Spatial and Seasonal Patterns of Nutrients and Heavy Metals in Twenty-Seven Rivers Draining into the South China Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Sampling and Analytical Methods
2.3. Statistical Analyses
3. Results
3.1. Overall Assessment of River Water Quality
3.2. Spatial Variations in River Water Quality
3.3. Seasonal Variations in River Water Quality
3.4. Identification of Possible Pollution Sources
4. Discussion
4.1. Spatial and Seasonal Pattern of Water Quality in Subtropical Rivers
4.2. Possible Source Identification of Pollutants in Subtropical Rivers
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jarvie, H.P.; Whitton, B.A.; Neal, C. Nitrogen and phosphorus in east coast British rivers: Speciation, sources and biological significance. Sci. Total Environ. 1998, 210, 79–109. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Q.; Liu, G. Effects of watershed land use and lake morphometry on trophic state of Chinese lakes: Implications for eutrophication control. Clean Soil Air Water 2011, 39, 35–42. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Q. Spatial characterization of dissolved trace elements and heavy metals in the upper river (China) using multivariate statistical techniques. J. Hazard. Mater. 2010, 176, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Bu, H.; Meng, W.; Zhang, Y. Nitrogen pollution and source identification in the Haicheng River basin in Northeast China. Sci. Total Environ. 2011, 409, 3394–3402. [Google Scholar] [CrossRef] [PubMed]
- Varol, M.; Şen, B. Assessment of nutrient and heavy metal contamination in surface water and sediments of the upper Tigris River, Turkey. Catena 2012, 92, 1–10. [Google Scholar] [CrossRef]
- Gong, Y.; Yu, Z.; Yao, Q.; Chen, H.; Mi, T.; Tan, J. Seasonal variation and sources of dissolved nutrients in the Yellow River, China. Int. J. Environ. Res. Public Health 2015, 12, 9603–9622. [Google Scholar] [CrossRef] [PubMed]
- Smith, V.H.; Tilman, G.D.; Nekola, J.C. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 1999, 100, 179–196. [Google Scholar] [CrossRef]
- Oczkowski, A.; Nixon, S. Increasing nutrient concentrations and the rise and fall of a coastal fishery; a review of data from the Nile Delta, Egypt. Estuar. Coast. Shelf Sci. 2008, 77, 309–319. [Google Scholar] [CrossRef]
- Mendiguchía, C.; Moreno, C.; García-Vargas, M. Evaluation of natural and anthropogenic influences on the Guadalquivir River (Spain) by dissolved heavy metals and nutrients. Chemosphere 2007, 69, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Bhattachatya, B.D.; Nayak, D.C.; Sarkar, S.K.; Biswas, S.N.; Rakshit, D.; Ahmed, M.K. Distribution of dissolved trace metals in coastal regions of Indian Sundarban mangrove wetland: A multivariate approach. J. Clean. Prod. 2015, 96, 233–243. [Google Scholar] [CrossRef]
- Li, S.; Liu, W.; Gu, S.; Cheng, X.; Xu, Z.; Zhang, Q. Spatio-temporal dynamics of nutrients in the upper Han River basin, China. J. Hazard. Mater. 2009, 162, 1340–1346. [Google Scholar] [CrossRef] [PubMed]
- Nriagu, J.O. A global assessment of natural sources of atmospheric trace metals. Nature 1989, 338, 47–49. [Google Scholar] [CrossRef]
