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Abstract: A novel time-domain Green’s function is developed for dealing with two-dimensional
interaction between water waves and floating bodies with considering viscous dissipation effects
based on the “fairly perfect fluid” model. In the Green’s function, the temporal (lower order viscosity
coefficient term) and spatial (higher order viscosity coefficient term) viscous dissipation effects are
fully considered. As compared to the methods based on the existing time-domain Green’s functions
that could not account for the spatial viscous dissipation, the method based on the new time-domain
Green’s function can give much better numerical results and overcome instability problems related to
the existing Green’s function, according to the numerical tests and comparison with CFD modeling
data for a few cases related to floating bodies with a flare angle.

Keywords: water waves; Green’s function; viscous dissipation effects; interaction between water
waves and floating bodies

1. Introduction

The interaction between water waves and floating bodies is one of most common occurrences
in marine or ocean engineering. The interaction could induce ships or floating platforms to make six
degree of freedom (6-DOF) motions, and wave loads may bring damage for the structures. Therefore,
it is of great significance to investigate the interaction between water waves and floating bodies.
There are many numerical methods that could be employed for such purpose, such as Green’s function
methods, finite element methods, meshless methods and so on. Among these methods, Green’s
function methods are most efficient because they are linear panel methods with panels or segments
distributed only on the wetted surface of floating bodies.

As a result of ignoring fluid viscosity, the conventional inviscid Green’s function methods
encounter difficulties in solving some water surface hydrodynamic problems associated with viscosity,
such as the decay of gravity waves during propagating and exact amplitude of resonant waves in
shielded waters. To overcome those, two main viscous correction models are proposed in the literature
to improve the Green’s function methods. In these two models, Green’s functions are obtained by
solving boundary value problems with viscous correction (BVP_V), in which the free-surface conditions
are corrected by a viscous dissipation term, while other conditions remain the same as the inviscid ones.

The first model is based on the “fairly perfect fluid” [1], where the dissipation term in the linear
momentum equation is −υ∇ψ (υ ≥ 0 is an artificial viscosity coefficient). In this model, the linear
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Bernoulli’s equation and free-surface condition with viscous dissipation term can be, respectively,
written as [1,2] 

∂ψ
∂t + p

ρ + gη + υψ = 0
∂2ψ

∂t2 + g ∂ψ
∂y + υ

∂ψ
∂t = 0

(1)

The second model is based on the linear incompressible NS equations, from which the linear
Bernoulli’s equation and free-surface condition can be, respectively, deduced as follows [3,4]

∂ψ
∂t + p

ρ + gη + 2ν
∂2ψ

∂y2 = 0
∂2ψ

∂t2 + g ∂ψ
∂y + 4ν

∂3ψ

∂t∂y2 = 0
(2)

where oy axis points upward; and ν and ψ are physical kinematic viscosity coefficient and velocity
potential of the fluid, respectively.

For the sake of distinction, in this paper, the Green’s function derived using the first and second
models are called the first and second kind of Green’s function with viscous dissipation effects (GF1 _V
and GF2 _V), respectively. Although the viscous dissipation term in Equation (1) is simpler than that
in Equation (2), it was indicated [4] that the two viscous correction approaches are equivalent to each
other due to the relationship between the artificial viscosity coefficient υ and the physical kinematic
viscosity coefficient ν: υ = 4νk2, where k is the wave number.

Although the viscous dissipation term in Equations (1) or (2) is linear with respect to the viscosity
coefficient, the exact Green’s function with viscous dissipation effects (GF_V) derived from the BVP_V
is nonlinear to it. Nonetheless, nearly all GF_V proposed in the literature only exactly contain the
lower order viscosity coefficient term, while the higher order ones are not fully considered. Admittedly,
the GF_V with lower order viscosity coefficient term (GF_V1) are sufficient to solve general water wave
problems, since in these problems the viscosity coefficients are low enough (the same as or analog
to real viscosity of water) to make the high order viscosity coefficient terms insignificant. The major
works in this respect are enumerated as follows. Chen [2] first proposed a GF1_V1 to eliminate the
numerical resonance phenomena in multi-body hydrodynamics, and a similar work was followed [5].
Then, a GF2_V1 was developed to analyze the time-harmonic ship waves [4]. Further, a tank GF2_V1

was presented for investigating the realistic effects of water viscosity and side walls on waves in
tanks [6].

The GF_V1, however, should not be appropriate for solving the hydrodynamic problems
associated with larger fluid viscosity (e.g., the sloshing of oil in the cargo tank) or with vortex shedding
around sharp edges of floating bodies, the later of which accompanies with significant fluid pressure
and flow energy loss. This is because the viscous dissipation effects in such cases are so large that the
higher order viscosity coefficient terms in GF_V cannot be ignored. Nevertheless, several attempts
of applying GF_V1 on solving such problems were also made in some works. Chen et al. [7] set a
dissipation surface from the sharp edge of a moonpool down to the seabed, imposed a continuous
flow velocity but a discontinuous pressure across this dissipation surface to simulate the pressure loss
near the sharp edge, and then employed a GF1_V1 to solve the BVP_V. Analogously, Cummins and Dias [8]
proposed a pressure discharge model to evaluate the viscous dissipation effects near a flap’s edge.
One should notice that in these two works the GF_V1 was not used alone but in combination with
additional pressure correction models in the vicinity of sharp edges.

