK, 1993. [Google Scholar]
- Wilks, D. Statistical Methods in the Atmospheric Sciences; International Geophysics Series; Academic Press: New York, NY, USA, 2011; Volume 100, Available online: https://www.sciencedirect.com/bookseries/international-geophysics/vol/100 (accessed on 9 August 2018).
- Castelle, B.; Dodet, G.; Masselink, G.; Scott, T. A new climate index controlling winter wave activity along the Atlantic coast of Europe: The West Europe Pressure Anomaly. Geophys. Res. Lett. 2017, 44, 1384–1392. [Google Scholar] [CrossRef] [Green Version]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Sneyers, R. On the Statistical Analysis of Series of Observations; World Meteorological Organization (WMO): Geneva, Switzerland, 1990; No. 143; Available online: https://library.wmo.int/pmb_ged/wmo_415.pdf (accessed on 14 June 2018).
- Luo, Y.; Liu, S.; Fu, S.; Liu, J.; Wang, G.; Zhou, G. Trends of precipitation in Beijiang River Basin. Guangdong Province. China. Hydrol. Process. 2008, 22, 2377–2386. [Google Scholar] [CrossRef]
- Bell, R.J.; Gray, S.L.; Jones, O.P. North Atlantic storm driving of extreme wave heights in the North Sea. J. Geophys. Res. Oceans. 2017, 122, 3253–3268. [Google Scholar] [CrossRef] [Green Version]
- Marshall, J.; Kushnir, Y.; Battisti, D.; Chang, P.; Czaja, A.; Dickson, R.; Hurrell, J.; McCartney, M.; Saravanan, R.; Visbeck, M. North Atlantic climate variability: Phenomena, impacts and mechanisms. Int. J. Climatol. 2001, 21, 1863–1898. [Google Scholar] [CrossRef] [Green Version]
- Trigo, R.M.; Valente, M.A.; Trigo, I.F.; Miranda, P.M.; Ramos, A.M.; Paredes, D.; García-Herrera, R. The Impact of North Atlantic Wind and Cyclone Trends on European Precipitation and Significant Wave Height in the Atlantic. Ann. N. Y. Acad. Sci. 2008, 1146, 212–234. [Google Scholar] [CrossRef] [PubMed]
- Butel, R.; Dupuis, H.; Bonneton, P. Spatial variability of wave conditions on the French Atlantic coast using in-situ data. J. Coast. Res. 2002, SI 36, 96–108. [Google Scholar] [CrossRef]
- Bertin, X.; Castelle, B.; Chaumillon, E.; Butel, R.; Quique, R. Longshore transport estimation and inter-annual variability at a high-energy dissipative beach: St. Trojan beach. SW Oléron Island. France. Cont. Shelf Res. 2008, 28, 1316–1332. [Google Scholar] [CrossRef]
- Mendoza, E.T.; Jimenez, J.A.; Mateo, J. A coastal storms intensity scale for the Catalan sea (NW Mediterranean). Nat. Hazards Earth Syst. Sci. 2011, 11, 2453–2462. [Google Scholar] [CrossRef] [Green Version]
- Rangel-Buitrago, N.; Anfuso, G. Winter wave climate. storms and regional cycles: The SW Spanish Atlantic coast. Int. J. Climatol. 2013, 33, 2142–2156. [Google Scholar] [CrossRef]
- Almeida, L.P.; Ferreira, O.; Vousdoukas, M.I.; Dodet, G. Historical variation and trends in storminess along the Portuguese South Coast. Nat. Hazards Earth Syst. Sci. 2011, 11, 2407–2417. [Google Scholar] [CrossRef] [Green Version]
- Plomaritis, T.A.; Benavente, J.; Laiz, I.; del Rio, R. Variability in storm climate along the Gulf of Cadiz: The role of large scale atmospheric forcing and implications to coastal hazards. Clim. Dyn. 2015, 45, 2499–2514. [Google Scholar] [CrossRef]
- Bacon, S.; Carter, D.J. A connection between mean wave height and atmospheric pressure gradient in the North Atlantic. Int. J. Climatol. 1993, 13, 423–436. [Google Scholar] [CrossRef]
- O’Connor, M.C.; Cooper, J.A.G.; Jackson, D.W.T. Decadal behavior of tidal inlet-associated beach systems, Northwest Ireland, in relation to climate forcing. J. Sediment. Res. 2011, 81, 38–51. [Google Scholar] [CrossRef]
- Feser, F.; Barcikowska, M.; Krueger, O.; Schenk, F.; Weisse, R.; Xia, L. Storminess over the North Atlantic and northwestern Europe—A review. Q. J. Roy. Meteorol. Soc. 2014, 141, 350–382. [Google Scholar] [CrossRef]
- Matthews, T.; Murphy, C.; Wilby, R.L.; Harrigan, S. Stormiest winter on record for Ireland and UK. Nat. Clim. Chang. 2014, 4, 738–740. [Google Scholar] [CrossRef] [Green Version]
- Masselink, G.; Scott, T.; Poate, T.; Russell, P.; Davidson, M.; Conley, D. The extreme 2013/2014 winter storms: Hydrodynamic forcing and coastal response along the southwest coast of England. Earth Surf. Process. Landf. 2016, 41, 378–391. [Google Scholar] [CrossRef]