- Krishna, A.K.; Satyanarayanan, M.; Govil, P.K. Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: A case study from Patancheru, Medak District, Andhra Pradesh, India. J. Hazard. Mater. 2009, 167, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Sekabira, K.; Oryem-Origa, H.; Basamba, T.A.; Mutumba, G.; Kakudidi, E. Assessment of heavy metal pollution in the urban stream sediments and its tributaries. Int. J. Environ. Sci. Technol. 2010, 7, 435–446. [Google Scholar] [CrossRef]
- Billen, G.; Garnier, J. River basin nutrient delivery to the coastal sea: Assessing its potential to sustain new production of non-siliceous algae. Mar. Chem. 2007, 106, 148–160. [Google Scholar] [CrossRef]
- Howarth, R.W.; Sharpley, A.; Walker, D. Sources of nutrient pollution to coastal waters in the United States: Implications for achieving coastal water quality goals. Estuaries 2002, 25, 656–676. [Google Scholar] [CrossRef]
- Gao, X.; Song, J. Phytoplankton distributions and their relationship with the environment in the Changjiang Estuary, China. Mar. Pollut. Bull. 2005, 50, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.J.; Kroeze, C. Past and future trends in nutrients export by rivers to the coastal waters of China. Sci. Total Environ. 2010, 408, 2075–2086. [Google Scholar] [CrossRef] [PubMed]
- Strokal, M.; Yang, H.; Zhang, Y.C.; Kroeze, C.; Li, L.L.; Luan, S.J.; Wang, H.Z.; Yang, S.S.; Zhang, Y.S. Increasing eutrophication in the coastal seas of China from 1970 to 2050. Mar. Pollut. Bull. 2014, 85, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Björn, L.O. Heavy metal pollution in Guangdong Province, China, and the strategies to manage the situation. Front. Environ. Sci. 2014, 2, 1–12. [Google Scholar] [CrossRef]
- Wunderlin, D.A.; Díaz, M.P.; Ame, M.V.; Pesce, S.F.; Hued, A.C.; Bistoni, M.A. Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquía river basin (Córdoba, Argentina). Water Res. 2001, 35, 2881–2894. [Google Scholar]
- Reghunath, R.; Murthy, T.R.S.; Raghavan, B.R. The utility of multivariate statistical techniques in hydrogeochemical studies: An example from Karnataka, India. Water Res. 2002, 36, 2437–2442. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Sinha, S. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques: A case study. Anal. Chim. Acta 2005, 538, 355–374. [Google Scholar] [CrossRef]
- Gatica, E.A.; Almeida, C.A.; Mallea, M.A.; Del Corigliano, M.C.; González, P. Water quality assessment, by statistical analysis, on rural and urban areas of Chocancharava river (Río Cuarto), Córdoba, Argentina. Environ. Monit. Assess. 2012, 184, 7257–7274. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.T.; Wang, S.L.; Wang, B.J.; Pai, S.C. Nutrient budgets for the South China Sea basin. Mar. Chem. 2001, 75, 281–300. [Google Scholar] [CrossRef]
- Fan, X.; Cui, B.; Zhao, H.; Zhang, Z.; Zhang, H. Assessment of river water quality in Pearl River Delta using multivariate statistical techniques. Procedia Environ. Sci. 2010, 2, 1220–1234. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, J. Investigating the effects of point source and nonpoint source pollution on the water quality of the East River (Dongjiang) in South China. Ecol. Indic. 2013, 32, 294–304. [Google Scholar] [CrossRef]