All abovementioned GF_V are in frequency-domain, which are only suitable for solving
steady BVP_V. To investigate general initial BVP_V, the time-domain Green’s functions with viscous
dissipation effects (TGF_V) are required. However, very few efforts have been carried out in this respect.
A representative work was performed by Wu [9], who developed a three-dimensional (3D) TGF2_V1.
The main goal of Wu’s work was to eliminate the numerical instability of the TGF using the viscous
dissipation effects, because the conventional TGF suffer numerical instability in solving hydrodynamics
of floating bodies with flare angles [10]. However, Wu’s attempt failed when he utilized the TGF2_V1
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with the physical viscosity of water to study a cone heaving on the water surface. Wu’s failure mainly
results from the weak viscosity of water and without consideration of higher order viscosity coefficient
terms in TGF2_V1. Similar to the vortex shedding cases, one should artificially enlarge the viscosity
coefficient in TGF_V, as well as take the high order viscosity coefficient terms into account to enhance
the numerical stability of the TGF method.

From the above, it is clear that existing GF_V only contain the first order viscosity coefficient term,
and were mainly applied to solve the viscous water wave problems, while the problems associated
with vortex shedding or numerical instability in time-domain were not well addressed. Moreover,
GF_V with higher order viscosity coefficient terms have not been investigated.

In this paper, a novel TGF1 _V with exact viscosity coefficient terms (TGF1_V∞) is developed
in strict accordance with the corresponding BVP_V. One will witness later that TGF1_V∞ not only
includes the higher order viscous dissipation effects in the free surface memory term of TGF_V1, but
also completely modifies the instantaneous term of TGF1_V1 or TGF1. Without loss of generality,
the proposed TGF1_V∞ are limited to the two-dimensional (2D) flows with infinite depth, which have
never been studied in literature. In fact, the 2D TGF_V are able to evaluate the viscous dissipation
effects on hydrodynamics not only of 2D zero-speed floating bodies, but also of 3D high-speed ships
within the 2.5D or 2D + t framework [11]. Moreover, the approach provided here for developing the
2D TGF1_V∞ can also be employed for developing other types of GF_V∞.

The newly proposed (2D) TGF1_V∞ are employed to improve the numerical stability of a wedge
heaving on the water surface, and then to evaluate the added mass and damping of a hull section with
sharp keel rolling on the water surface, in which vortex shedding occurs. The object of the present
paper is to shed light on the intrinsic characteristic of the TGF1_V∞, and to extend the application of
GF_V or TGF_V on interaction between water waves and floating bodies with viscous dissipation
effects rather than the viscous surface wave problems.

2. Mathematical Models of TGF1_V∞

Let TGF1 _V be the first kind of time-domain Green’s function with viscous dissipation effects that
derived by solving the BVP with free-surface condition in Equation (1). Let TGF1_Vn be a TGF1 _V that
exactly contains first n orders viscosity coefficient terms, and TGF1_V∞ be the TGF1 _V that exactly
satisfies the definite conditions of the BVP_V. In this section, the mathematical model of TGF1_V∞

is derived. For the purpose of comparison, the model of TGF1_V1 is also given.

2.1. Definite Problem for TGF1_Vn

A right-hand Cartesian coordinate system o− xy is defined by placing ox axis on the undisturbed
water surface and the oy axis oriented positively upward. Let G1_n(p, t; q, τ; ε) be the expression of
TGF1_Vn representing the velocity potential at a field point p(x, y) at time t in the 2D fluid domain
Ω with non-dimensional viscosity coefficient ε due to a pulsating source of unit strength at the
point q(ξ, η) at time τ. G1_n(p, t; q, τ; ε) can be expressed as the combination of instantaneous term
G1_n(p, q; ε) and free-surface memory term G̃1_n(p, t; q, τ; ε)

G1_n(p, t; q, τ; ε) = δ(t− τ)G1_n(p, q; ε)− H(t− τ)G̃1_n(p, t; q, τ; ε) (3)

where the non-dimensional viscosity coefficient ε is defined as ε = υ/2ω0, δ(·) is Dirac function,
H(·) is Heaviside function, and ω0 is the reference frequency. Both instantaneous term G1_n(p, q; ε)

and free-surface memory term G̃1_n(p, t; q, τ; ε) in Equation (3) may contain viscous dissipation effects
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and differ from the inviscid ones. When the non-dimensional viscosity coefficient ε approaches zero,
TGF1_Vn should approach to the inviscid TGF

G(p, t; q, τ) = δ(t− τ) G(p, q)− H(t− τ)G̃(p, t; q, τ)

= δ(t− τ) ln rpq
rpq
− H(t− τ)

×2
∫ ∞

0

√
g
k ek(y+η) cos(k(x− ξ)) sin

(√
gk(t− τ)

)
dk

(4)

where rpq and rpq are the distance from field point p to source point q and q (mirror point of q with
respect to the water surface), respectively.

Taking Equations (1) and (2) into account, the free-surface memory term G̃1_n(p, t; q, τ; ε) satisfies
the following definite conditions

∇2
qG̃1_n = 0, p, q ∈ Ω, t > τ

∂2G̃1_n
∂τ2 + g ∂G̃1_n

∂η − 2εω0
∂G̃1_n

∂τ = 0, η = 0
G̃1_n = 0, t = τ

∇qG̃1_n = 0, rpq, rpq → ∞
G̃1_n = G̃, ε→ 0

(5)

where the subscript q from ∇q, ∇2
q means that the operation is taken with respect to variant q.

In the second part of Equation (5), the sign of the viscous term changes to minus due to the relation
∂G̃1_n/∂τ = −∂G̃1_n/∂t.

One should note that definite conditions for G1_n are not independent to G̃1_n, instead they should
be derived through the boundary integral equation, which connects G1_n and G̃1_n with each other.

2.2. Free-Surface Memory Term of TGF1_Vn

Applying the Fourier transform to the governing equations (Equation (5)) and taking initial and
boundary value conditions into account, the following free-surface memory terms are obtained

G̃1_∞ = 2
∫ ∞

0

√
g
k

e(k+ε2k0)(y+η)e−εω0(t−τ) cos
((

k + ε2k0

)
(x− ξ)

)
sin
(√

gk(t− τ)
)

dk (6)

where k0 = ω2
0/g is the reference wave number.

