Staged Optimization Design for Updating Urban Drainage Systems in a City of China
Abstract
:1. Introduction
2. Methodology
2.1. Staged Cost Optimization Model
2.2. Calculating the Flooded Volume in Urban Areas
3. Case Study and Analysis
3.1. Study Area Description
3.2. Calculation of the Flooded Volume
3.3. Design of New Drainage Facilities Based on the Staged Cost Optimization Model
3.4. Design Results and Analysis
3.5. Sensitivity to Data Parameters
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liang, Q.; Smith, L.S. A High-Performance Integrated Hydrodynamic Modelling System for urban flood simulations. J. Hydroinform. 2015, 17, 518–533. [Google Scholar] [CrossRef]
- Kulkarni, A.T.; Eldho, T.I.; Rao, E.P.; Mohan, B.K. An integrated flood inundation model for coastal urban watershed of Navi Mumbai, India. Nat. Hazards 2014, 73, 403–425. [Google Scholar] [CrossRef]
- Zhong, H.; Overloop, P.J.V.; Gelder, P.V.; Rijcken, T. Influence of a Storm Surge Barrier’s Operation on the Flood Frequency in the Rhine Delta Area. Water 2012, 4, 474–493. [Google Scholar] [CrossRef]
- Xu, K.; Ma, C.; Lian, J.; Bin, L. Joint probability analysis of extreme precipitation and storm tide in a coastal city under changing environment. PLoS ONE 2014, 9, e109341. [Google Scholar] [CrossRef] [PubMed]
- Sang, Y.F.; Wang, Z.; Liu, C. What factors are responsible for the Beijing storm? Nat. Hazards 2013, 65, 2399–2400. [Google Scholar] [CrossRef]
- Zheng, Z.; Qi, S.; Xu, Y. Questionable frequent occurrence of urban flood hazards in modern cities of China. Nat. Hazards 2013, 65, 1009–1010. [Google Scholar] [CrossRef]
- Yin, J.; Ye, M.; Yin, Z.; Xu, S. A review of advances in urban flood risk analysis over China. Stoch. Environ. Res. Risk Assess. 2015, 29, 1063–1070. [Google Scholar] [CrossRef]
- Sun, F.; Yang, Z.; Huang, Z. Challenges and Solutions of Urban Hydrology in Beijing. Water Resour. Manag. 2014, 28, 3377–3389. [Google Scholar] [CrossRef]
- Wang, J.B.; Architecture, S.O. Review on Researches about Urban Waterlogging in China. J. Anhui Agric. Sci. 2013, 41, 12072–12078. [Google Scholar]
- Wan, X.P.; Zhu, G.; Ke, L.U. Introduction to Chengdu Central City Drainage System Capacity Upgrade Planning Project. China Water Wastewater 2014, 30, 67–69. [Google Scholar]
- Che, W.; Yang, Z.; Zhao, Y.; Li, J. Analysis of urban flooding control and major and minor drainage systems in China. China Water Wastewater 2013, 29, 13–19. [Google Scholar]
- Rui, X.; Jiang, C. Problems of urban drainage in China. Adv. Sci. Technol. Water Resour. 2013, 33, 1–5. [Google Scholar]
- Oxley, R.L.; Mays, L.W. Optimization—Simulation Model for Detention Basin System Design. Water Resour. Manag. 2014, 28, 1157–1171. [Google Scholar] [CrossRef]
- Song, X.M.; Kong, F.Z.; Zhan, C.S.; Han, J.W. A Hybrid Optimization Rainfall-Runoff Simulation Based on Xinanjiang Model and Artificial Neural Network. J. Hydrol. Eng. 2012, 17, 1033–1041. [Google Scholar] [CrossRef]
- Guo, Y.; Adams, B.J. An analytical probabilistic approach to sizing flood control detention facilities. Water Resour. Res. 1999, 35, 2457–2468. [Google Scholar] [CrossRef]
- Zhang, W.; Li, T. The Influence of Objective Function and Acceptability Threshold on Uncertainty Assessment of an Urban Drainage Hydraulic Model with Generalized Likelihood Uncertainty Estimation Methodology. Water Resour. Manag. 2015, 29, 2059–2072. [Google Scholar] [CrossRef]
- Yazdi, J.; Lee, E.H.; Kim, J.H. Stochastic Multiobjective Optimization Model for Urban Drainage Network Rehabilitation. J. Water Res. Plan. Manag. 2015, 141, 4014091. [Google Scholar] [CrossRef]
- Tao, T.; Wang, J.; Xin, K.; Li, S. Multi-objective optimal layout of distributed storm-water detention. Int. J. Environ. Sci. Technol. 2014, 11, 1473–1480. [Google Scholar] [CrossRef]
- Duan, H.F.; Li, F.; Tao, T. Multi-objective Optimal Design of Detention Tanks in the Urban Stormwater Drainage System: Uncertainty and Sensitivity Analysis. Water Resour. Manag. 2016, 30, 2213–2226. [Google Scholar] [CrossRef]
- Li, F.; Duan, H.F.; Yan, H.; Tao, T. Multi-Objective Optimal Design of Detention Tanks in the Urban Stormwater Drainage System: Framework Development and Case Study. Water Resour. Manag. 2015, 29, 2125–2137. [Google Scholar] [CrossRef]
- Abdellatif, M.; Atherton, W.; Alkhaddar, R.; Osman, Y. Flood risk assessment for urban water system in a changing climate using artificial neural network. Nat. Hazards 2015, 79, 1059–1077. [Google Scholar] [CrossRef]