- Department of Environmental Protection of Guangdong Province (DEPGP). 2015 Report on the State of Guangdong Provincial Environment; Department of Environmental Protection of Guangdong Province: Guangzhou, China, 2016. (In Chinese)
- Wu, M.; Ou, M.; Liao, R. Analysis on land use change and its driving forces in the developed area—a case study of Guangdong province. Res. Soil Water Conserv. 2012, 19, 179–183. (In Chinese) [Google Scholar]
- Liu, J.; Wu, H.; Feng, J.; Li, Z.; Lin, G. Heavy metal contamination and ecological risk assessments in the sediments and zoobenthos of selected mangrove ecosystems, South China. Catena 2014, 119, 136–142. [Google Scholar] [CrossRef]
- State Environmental Protection Administration of China (SEPA). Environmental Quality Standards for Surface Water of China (GB 3838-2002); State Environmental Protection Administration of China: Beijing, China, 2002. (In Chinese)
- Varol, M. Dissolved heavy metal concentrations of the Kralkizi, Dicle and Batman dam reservoirs in the Tigris River basin, Turkey. Chemosphere 2013, 93, 954–962. [Google Scholar] [CrossRef] [PubMed]
- Solidoro, C.; Pastres, R.; Cossarini, G.; Ciavatta, S. Seasonal and spatial variability of water quality parameters in the lagoon of Venice. J. Mar. Syst. 2004, 51, 7–18. [Google Scholar] [CrossRef]
- Department of Environmental Protection of Guangdong Province (DEPGP). Comprehensive Treatment of Water Environment in Watershed of LianJiang River; Department of Environmental Protection of Guangdong Province: Guangzhou, China, 2015. (In Chinese)
- Wan, X.; Han, J.; Xu, L.; Zhang, Q. Spatial and seasonal variations of the contamination within water body of the Grand Canal, China. Environ. Pollut. 2010, 158, 1513–1520. [Google Scholar]
- Ngoye, E.; Machiwa, J.F. The influence of land-use patterns in the Ruvu River watershed on water quality in the river system. Phys. Chem. Earth 2004, 29, 1161–1166. [Google Scholar] [CrossRef]
- Hong, H.C.; Wong, M.H.; Mazumder, A.; Liang, Y. Trophic state, natural organic matter and disinfection by-product formation potential of drinking water reservoirs around Pearl River Delta Region (China). J. Hydrol. 2008, 359, 164–173. [Google Scholar] [CrossRef]
- Turner, R.E.; Rabalais, N.N.; Justic, D.; Dortch, Q. Global patterns of dissolved N, P and Si in large rivers. Biogeochemistry 2003, 64, 297–317. [Google Scholar] [CrossRef]
- Duan, S.W.; Xu, F.; Wang, L.J. Long-term changes in nutrient concentrations of the Changjiang River and principal tributaries. Biogeochemistry 2007, 85, 215–234. [Google Scholar] [CrossRef]
- Conley, D.J.; Paer, H.W.; Howarth, R.W.; Boesch, D.F.; Seitzinger, S.P.; Havens, K.E.; Lancelot, C.; Likens, G.E. Controlling eutrophication: Nitrogen and phosphorus. Science 2009, 323, 1014–1015. [Google Scholar] [CrossRef] [PubMed]
- Bu, H.; Zhang, Y.; Meng, W.; Song, X. Effects of land-use patterns on in-stream nitrogen in a highly-polluted river basin in Northeast China. Sci. Total Environ. 2016, 553, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, Q.; Liu, G. Influences of watershed landscape composition and configuration on lake-water quality in the Yangtze River basin of China. Hydrol. Process. 2012, 26, 570–578. [Google Scholar] [CrossRef]