From Equation (6) we can write the G̃1_1 as

G̃1_1 = 2e−εω0(t−τ)
∫ ∞

0

√
g
k

ek(y+η) cos(k(x− ξ)) sin
(√

gk(t− τ)
)

dk (7)

The free-surface memory terms G̃1_n given in Equations (6) and (7) for 2D TGF1_Vn are new.
As comparison, Wu [9] only gave the G̃2_1 for 3D TGF2_V1, in which the first order viscosity coefficient
term is e−νk2(t−τ), equivalent to e−εω0(t−τ) in (7).

Rewriting Equations (6) and (7) by complex expressions, one gets

G̃1_n = Re
{

µ1_n(ε)× 2
∫ ∞

0

√
g
k

ek(y+η+i(x−ξ)) sin
(√

gk(t− τ)
)

dk
}

(8)

where Re{·} is the real part of the complex number, and µ1_n(ε) the viscous dissipation effects term
defined as

µ1_n(ε) =

{
e−εω0(t−τ), n = 1
e−εω0(t−τ)eε2k0(y+η+i(x−ξ)), n = ∞
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In contrast, the inviscid free-surface memory term in Equation (4) can be written as

G̃ = Re
{

2
∫ ∞

0

√
g
k

ek(y+η+i(x−ξ)) sin
(√

gk(t− τ)
)

dk
}

(9)

Comparing Equation (8) with Equation (9), it clearly shows that the viscous dissipation effects
in G̃1_∞ are reflected in the following aspects. The first is the time dissipation effect e−εω0(t−τ),
which makes the disturb from the source point to the field point exponentially decay along with time.
The second is the spatial dissipation effect eε2k0(y+η+i(x−ξ)), which accelerates the decay rate of
the disturb along the depth increasing direction, as well as shifts the phase of disturb along the
horizontal direction. In contrast, in the 3D G̃2_1 [9] or 2D G̃1_1, there only exists a lower order time
dissipation term, while the higher order spatial dissipation effects are not considered.

2.3. Instantaneous Term of TGF1_Vn

2.3.1. Definite Conditions for the Instantaneous Term of TGF1_Vn

As stated in Section 2.1, the definite conditions for the instantaneous term G1_n are relevant to the
free-surface memory term G̃1_n through the boundary integral equation. The derivation of definite
conditions for G1_n is detailed in Appendix A, and the final results are as follows

∇2
qG1_n = βδ(p− q), p, q ∈ Ω

G1_n = 0, η = 0

G1_n ∼ O
(

1
rpq

)
, rpq, rpq → ∞

G1_n = G, ε→ 0
∂G1_n

∂η = − 1
g

∂G̃1_n
∂τ , t = τ, η = 0

(10)

where β is an unknown constant dependent on the instantaneous term G1_n. One can also observe that
in Equations (10) the first three conditions for Gm_n are the same as the inviscid ones, while the last
condition is different corresponding to different free surface memory term G̃1_n.

2.3.2. Instantaneous Term of TGF1_V1

Obviously for n = 1 we have

∂G1_1

∂η

∣∣∣∣ t=τ,η=0 = 2
∫ ∞

0
eky cos k(x− ξ)dk (11)

which is the same as the inviscid condition. Thereby, all conditions for G1_1 are the same as the inviscid
ones, which suggests that the expression of G1_1 should be the same as the inviscid instantaneous
term G

G1_1 = G = ln
rpq

rpq
(12)

In [9], the 3D inviscid instantaneous term is G2_1 = 1/rpq − 1/rpq, which is also the same as the
inviscid one.

2.3.3. Instantaneous Term of TGF1_V∞

One can verify that, however, the last condition in Equation (10) for G1_∞ is not the same as the
inviscid one given in Equation (11). Thus, we need to design an appropriate G1_∞(p, q; ε) that satisfy
all conditions in Equations (10).
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Substituting Equation (6) into the last part of Equation (10) yields

∂G1_∞(p,q;ε)
∂η

∣∣∣
η=0

= Re
{
−2 eε2k0(y+η+i(x−ξ))

y+η+i(x−ξ)

}∣∣∣∣
η=0

∗
= Re

{
− eε2k0(y+η+i(x−ξ))

y+η+i(x−ξ)
− eε2k0(−|y−η|+i(x−ξ))

−|y−η|+i(x−ξ)

}∣∣∣∣
η=0

= Re
{
− eε2k0Rpq

Rpq
− eε2k0Rpq

Rpq

}∣∣∣∣
η=0

= ∂
∂η Re

{
E1
(
−ε2k0Rpq

)
− E1

(
−ε2k0Rpq

)}∣∣∣
η=0

(13)

with {
Rpq = y + η + i(x− ξ)

Rpq = −|y− η|+ i(x− ξ)

E1(z) =
∫ ∞

z

e−r

r
dr, z 6= 0

where E1(z) is the complex exponential integral function.
In step ∗ of Equation (13), a pair of vectors Rpq and Rpq is constructed in the complex plane.

The vector Rpq (from the mirror point q to the field point p) is straightforwardly obtained from the
original equation, while the vector Rpq is defined as −|y− η|+ i(x− ξ), which has the same value to

y + η + i(x− ξ) at η = 0, rather than other forms to ensure the convergency of the numerator eε2k0Rpq

in the equation. Obviously, the modulus of vectors Rpq and Rpq equals to the distance between source
points and the field point, i.e.,

∣∣Rpq
∣∣ = rpq,

∣∣Rpq
∣∣ = rpq. Then integrating the equation with respect to η,

we finally obtain a possible solution Re
{

E1
(
−ε2k0Rpq

)
− E1

(
−ε2k0Rpq

)}
for the instantaneous term.