- Robinet, A.; Castelle, B.; Idier, D.; Le Cozannet, G.; Déqué, M. Charles E. Statistical modeling of interannual shoreline change driven by North Atlantic climate variability spanning 2000–2014 in the Bay of Biscay. Geo-Mar. Lett. 2016, 36, 479–490. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson, L.; Hodges, K.I.; Roeckner, E. Storm tracks and climate change. J. Clim. 2006, 19, 3518–3543. [Google Scholar] [CrossRef]
- Ulbrich, U.; Pinto, J.G.; Kupfer, H.; Leckebusch, G.C.; Spangehl, T.; Reyers, M. Northern Hemisphere storm tracks in an ensemble of IPCC climate change simulations. J. Clim. 2008, 21, 1669–1679. [Google Scholar] [CrossRef]
- Ulbrich, U.; Leckebusch, G.C.; Pinto, J.G. Extra-tropical cyclones in the present and future climate: A review. Theor. Appl. Climatol. 2009, 96, 117–131. [Google Scholar] [CrossRef]
- Charles, E.; Idier, D.; Delecluse, P.; Déqué, M.; Le Cozannet, G. Climate change impact on waves in the Bay of Biscay France. Ocean Dyn. 2012, 62, 831–848. [Google Scholar] [CrossRef]
Oceanographic | Atmospheric |
---|---|
Significant wave height (Hs, m) 1,2 | Sea level pressure (slp, hPa) 3 |
Wave period (Tp, s) 1 | Zonal wind component (U, m/s) 3 |
Wave direction (θ, degrees) 1 | Meridional wind component (V, m/s) 3 |
Geostrophic wind (FF, m/s) 3 | |
Vorticity (Z, units of hPa) 3 | |
Cyclone depth (depth, hPa) 3 | |
Cyclone distance (distance, km) 3 |
Duration | SPI (Storm Power Index) | Distance | Depth | |
---|---|---|---|---|
Hs | 0.36 ** | 0.71 ** | 0.03 | −0.25 * |
Tp | 0.35 ** | 0.49 ** | 0.23 * | −0.49 ** |
Parameters and Indices | Cluster 1 | Cluster 2 | Significance |
---|---|---|---|
Hs (Significant wave height) (m) | 8.02 | 8.49 | |
Tp (Wave period) (s) | 10.61 | 8.88 | ** |
θ (Wave direction) (degrees) | 317 | 335 | * |
Duration (h × 6) | 48.3 | 31.2 | ** |
SPI (Storm Power Index) (m2 h) | 538.83 | 415.63 | * |
SLP (Sea Level Pressure) (hPa) | 1008.79 | 1007.86 | |
U (Zonal wind component) (m/s) | 21.11 | 12.47 | ** |
V (Meridional wind component) (m/s) | –1.29 | –19.38 | ** |
Z (Vorticity) (hPa) | –10.83 | 10.21 | ** |
FF (Geostrophic wind) (m/s) | 22.95 | 24.32 | |
Depth (Cyclone depth) (slp) | 969.84 | 987.76 | ** |
Distance (Cyclone distance) (km) | 1950.68 | 1156.58 | ** |
SPI | CAI | Cluster 1 | Cluster 2 | ||||
---|---|---|---|---|---|---|---|
Sen’s estimator | |||||||
Z-statistics | p-value | Z-statistics | p-value | Z-statistics | p-value | Z-statistics | p-value |
0.06 | 0.9536 | 1.14 | 0.255 | 0.93 | 0.351 | 0.30 | 0.76 |
Sen’s slope | |||||||
0.025 | 1.24 | 0.066 | 0.008 | ||||
Mann-Kendall test | |||||||
S-statistic | p-value | S statistic | p-value | S statistic | p-value | S statistic | p-value |
12 | 0.95 | 216 | 0.25 | 177 | 0.35 | 5.8 | 0.76 |
Number of Storms | SPI | CAI | Cluster 1 | Cluster 2 | |
---|---|---|---|---|---|
NAO | 0.14 | 0.19 | −0.05 | 0.17 | 0.25 * |
EA | 0.11 | 0.11 | 0.33 ** | 0.37 ** | 0.08 |
EA/WR | −0.34 ** | −0.35 ** | −0.44 ** | −0.26 * | −0.31 * |
SCAND | 0.13 | 0.11 | 0.40 ** | 0.06 | −0.14 |
WEPI | 0.48 ** | 0.37 ** | 0.63 ** | 0.56 ** | 0.41 ** |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasilla, D.; García-Codron, J.C.; Garmendia, C.; Herrera, S.; Rivas, V. Extreme Wave Storms and Atmospheric Variability at the Spanish Coast of the Bay of Biscay. Atmosphere 2018, 9, 316. https://doi.org/10.3390/atmos9080316
Rasilla D, García-Codron JC, Garmendia C, Herrera S, Rivas V. Extreme Wave Storms and Atmospheric Variability at the Spanish Coast of the Bay of Biscay. Atmosphere. 2018; 9(8):316. https://doi.org/10.3390/atmos9080316
Chicago/Turabian StyleRasilla, Domingo, Juan Carlos García-Codron, Carolina Garmendia, Sixto Herrera, and Victoria Rivas. 2018. "Extreme Wave Storms and Atmospheric Variability at the Spanish Coast of the Bay of Biscay" Atmosphere 9, no. 8: 316. https://doi.org/10.3390/atmos9080316
APA StyleRasilla, D., García-Codron, J. C., Garmendia, C., Herrera, S., & Rivas, V. (2018). Extreme Wave Storms and Atmospheric Variability at the Spanish Coast of the Bay of Biscay. Atmosphere, 9(8), 316. https://doi.org/10.3390/atmos9080316