- Zheng, F.; Leonard, M.; Westra, S. Application of the design variable method to estimate coastal flood risk. J. Flood Risk Manag. 2015. [Google Scholar] [CrossRef]
- Zope, P.E.; Eldho, T.I.; Jothiprakash, V. Impacts of urbanization on flooding of a coastal urban catchment: A case study of Mumbai City, India. Nat. Hazards 2015, 75, 887–908. [Google Scholar] [CrossRef]
- Mailhot, A.; Duchesne, S. Design Criteria of Urban Drainage Infrastructures under Climate Change. J. Water Resour. Plan. Manag. 2010, 136, 201–208. [Google Scholar] [CrossRef]
- Vojinovic, Z.; Sahlu, S.; Torres, A.S.; Seyoum, S.D.; Anvarifar, F.; Matungulu, H.; Barreto, W.; Savic, D.; Kapelan, Z. Multi-objective rehabilitation of urban drainage systems under uncertainties. J. Hydroinform. 2014, 16, 1044–1061. [Google Scholar] [CrossRef]
- Gersonius, B.; Ashley, R.; Pathirana, A.; Zevenbergen, C. Climate change uncertainty: Building flexibility into water and flood risk infrastructure. Clim. Chang. 2013, 116, 411–423. [Google Scholar] [CrossRef]
- Löwe, R.; Urich, C.; Sto. Domingo, N.; Mark, O.; Deletic, A.; Arnbjerg-Nielsen, K. Assessment of urban pluvial flood risk and efficiency of adaptation options through simulations—A new generation of urban planning tools. J. Hydrol. 2017, 550, 355–367. [Google Scholar]
- Maharjan, M.; Pathirana, A.; Gersonius, B.; Vairavamoorthy, K. Staged cost optimization of urban storm drainage systems based on hydraulic performance in a changing environment. Hydrol. Earth Syst. Sci. 2009, 13, 481–489. [Google Scholar] [CrossRef]
- Lian, J.J.; Xu, K.; Ma, C. Joint impact of rainfall and tidal level on flood risk in a coastal city with a complex river network: A case study of Fuzhou City, China. Hydrol. Earth Syst. Sci. 2013, 17, 679–689. [Google Scholar] [CrossRef]
- Mguni, P.; Herslund, L.; Jensen, M.B. Sustainable urban drainage systems: Examining the potential for green infrastructure-based stormwater management for Sub-Saharan cities. Nat. Hazards 2016, 82, 241–257. [Google Scholar] [CrossRef]
- Ramos, H.M.; Teyssier, C.; López-Jiménez, P.A. Optimization of Retention Ponds to Improve the Drainage System Elasticity for Water-Energy Nexus. Water Resour. Manag. 2013, 27, 2889–2901. [Google Scholar] [CrossRef]
- DHI. MIKE FLOOD 1D-2D Modeling, User Manual; DHI: Hørsholm, Denmark, 2011. [Google Scholar]
- Rossman, L.A. Storm Water Management Model User’s Manual; U.S. Environmental Protection Agency: Cincinnaty, OH, USA, 2015.
- Brunner, G.W. Hec-Ras River Analysis System: User’s Manual; US Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center: Davis, CA, USA, 2001. [Google Scholar]
- Ren-Jun, Z. The Xinanjiang model applied in China. J. Hydrol. 1992, 135, 371–381. [Google Scholar] [CrossRef]
- Guo, J. Rational hydrograph method for small urban watersheds. J. Hydrol. Eng. 2001, 6, 352–356. [Google Scholar] [CrossRef]
- Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. Global Sensitivity Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2008; Volume 7, pp. 183–206. [Google Scholar]
Return Period (Years) | 24-h Rainfall (mm) | Runoff Volume from Urban Areas (103 m3) | Runoff Volume from Mountain Areas (103 m3) |
---|---|---|---|
2 | 112.5 | 4663.5 | 2125.8 |
5 | 143.4 | 6076.9 | 2602.3 |
10 | 169.8 | 7088.2 | 3257.1 |
20 | 194.6 | 8006.1 | 3894.9 |
50 | 226.1 | 9151.8 | 4730.8 |
Time Steps j | Staged (Years) | SV (103 m3) | PV (m3/s) |
---|---|---|---|
1 | 1–3 | 420 | 45 |
2 | 4–6 | 420 | 45 |
3 | 7–9 | 430 | 45 |
4 | 10–12 | 430 | 46 |
5 | 13–15 | 430 | 46 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, K.; Bin, L.; Lian, J.; Liu, R. Staged Optimization Design for Updating Urban Drainage Systems in a City of China. Water 2018, 10, 66. https://doi.org/10.3390/w10010066
Xu K, Bin L, Lian J, Liu R. Staged Optimization Design for Updating Urban Drainage Systems in a City of China. Water. 2018; 10(1):66. https://doi.org/10.3390/w10010066
Chicago/Turabian StyleXu, Kui, Lingling Bin, Jijian Lian, and Run Liu. 2018. "Staged Optimization Design for Updating Urban Drainage Systems in a City of China" Water 10, no. 1: 66. https://doi.org/10.3390/w10010066
APA StyleXu, K., Bin, L., Lian, J., & Liu, R. (2018). Staged Optimization Design for Updating Urban Drainage Systems in a City of China. Water, 10(1), 66. https://doi.org/10.3390/w10010066