It can be verified that Re
{

E1
(
−ε2k0Rpq

)
− E1

(
−ε2k0Rpq

)}
satisfies all conditions in Equation (10),

so we can define the instantaneous term G1_∞ as

G1_∞(p, q; ε) ≡ Re
{

E1

(
−ε2k0Rpq

)
− E1

(
−ε2k0Rpq

)}
(14)

One can find that the instantaneous term G1_∞ in Equation (14) contain instantaneous spatial
viscous dissipation effects, which are completely new and different from the inviscid instantaneous
term G1_1 or G in Equation (12). In fact, all existing GF_V in the literature including 3D TGF_V [9] do
not contain spatial viscous dissipation effect, i.e., their Rankine part or instantaneous term is the same
as the inviscid ones.

From the above, we know when the spatial viscous dissipation effects (higher order viscosity
coefficient term) is not considered in the free-surface memory term (G̃1_1), the instantaneous term
G1_1 for TGF1_V1 is inviscid and the same as the that (G) in original TGF. When both of temporal and
spatial viscous dissipation effects (all order viscosity coefficient terms) are taken into account in G̃1_∞,
the instantaneous term G1_∞ for TGF1_V∞ contains spatial viscous dissipation effects. The newly
developed TGF1_V∞ is shown in Table 1 and compared to the conventional TGF and TGF1_V1.
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Table 1. Comparison of newly developed 2D time-domain Green’s functions TGF1_V∞ with TGF1_V1

and conventional Green’s functions TGF. The TGF1_Vn (n = 1, ∞ ) are derived from a “fairly perfect
fluid” model [1]. In TGF1_V1 only the first order viscous dissipation effects are exactly considered, while
in TGF1_V∞ all order viscous dissipation effects are fully considered. The exact viscous dissipation
effects in TGF1_V∞ appear not only in the free-surface memory term of the Green’s function, but also
in the instantaneous term. ε is the non-dimensional viscosity coefficient, E1(·) the complex exponential
integral function.

2D Time-Domain Green’s Function TGF TGF1_V1 TGF1_V∞

Viscous dissipation effects in
free-surface memory term

Temporal effect - e−εω(t−τ) e−εω(t−τ)

Spatial effect - - eε2k0Rpq

Instantaneous term ln rpq
rpq

ln rpq
rpq

Re
{

E1
(
−ε2k0Rpq

)
− E1

(
−ε2k0Rpq

)}
2.3.4. Characteristics of the Instantaneous Term of TGF1_V∞

To analyze the characteristics of G1_∞, some special cases are discussed as follows. Firstly,
considering the case with small value of ε, it is well known that the complex exponential integral
E1
(
−ε2k0z

)
can be expanded as the following series

E1

(
−ε2k0z

)
= −γ− ln

(
−ε2k0

)
− ln z−

∞

∑
n=1

kn
0 zn

n!n
ε2n (15)

where γ is the Euler constant. The expansion (Equation (15)) holds at ε→ 0 and |z| < 1.
Using Equation (15), the instantaneous terms in Equation (14) can be expanded as

G1_∞ = ln
rpq

rpq
− k0 × Re

{
Rpq −Rpq

}
ε2 + O

(
ε4
)

(16)

Equation (16) suggests that when the viscosity coefficients approach zero, the instantaneous term
G1_∞ approaches to the inviscid term G.

Another important characteristic of G1_∞ is its asymptotic behavior. It is known that when z→ ∞ ,
the asymptotic expansion of E1(z) is

E1(z) ∼
e−z

z

(
1− 1!

z
+

2!
z2 −

3!
z3 + · · ·

)
(17)

If the source point q locates on S∞, denoting the distance between p and q by r∞ = rpq ∼= rpq → ∞ ,
then according to Equation (17), the asymptotic expansion of G1_∞(p, q; ε) can be written as

G1_∞(p, q; ε)
∣∣q∈S∞ ∼ O

(
e−ε2k0r∞

ε2k0r2
∞

)
(18)

In contrast, the asymptotic expansion of the inviscid instantaneous term G is

G(p, q)
∣∣q∈S∞ ∼ O

(
1

r∞

)
(19)

Comparing Equation (18) with Equation (19), one observes that if the viscosity coefficient is
sufficient large, the instantaneous term G1_∞ decays with rpq much faster than the inviscid term G.
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2.4. Boundary Integral Equation Using TGF1_Vn

The unknown constant β in Equation (10) is solved in Appendix B, and the final result is β = 1.
Thereby, according to Equation (A6) in Appendix A, we obtain the boundary integral equation

2πψ(t, p) +
∫

SB

(
G1_n

∂ψ(t,q)
∂nq

− ψ(t, q) ∂G1_n
∂nq

)
dsq

=
∫ t

0 dτ
∫

SB

(
G̃1_n

∂ψ(τ,q)
∂nq

− ψ(τ, q) ∂G̃1_n
∂nq

)
dsq

(20)

Equation (20) is a mixed source and dipole distribution model. One might prefer to use the pure
source distribution model in numerical practice. Extending the fluid domain into the interior of the
floating body, and, respectively, applying Green’s theorem to TGF1_Vn in exterior and interior fluid
domain, one gets boundary integral equation only with source points distributing on the mean wetted
body surface

2πψ(t, p) +
∫

SB

σ(t, q)G1_ndsq =
∫ t

0
dτ
∫

SB

σ(τ, q)G̃1_ndsq (21)

where σ is the source density. Taking the derivative of Equation (21) with respect to normal vector np

on point p, the source density equation is obtained

− πσ(t, p) +
∫

SB

σ(t, q)
∂G1_n
∂np

dsq = −2πVn(t, p) +
∫ t

0
dτ
∫

SB

σ(τ, q)
∂G̃1_n
∂np

dsq (22)

where Vn(t, p) is the velocity of point p in outward normal direction.