- Ye, Y.; Zhang, J.; Chen, L.; Qin, Z.; Zhao, B. Carbon sequestration by agricultural land and its spatio-temporal characteristics in Guangdong province from 1996 to 2012. J. Soil Water Conserv. 2014, 28, 139–146. (In Chinese) [Google Scholar]
- Xu, Q.; Hunag, Z.; Wang, X.; Cui, L. Pennisetum sinese Roxb and Pennisetum purpureum Schum. as vertical-flow constructed wetland vegetation for removal of N and P from domestic sewage. Ecol. Eng. 2015, 83, 120–124. [Google Scholar] [CrossRef]
- Zhang, L.; Wong, M.H. Environmental mercury contamination in China: Sources and impacts. Environ. Int. 2007, 33, 108–121. [Google Scholar] [CrossRef] [PubMed]
Water Quality Parameters | Abbr | Median | Mean ± SD | Max | Min | Environmental Quality Standard a |
---|---|---|---|---|---|---|
Nutrients (mg/L) | ||||||
Permanganate index | IMn | 3.32 | 4.49 ± 5.17 | 45.0 | 0.50 | 6 |
Chemical oxygen demand | COD | 12.4 | 18.1 ± 22.3 | 201 | 5.00 | 20 |
Biochemical oxygen demand | BOD5 | 2.04 | 3.68 ± 6.43 | 61.8 | 0.50 | 4 |
Ammonia | NH4+ | 0.28 | 1.11 ± 2.42 | 15.8 | 0.00 | 1.0 |
Nitrate | NO3− | 1.17 | 1.35 ± 1.19 | 9.55 | 0.06 | 10 b |
Total nitrogen | TN | 2.15 | 2.94 ± 3.28 | 24.1 | 0.35 | 1.0 |
Total phosphorus | TP | 0.09 | 0.22 ± 0.44 | 3.34 | 0.02 | 0.2 |
Heavy metals (μg/L) | ||||||
Mercury | Hg | 0.04 | 0.04 ± 0.02 | 0.11 | 0.01 | 0.10 |
Lead | Pb | 1.00 | 2.39 ± 3.39 | 22 | 0.05 | 50 |
Copper | Cu | 1.30 | 3.94 ± 9.06 | 93 | 0.1 | 1000 |
Zinc | Zn | 9.78 | 20.6 ± 20.8 | 100 | 0.5 | 1000 |
Selenium | Se | 0.50 | 1.27 ± 1.52 | 11.3 | 0.09 | 10 |
Arsenic | As | 1.60 | 2.72 ± 2.51 | 7 | 0.2 | 50 |
Cadmium | Cd | 0.65 | 0.50 ± 0.40 | 1 | 0.02 | 5.0 |
Chromium | Cr | 4.00 | 4.06 ± 0.76 | 12 | 2 | 50 |
Iron | Fe | 86.7 | 110 ± 90.9 | 492 | 1.5 | 300 b |
Manganese | Mn | 10.0 | 36.2 ± 62.4 | 430 | 0.3 | 100 b |
Water Quality Parameters | Cluster A (N = 23) | Cluster B (N = 3) | Cluster C (N = 1) | Dry Season (N = 6) | Wet Season (N = 6) |
---|---|---|---|---|---|
Nutrients (mg/L) | |||||
IMn | 3.23 ± 1.05 * | 8.26 ± 1.52 * | 25.1 | 4.89 ± 0.83 | 4.18 ± 0.25 |
COD | 12.8 ± 2.83 * | 31.8 ± 3.34 * | 112 | 19.9 ± 2.95 * | 16.5 ± 1.23 * |
BOD5 | 2.18 ± 0.82 * | 6.48 ± 1.64 * | 30.1 | 4.21 ± 0.86 * | 3.26 ± 0.45 * |
NH4+ | 0.40 ± 0.33 * | 4.59 ± 3.00 * | 8.84 | 1.25 ± 0.34 | 1.00 ± 0.35 |
NO3− | 1.24 ± 0.67 | 1.50 ± 0.94 | 1.26 | 1.43 ± 0.28 | 1.29 ± 0.33 |
TN | 1.96 ± 1.13 * | 8.32 ± 3.37 * | 11.5 | 3.22 ± 0.66 | 2.72 ± 0.54 |
TP | 0.11 ± 0.06 * | 1.52 ± 1.02 * | 1.00 | 0.23 ± 0.08 | 0.21 ± 0.07 |
Heavy metals (μg/L) | |||||
Hg | 0.04 ± 0.02 | 0.02 ± 0.02 | 0.07 | 0.03 ± 0.00 * | 0.04 ± 0.00 * |
Pb | 2.41 ± 3.12 | 2.61 ± 2.31 | 3.33 | 2.01 ± 0.67 | 2.47 ± 0.60 |
Cu | 2.97 ± 4.11 | 9.43 ± 11.26 | 10.3 | 4.32 ± 1.35 | 3.34 ± 1.48 |
Zn | 20.7 ± 20.49 | 10.9 ± 11.2 | 32.2 | 18.9 ± 2.42 | 20.5 ± 2.11 |
Se | 1.00 ± 0.99 | 1.71 ± 2.53 | 3.00 | 1.34 ± 0.38 | 1.11 ± 0.13 |
As | 2.41 ± 2.28 | 1.53 ± 2.22 | 7.00 | 2.66 ± 0.36 | 2.58 ± 0.26 |
Cd | 0.52 ± 0.40 | 0.21 ± 0.25 | 0.70 | 0.45 ± 0.08 | 0.51 ± 0.04 |
Cr | 3.99 ± 0.61 * | 2.64 ± 0.43 * | 4.00 | 3.85 ± 0.19 | 3.90 ± 0.25 |
Fe | 103 ± 55.5 * | 54.3 ± 48.7 * | 232 | 110 ± 24.7 | 101±15.1 |
Mn | 22.3 ± 30.8 * | 60.4 ± 85.4 * | 184 | 37.4 ± 14.0 | 32.9 ± 4.45 |
Water Quality Parameters | Component | |||
---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | |
IMn | 0.96 | 0.06 | 0.09 | 0.09 |
COD | 0.97 | 0.12 | 0.12 | 0.06 |
BOD5 | 0.96 | 0.08 | 0.08 | 0.02 |
NH4+ | 0.88 | −0.13 | −0.06 | 0.33 |
NO3− | 0.16 | −0.80 | −0.05 | 0.02 |
TN | 0.83 | −0.35 | −0.06 | 0.29 |
TP | 0.56 | −0.18 | −0.08 | 0.69 |
Hg | 0.26 | 0.66 | 0.16 | 0.01 |
Pb | −0.03 | 0.45 | 0.44 | 0.72 |
Cu | 0.18 | 0.19 | −0.25 | 0.77 |
Zn | 0.06 | 0.23 | 0.86 | 0.00 |
Se | 0.50 | −0.04 | −0.40 | −0.21 |
As | 0.38 | 0.41 | −0.59 | −0.22 |
Cd | −0.08 | 0.78 | −0.03 | 0.34 |
Cr | 0.03 | 0.04 | 0.21 | 0.14 |
Fe | 0.34 | −0.11 | 0.79 | −0.36 |
Mn | 0.79 | −0.05 | −0.03 | −0.18 |
Eigenvalues | 6.18 | 3.16 | 2.40 | 2.00 |
Percentage of variance | 36.35 | 18.61 | 14.13 | 11.77 |
Cumulative percentage of variance | 36.35 | 54.97 | 69.10 | 80.87 |
Water Quality Parameters | IMn | COD | BOD5 | NH4+ | NO3− | TN | TP | Hg | Pb | Cu | Zn | Se | As | Cd | Cr | Fe | Mn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IMn | 1 | ||||||||||||||||
COD | 0.98 ** | 1 | |||||||||||||||
BOD5 | 0.97 ** | 0.99 ** | 1 | ||||||||||||||
NH4+ | 0.86 ** | 0.84 ** | 0.85 ** | 1 | |||||||||||||
NO3− | 0.07 | 0.05 | 0.09 | 0.27 | 1 | ||||||||||||
TN | 0.77 ** | 0.75 ** | 0.75 ** | 0.94 ** | 0.48 ** | 1 | |||||||||||
TP | 0.58 ** | 0.52 ** | 0.45 * | 0.69 ** | 0.16 | 0.69 ** | 1 | ||||||||||
Hg | 0.30 | 0.31 | 0.28 | 0.22 | −0.26 | 0.10 | −0.03 | 1 | |||||||||
Pb | 0.09 | 0.13 | 0.08 | 0.11 | −0.36 | 0.00 | 0.34 | 0.28 | 1 | ||||||||
Cu | 0.25 | 0.22 | 0.18 | 0.32 | −0.14 | 0.23 | 0.57 ** | 0.07 | 0.52 ** | 1 | |||||||
Zn | 0.10 | 0.15 | 0.12 | −0.06 | −0.26 | −0.12 | −0.07 | 0.18 | 0.51 ** | −0.03 | 1 | ||||||
Se | 0.30 | 0.34 | 0.38 | 0.51 ** | 0.38 | 0.58 ** | 0.12 | 0.31 | −0.33 | −0.12 | −0.29 | 1 | |||||
As | 0.24 | 0.30 | 0.32 | 0.25 | −0.03 | 0.21 | −0.05 | 0.40 * | −0.18 | 0.20 | −0.29 | 0.75 ** | 1 | ||||
Cd | 0.00 | 0.04 | 0.02 | −0.03 | −0.56 * | −0.20 | 0.10 | 0.47 * | 0.58 ** | 0.19 | 0.02 | −0.07 | 0.17 | 1 | |||
Cr | 0.08 | 0.07 | −0.03 | −0.18 | −0.32 | −0.20 | 0.37 | −0.36 | 0.24 | 0.20 | 0.34 | −0.52 ** | −0.31 | 0.00 | 1 | ||
Fe | 0.36 | 0.39 * | 0.34 | 0.09 | 0.08 | 0.14 | −0.04 | 0.09 | 0.03 | −0.38 | 0.65 ** | −0.12 | −0.29 | −0.24 | 0.27 | 1 | |
Mn | 0.67 ** | 0.69 ** | 0.71 ** | 0.72 ** | 0.30 | 0.74 ** | 0.25 | 0.35 | −0.18 | −0.07 | 0.02 | 0.73 ** | 0.48 ** | −0.14 | −0.36 | 0.22 | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, A.; Ye, C.; Liu, W. Spatial and Seasonal Patterns of Nutrients and Heavy Metals in Twenty-Seven Rivers Draining into the South China Sea. Water 2018, 10, 50. https://doi.org/10.3390/w10010050
Deng A, Ye C, Liu W. Spatial and Seasonal Patterns of Nutrients and Heavy Metals in Twenty-Seven Rivers Draining into the South China Sea. Water. 2018; 10(1):50. https://doi.org/10.3390/w10010050
Chicago/Turabian StyleDeng, Amei, Changdong Ye, and Wenzhi Liu. 2018. "Spatial and Seasonal Patterns of Nutrients and Heavy Metals in Twenty-Seven Rivers Draining into the South China Sea" Water 10, no. 1: 50. https://doi.org/10.3390/w10010050
APA StyleDeng, A., Ye, C., & Liu, W. (2018). Spatial and Seasonal Patterns of Nutrients and Heavy Metals in Twenty-Seven Rivers Draining into the South China Sea. Water, 10(1), 50. https://doi.org/10.3390/w10010050