3. Application of TGF1_V∞ for Solving Interaction between Water Waves and Floating Bodies
with Considering Viscous Dissipation Effects

In Section 2, a novel Green’s function TGF1_V∞ was developed and here it is utilized to solve two
typical interaction problems between water waves and floating bodies that were not well addressed
using TGF or TGF_V1 in literature. The first is a wedge with flare angle of 45◦ heaving on the water
surface, which could induce numerical instability when using TGF. The second is a hull section with
sharp keel rolling on the water surface, in which significant vortex shedding occurs. For the purpose
of comparison, numerical results from TGF and TGF1_V1 are also provided in the cases.

3.1. Wedge Heaving on the Water Surface

The wedge–water interaction represents a type of common marine engineering hydrodynamic
problems, such as ship bow slamming, planing craft navigates on water surface, seaplane lands on
water and so on. The wedges generally are not wall-sided, or with flare angle. It is well-known that
numerical instability might appear when using TGF to evaluate hydrodynamics of floating bodies
with flare angles. Several numerical tricks were proposed to conquer this difficulty. For example,
Dai and Duan [10] modified the upper limit of the integral with respect to wave number in the
free-surface memory term from infinity to a finite value. Duan [12] set the source density on the
segment adjacent to water surface to zero. Beyond that, the numerical instability was considered to
have relation with no consideration of the viscous dissipation effects in the flow, so Wu [9] made an
attempt to solve it using a viscous correction approach. He exploited a 3D TGF2_V1 to study a heaving
cone, but the numerical instability was not completely eliminated. In this work, a similar problem is to
be solved using TGF1_V∞.

As shown in Figure 1, we consider a 2D wedge with mean draught d = 1 m, half of mean
breadth b = 1 m, flare angle θ = 45◦, which harmonically heaves on the water surface with frequency
ω = 0.8 rad/s. The problem is considered in the linear framework, so the heave amplitude is assumed
to be unit. Each side of the wetted surface is equally divided into 50 segments, and let s = 1, 2, · · · , 50
be indices of segments orderly from toppest one to the lowest one under water surface. In this case,
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the numerical instability rises when using the conventional TGF to solve the hydrodynamic force acting
on the wedge. Here the newly developed TGF1_V∞ is employed to improve the numerical stability.
In this method, the heave frequency is set as the reference frequency in the viscosity coefficient,
and five empirically selected non-dimensional viscosity coefficient values ε = 12.5, 10, 7.5, 5.0, 2.5,
are respectively imposed onto the field points on the first five segments ( s = 1 ∼ 5) on each side
of the wetted surface, while the viscosity coefficients on the rest segments are set to zero. The basic
concept of this methodology is to set an artificial thin viscous layer right below the water surface
with gradually decreasing viscosity, which is expected to maintain the numerical stability at segments
adjacent to water surface, since the divergence always occurs firstly at these segments. Noting that the
numerical instability only occurs at the step of solving source density, we reset viscosity coefficient
values on all segments to zero once source density has been solved. TGF and TGF1_V1 are employed
for comparison.

Figure 2 panels (a–f) portray the time series of source density σ3 (real part and imaginary part)
on segments s = 1, 5, 50 using methods TGF, TGF1_V1 and TGF1_V∞. One can observe that on all
segments the source density solved by the inviscid TGF diverges within a few heave periods. Moreover,
the closer the segment approaches to free surface, the faster the source density diverges. The method
TGF1_V1 does not improve the results too much, but exaggerates the amplitude of source density.
In contrast, the method TGF1_V∞ desirably smooths the time series of source density without changing
amplitudes or phases, and the results show significant periodic characteristics with the same period
as heave motion. One can notice that, in Figure 2c,d, oscillations with higher frequency occur in the
source density obtained by TGF1_V∞, but they do not bring in numerical instability. In Figure 2a–f,
it is also worth noting that the amplitude of source densities gradually decreases from s = 1 to s = 50,
while the phase almost remains the same.

Figure 3a,b depicts the time series of non-dimensional heave force f3/∆g (real part and imaginary
part), where ∆ is the mean immersed volume of the wedge. The TGF results diverge after two periods,
while the TGF1_V1 results are slightly better, diverging after four periods. In contrast, the TGF1_V∞

results are very stable in both of instantaneous state and steady state. One can even find that, in the
first two periods, the TGF1_V1 results detectably deviate from the TGF ones at the crests or troughs,
while the TGF1_V∞ results agree well with TGF ones. Moreover, the amplitude of the non-dimensional
heave force obtained by TGF1_V∞ in Figure 3a is |Re{ f3/∆g}| = 0.291, while that from an in-house
frequency-domain strip method STF is |Re{ f3/∆g}| = 0.279, which further confirms the validity of
the TGF1_V∞ method.Water 2018, 10, 72  9 of 17 
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Figure 2. Comparison of time series of source density (real and imaginary part) on segments s = 1, 5, 50
using methods TGF, TGF1_V1 and TGF1_V∞. In TGF1_V1, only the temporal viscous dissipation
effects is considered, while in TGF1_V∞ both temporal and spatial viscous dissipation effects are taken
into account. In TGF1_Vn, the reference frequency is set as the heave frequency: ω0 = 0.8 rad/s, five
non-dimensional viscosity coefficient values ε = 12.5, 10, 7.5, 5.0, 2.5 are respectively imposed onto
the field points on the first five segments ( s = 1 ∼ 5) on each side of the wetted surface. (a) Real part
of source density on segment s = 1; (b) Imaginary part of source density on segment s = 1; (c) Real part
of source density on segment s = 5; (d) Imaginary part of source density on segment s = 5; (e) Real
part of source density on segment s = 50; (f) Imaginary part of source density on segment s = 50.
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Figure 3. Comparison of time series of heave forces (real and imaginary part) using methods TGF,
TGF1_V1 and TGF1_V∞. The viscous dissipation effects in TGF1_Vn are considered only at the step of
solving source density, after which the viscosity coefficient on all segments is set to zero. (a) Real part
of heave force; (b) Imaginary part of heave force.

The numerical results in this case confirm the possibility of improving the numerical stability of
the TGF method on solving oscillating floating bodies with flare angle using TGF1_V∞, in which the
viscosity coefficient on the flow field near water surface is deliberately enlarged. In contrast, in Wu [9],
the viscosity coefficient in TGF2_V1 was setting as the physical viscosity of water, which is not strong
enough to improve the numerical stability of the TGF method. Moreover, the failure of TGF1_V1

in this case suggests that the spatial viscous dissipation effects (higher order viscosity coefficient),
which was never considered in literature, should not be ignored when the viscosity coefficient is
deliberately heightened.

3.2. Hull Section with Sharp Keel Rolling on the Water Surface

In contrast to the success on evaluating heave and pitch motions of ship hulls in waves using
inviscid potential theories, it is difficult to accurately predict the roll of hulls with bilges or sharp
edges due to the lack of viscous damping in those methods, even if the motion amplitude is small.
To improve the numerical results, empirical corrections were added to the classical strip-theory [13],
2.5D method [14] or 3D Rankine panel methods [15], even vortex shedding methods were embedded
into potential flows [16]. Chen et al. [7] and Cummins and Dias [8] employed frequency-domain
GF1_V1 combined with pressure discharge methods to simulate the energy loss around sharp edges
of floating bodies, in which a dissipation surface was added or specified near the sharp edge, and
a continuous flow velocity but a discontinuous pressure were imposed across the surface. In this
work, we attempt to evaluate hydrodynamics of a hull section with sharp keel rolling on water surface
straightforwardly using the newly developed TGF1_V∞ without any pressure discharge methods.

As shown in Figure 4, we consider a hull section S22 with sharp keel investigated in [17], which
has mean draught d = 9.5 m and half of mean breadth b = 4.5 m. The hull section harmonically
rolls on the water surface with frequencies ω = 0.4 ∼ 2.6 rad/s, which covers nearly all possible
frequencies encountered in real sea waves. In the linear framework, the roll amplitude is assumed to
be unit. Each side of the wetted surface is equally divided into 60 segments, and let s = 1, 2, · · · , 60 be
indices of segments orderly from top most one to the bottom most one under water surface.
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Noting that the section S22 has flare angle, we need to eliminate the numerical instability of the 
TGF method. One could employ the approach proposed in the last sub-Section to do so. However, 
the distribution of viscosity coefficient values in the flow field for eliminating the numerical 
instability might not satisfy the requirement for capturing the viscous dissipation effects in rolls. 
Therefore, in this case we adopt another approach, e.g., setting the source density on the segments 
adjacent to water surface at each time step to zero [12], to eliminate the numerical instability. After 
several tries, we set the source density on the first 3 segments (ݏ = 1~3) of each side adjacent to 
water surface to zero, under the condition of which the numerical stability holds when using TGFଵ_Vஶ to study rolls of the section S22. 

Figure 4. A hull section S22 with sharp keel [17] harmonically rolls on the water surface, with mean
draught d = 9.5 m, half of mean breadth b = 4.5 m, roll frequencies ω = 0.4 ∼ 2.6 rad/s. Each side of
the wetted surface is equally divided into 60 segments.

Noting that the section S22 has flare angle, we need to eliminate the numerical instability of the
TGF method. One could employ the approach proposed in the last sub-Section to do so. However, the
distribution of viscosity coefficient values in the flow field for eliminating the numerical instability
might not satisfy the requirement for capturing the viscous dissipation effects in rolls. Therefore, in this
case we adopt another approach, e.g., setting the source density on the segments adjacent to water
surface at each time step to zero [12], to eliminate the numerical instability. After several tries, we set
the source density on the first 3 segments ( s = 1 ∼ 3) of each side adjacent to water surface to zero,
under the condition of which the numerical stability holds when using TGF1_V∞ to study rolls of the
section S22.

Here we take the roll frequency as the reference frequency in the viscosity coefficient, and set the
non-dimensional viscosity coefficient as ε = 0.15 for the whole flow field, which can lead to pretty
good results. The viscous dissipation effects generated by this viscosity coefficient are supposed to
capture the pressure loss in the vicinity of sharp keel.

Figure 5a,b depicts the roll-into-roll added mass and damping coefficients, respectively.
Figure 5c,d depicts the roll-into-sway added mass and damping coefficients, respectively. The CFD
results were obtained in [17] using solver OpenFOAM, in which the roll amplitude is fixed at 3.21◦

and significant vortex shedding phenomenon was observed. As suggested by Lavrov et al. [17],
the hydrodynamic coefficients from TGF, TGF1_V1 and TGF1_V∞ are calculated using cosine and sine
Fourier transforms of the force or moment at a steady phase.

In Figure 5, one can observe that there exists significant discrepancy between inviscid TGF and
CFD results, while the TGF1_V∞ results agree well with the CFD ones. In fact, TGF1_V∞ not only
accurately predicts the roll damping by taking viscous damping that is ignored by TGF into account,
but also significantly improves the added mass of the roll section S22. This result suggests that the
viscous dissipation effects have an impact not only on the roll damping, but also on the added mass,
though the viscous damping might dominate the influence of viscosity.

On the other hand, it is obvious that the agreement between TGF1_V1 and CFD results is not as
well as that between TGF1_V∞ and CFD results, especially the added mass in Figure 5a,c. This suggests
that the spatial viscous dissipation effects (higher order viscosity coefficient) also play an important
role in the whole viscous dissipation effects, which should not be ignored when the viscosity coefficient
is sufficient large in the vortex shedding cases.

Admittedly, the TGF1_V∞ does not perform well at low frequencies, which might due to
underestimating viscosity coefficient when setting ε = 0.15 in this frequency region. To make
TGF1_V∞ work better, more samples are needed for training to summarize a more practical viscosity
coefficient value.
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Figure 5. Hydrodynamic coefficients of section S22 using TGF, TGF1_V1 and TGF1_V∞ are compared
with CFD results [17]. The non-dimensional viscosity coefficient in TGF1_V1 and TGF1_V∞ is
set as ε = 0.15 on all segments and the roll of frequency ω is set as the reference frequency in
viscosity coefficient: (a) roll-into-roll added mass coefficients; (b) roll-into-roll damping coefficients;
(c) roll-into-sway added mass coefficients; and (d) roll-into-sway damping coefficients.

The numerical results in this case suggest that the TGF1_V∞ can be directly employed for
capturing the pressure loss of a floating body rolling on the water surface with vortex shedding in the
vicinity of the sharp edge. In contrast, in works of Chen et al. [7] or Cummins and Dias [8], the GF1_V1

mainly relies on an additional pressure discharge model to capture the pressure loss. The TGF1_V1

results in this case also points out the importance of spatial viscous dissipation effects (second order
viscosity coefficient), which can significantly improve the hydrodynamic coefficients with viscous
dissipation effects. Moreover, as compared to those viscous damping correction methods [13,15] that
only make corrections on the damping coefficient, the TGF1_V∞ can consider the viscous dissipation
effects not only on damping coefficient, but also on added mass coefficient.

4. Conclusions

This paper presents a novel time-domain Green’s function (TGF1_V∞) for the 2D interaction
between water waves and floating bodies with viscous dissipation effects. The TGF1_V∞ is derived
through the definite problem based on “fairly perfect fluid”. The newly proposed TGF1_V∞ is
different from the existing ones (TGF_V1) as follows. In TGF1_V∞, both the temporal (lower order
viscosity coefficient term) and spatial (higher order viscosity coefficient term) viscous dissipation
effects are taken into account, while the existing TGF_V1 can only consider the temporal viscous
dissipation effects. In TGF1_V∞, both the free-surface memory term and instantaneous term contain
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viscous dissipation effects, while, in the existing TGF_V1, only the free-surface memory term has
viscous dissipation effects.

The advantages of TGF1_V∞ are demonstrated through two typical cases. One is a wedge with
flare angle heaving on the water surface. The numerical results suggest that the method based on
TGF1_V∞ gives stable numerical results while these from the method based on the existing Green’s
function (TGF1_V1) lead to divergent and/or unstable results. The results indicate that the spatial
viscous dissipation effects play an important role in eliminating the numerical instability associated
with the existing methods. The other case is a hull section of a ship with a sharp keel rolling on the
water surface, in which vortex shedding phenomenon appears. The comparison of the results from the
methods based on TGF1_V∞ and the existing Green’s function with these results from CFD simulations
suggests that the viscous dissipation effects have impact not only on the roll damping, but also on the
roll added mass, and that the method based on the new TGF1_V∞ can give much closer results to the
CFD simulations.

Moreover, the newly developed instantaneous term in the TGF1_V∞ has an advantage of faster
decay rate than that of the existing Green’s function when the distance between the field and source
points increases, which can significantly reduce the computational costs when employing it as the
Green’s function of Rankine panel methods.

In the future, the time-domain Green’s functions (TGF1_V∞) for the 3D interaction between water
waves and floating bodies with viscous dissipation effects will be developed to be able to solve more
practical problems.
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Appendix A

Let SF, SB, S∞ be the water surface, wetted surface of floating body, and surrounding surface at
infinity, respectively. The velocity potential at point q at time τ is denoted by ψ(τ, q). Applying Green’s
theorem to ψ(τ, q) and G1_n(p, t; q, τ; ε), one obtains

∫ t

0
dτ
∫

SF+SB+S∞

(
ψ(τ, q)

∂G1_n
∂nq

− G1_n
∂ψ(τ, q)

∂nq

)
dsq = 2πβψ(t, q) (A1)

where β is an unknown constant decided by the instantaneous term in G1_n.
The free-surface term G̃1_n is harmonic in the fluid domain, so applying Green’s theorem to

ψ(τ, q) and G̃1_n, we have

∫ t

0
dτ
∫

SF+SB+S∞

(
ψ(τ, q)

∂G̃1_n
∂nq

− G̃1_n
∂ψ(τ, q)

∂nq

)
dsq = 0 (A2)

Using the boundary conditions for G̃1_n on S∞, it can be deduced that the integral of
Equation (A2) on S∞ equals to 0. Using the initial and free-surface conditions for ψ(τ, q) and first kind
G̃1_n(p, t; q, τ; ε), the integral (A2) on SF can be transformed to
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∫ t
0 dτ

∫
SF

(
ψ ∂G̃1_n

∂nq
− G̃1_nψnq

)
dsq = − 1

g
∫ t

0 dτ
∫

SF

(
ψ
(

∂2G̃1_n
∂τ∂τ − 2εω ∂G̃1_n

∂τ

)
− G̃1_n(ψττ + 2εωψτ)

)
dsq

= − 1
g
∫

SF

(
ψ ∂G̃1_n

∂τ − G̃1_nψτ − 2εωψG̃1_n

)
|tτ=0dsq

= − 1
g
∫

SF
ψ ∂G̃1_n

∂τ |
t
τ=0dsq

(A3)

Substituting Equation (A3) into Equation (A2) yields

∫ t

0
dτ
∫

SB

(
ψ(τ, q)

∂G̃1_n
∂nq

− G̃1_n
∂ψ(τ, q)

∂nq

)
dsq =

1
g

∫
SF

ψ(τ, q)
∂G̃1_n

∂τ

∣∣∣∣∣τ=tdsq (A4)

On the other hand, substituting Equation (A2) into Equation (A1), and taking Equation (3) into
account, one obtains

∫ t

0
dτ
∫

SF+SB+S∞

(
ψ(τ, q)

∂
(
δ(t− τ)G1_n

)
∂nq

− δ(t− τ)G1_n
∂ψ(τ, q)

∂nq

)
dsq = 2πβψ(t, q)

i.e., ∫
SF+SB+S∞

(
ψ(t, q)

∂G1_n
∂nq

− G1_n
∂ψ(t, q)

∂nq

)
dsq = 2πβψ(t, q)

or ∫
SB

(
ψ(t, q) ∂G1_n

∂nq
− G1_n

∂ψ(t,q)
∂nq

)
dsq − 2πβψ(t, q)

=
∫

SF+S∞

(
G1_n

∂ψ(t,q)
∂nq

− ψ(t, q) ∂G1_n
∂nq

)
dsq

(A5)

Subtracting Equation (A4) from Equation (A5) yields

∫
SB

(
ψ

∂G1_n
∂nq
− G1_n

∂ψ
∂nq

)
dsq −

∫ t
0 dτ

∫
SB

(
ψ

∂G̃1_n
∂nq
− G̃1_n

∂ψ
∂nq

)
dsq − 2πβψ

=
∫

SF
G1_n

∂ψ
∂η dsq −

∫
SF

ψ

(
∂G1_n

∂nq
+ 1

g
∂G̃1_n

∂τ

∣∣∣∣
τ=t

)
dsq

−
∫

S∞

(
ψ

∂G1_n
∂nq
− G1_n

∂ψ
∂nq

)
dsq

(A6)

If the right hand side of Equation (A6) equals to 0, i.e., G1_n =
∂G1_n

∂nq
+ 1

g
∂G̃1_n

∂τ

∣∣∣∣ τ=t = 0 on SF,

and G1_n ∼ O
(
1/rpq

)
on S∞, the singular points can be distributed only on the wetted surface SB.

Therefore, the definite conditions for the instantaneous term G1_n(p, q; ε) can be concluded as following
∇2

qG1_n = βδ(p− q), p, q ∈ Ω
G1_n = 0, η = 0

G1_n ∼ O
(

1
rpq

)
, rpq → ∞

∂G1_n
∂η = − 1

g
∂G̃1_n

∂τ , t = τ, η = 0

(A7)
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Figure A1. The integral path for the instantaneous term G1_∞(p, q; ε).

The harmonic characteristic of G1_∞(p, q; ε) (p 6= q) can be easily verified. Thereby, applying
Green’s theorem to ψ(t, q) and G1_∞(p, q; ε) yields

∫
SF+SB+S∞+Sε+SD++SD−

(
ψ

∂G1_∞

∂nq
− G1_∞

∂ψ

∂nq

)
dsq = 0 (A8)

Since the point q locates at the upper half space, the Green’s theorem with respect to ψ(t, q) and
Re
{

E1
(
−ε2k0Rpq

)}
equals to 0 and the integral of Equation (A8) on Sε + SD+ + SD− reduces to

∫
Sε+SD++SD−

(
ψ

∂G1_∞
∂nq
− G1_∞

∂ψ
∂nq

)
dsq

=
∫

Sε+SD++SD−

(
Re
{

E1
(
−ε2k0Rpq

)} ∂ψ
∂nq
− ψ

∂Re{E1(−ε2k0Rpq)}
∂nq

)
dsq

(A9)

Defining rε =
∣∣Rpq

∣∣, according to Equation (15), the first term at right hand side of Equation (A9)
on Sε can be expanded as ∫

Sε
Re
{

E1
(
−ε2k0Rpq

)} ∂ψ
∂nq

dsq

=
∫

Sε
∂ψ
∂nq

(
−γ− ln

∣∣ε2k0Rpq
∣∣+ O(rε)

)
dsq

rε→0
= ∂ψ(t,p)

∂nq

∫ 2π
0

(
−γ− ln

(
ε2k0rε

))
rεdθ = 0

(A10)

As shown in Figure A1, the second term at right hand side of Equation (A9) on Sε can be calculated
as follows ∫

Sε
ψ

∂Re{E1(−ε2k0Rpq)}
∂nq

dsq

=
∫ π

0 ψRe
{

exp
(

ε2k0rεei( 3π
2 −θ)

)}
dθ

+
∫ 2π
π

ψRe
{

exp
(

ε2k0rεei(θ−π2 )
)}

dθ
rε→0
= 2πψ

(A11)

The integral at right hand side of Equation (A9) on SD+ + SD− equals to 0 due to the inverse
gradient direction on SD− and SD+, i.e.,

∫
SD++SD−

(
Re
{

E1

(
−ε2k0Rpq

)} ∂ψ

∂nq
− ψ

∂Re
{

E1
(
−ε2k0Rpq

)}
∂nq

)
dsq = 0 (A12)

Combining Equations (A8)–(A12) yields

∫
SF+SB+S∞

(
ψ

∂G1_∞

∂nq
− G1_∞

∂ψ

∂nq

)
dsq = 2πψ (A13)
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Therefore, the unknown constant β in Equations (10) and (A7) equals to

β = 1 (A14)
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