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Abstract: Gemini surfactants, with double hydrophilic and hydrophobic groups, offer potentially
orders of magnitude greater surface activity compared to similar single unit molecules. A cationic
Gemini surfactant (Propyl didodecyldimethylammonium Bromide, PDDDAB) and a conventional
cationic surfactant (Dodecyltrimethylammonium Bromide, DTAB) were used to pre-treat and
generate activated carbon. The removal efficiency of the surfactant-modified activated carbon
through adsorption of chromium(VI) was investigated under controlled laboratory conditions.
Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) were
used to investigate the surface changes of surfactant-modified activated carbon. The effect of
important parameters such as adsorbent dosage, pH, ionic strength and contact time were also
investigated. The chromium(VI) was adsorbed more significantly on the Gemini surfactant-modified
activated carbon than on the conventional surfactant-modified activated carbon. The correlation
coefficients show the data best fit the Freundlich model, which confirms the monolayer adsorption
of chromium(VI) onto Gemini surfactant-modified activated carbon. From this assessment, the
surfactant-modified (especially Gemini surfactant-modified) activated carbon in this study showed
promise for practical applications to treat water pollution.
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1. Introduction

Because of its ecotoxicity, and common occurrence in industrially affected environments,
chromium pollution has gained a high profile [1]. The hexavalent oxidation state of chromium is more
toxic than other forms in water and can cause serious illness or even death [2,3]. According to the
Chinese law for wastewater discharge, the maximum levels permitted for total chromium are 0.5 mg/L
and for hexavalent chromium are 0.2 mg/L. At present, the methods of controlling chromium pollution
include chemical precipitation, ion exchange, reduction, adsorption, extraction, membrane filtration
and biosorption treatment [4–7]. Approaches using adsorption are considered to have potentially
the best treatment effect [8]; modified activated carbon can enhance the adsorption performance
of activated carbon, and potentially provides a high efficiency and low cost adsorbent for treating
chromium(VI) pollution [9,10].

Activated carbon adsorption is non-selective, and the adsorption process is susceptible to
interference, especially metal cations, and many studies show that surfactant-modified activated carbon
can enhance the adsorption capacity of metal ions [11]. Ewecharoen [12] used sodium polyacrylate to
graft to activated carbon, and obtained good performance for nickel removal. Peñas-Sanjuán [13] used
polyalkylamine as the activated carbon surfactant, it has excellent removal performance for Pd (II).
Sun [11] used amine-crosslinked copolymer to modify activated carbon, which was more efficient than
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the original activated carbon in the treatment of chromium wastewater, and the influencing factors
and mechanism of adsorption were explored. A modified activated carbon treated by ethylenediamine
provided better Cr (VI) removal under visible light [14]. Treatment with green synthetic nano-zinc
oxide also produced activated carbon, which performed strongly in treating chromium in solution [15].
A summary of recent studies on the capability of activated carbon to remove heavy metals is provided
in Table 1.

Different from those traditional surfactants (such as DTAB), which contain one hydrophobic chain
and one hydrophilic group in their “amphiphilic” structure, the Gemini surfactant molecules (such as
PDDDAB) contain two hydrophilic groups, two hydrophobic chains and a rigid spacer. Because of
this molecule structure, Gemini surfactant may offer orders of magnitude greater surface activity
compared to similar single unit molecule. We report here the design and evaluation of the efficiency
and mechanism of removal of heavy metals by using Gemini surfactant-modified activated carbon.

Table 1. Examples of treatments for activated carbon in applications to remove heavy metals from the
aqueous phase.

Treatment Step Effect Reference

Nitric acid, ammonium persulfate and
hydrogen peroxide in the solution with

gaseous oxygen at 350 ◦C

The adsorption of Cr(III) increased but Cr(VI)
decreased on oxidation [16]

Using (NH4)2S2O8 in 1 M H2SO4 to oxidize
carbon materials

The adsorption of Zn(II) increased but surface
area and carbon porosity decreased after

oxidation under static conditions
[17]

Making acidic oxygen functional groups
into activated carbon by HNO3 oxidation

The adsorption of cadmium increased after
oxidized and decreased significantly after heat
treatment to progressively eliminate the oxygen
functional groups of various thermal stability

[18]

Heat treatment (1200 K) in nitrogen, air
oxidation (693 K), and nitric acid treatment

of activated carbons

Have a much higher Hg0 adsorption capacity
(925 mg/g)

[19]

Using carbon (1.5 mm) and heating from
ambient temperature to 900 ◦C in SO2

The adsorption of Cd2+ was 70.3%.
The maximum adsorption (88.3%) of Pb(II)
with initial lead concentration of 50 mg/L

[20]

Modified with 1.0 M citric acid and
1.0 M NaOH

The adsorption capacity was increased to
14.92 mg/g, which was 140% higher than the

unmodified carbon
[21,22]

Heat treatment under the atmosphere of
NH3 after pre-oxidation with HNO3

The higher adsorption rate and capacity toward
Cu(II) was obtained [23]

Modified with iron salt solution
The optimum removal of As(III), As(V),

Fe, and Mn were 93%, 98%, 100%,
and 41%, respectively

[24]

Modified with iron hydro (oxide)
nanoparticles

Their maximum arsenic adsorption capacity
varied from 370 ug/g to 1250 ug/g [25]

2. Materials and Methods

2.1. Materials and Instrument

The reagents used in this study were: powdered activated carbon (AC, analytical grade, Tianjin
Kemiou Chemical Reagent Co., Ltd., Tianjin, China), acetone (chromatography pure, Tianjin Kemiou
Chemical Reagent Co., Ltd., Tianjin, China), potassium dichromate (analytical grade, Tianjin Kemiou
Chemical Reagent Co., Ltd., Tianjin, China), sulfuric acid (excellent grade pure, Tianjin Kemiou
Chemical Reagent Co., Ltd., Tianjin, China), hydrochloric acid (excellent grade pure, Tianjin Kemiou
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Chemical Reagent Co., Ltd., Tianjin, China), phosphoric acid (excellent Pure, Tianjin Kemiou
Chemical Reagent Co., Ltd., Tianjin, China), sodium hydroxide (excellent grade pure, Tianjin Kemiou
Chemical Reagent Co., Ltd., Tianjin, China), Dodecyltrimethylammonium Bromide (DTAB, molecular
formula: CH3(CH2)11(CH3)3NBr, purity: analytically pure, Tianjin Kemiou Chemical Reagent
Co., Ltd., Tianjin, China), Propyl didodecyldimethylammonium Bromide (PDDDAB, molecular
formula: [CH3(CH2)11(CH3)2NBr]2(CH2)3, 50% pure, Henan Titaning Chemical Technology Co.,
Ltd., Baoshun, China).

The instruments used in this study were: Ultraviolet and visible spectrophotometer
(WFZ UV-2000, Unico (Shanghai) Instrument Co., Ltd., Shanghai, China), Scanning electron
microscopy (SEM, JSM-6380LV, JEOL Ltd., Akishima, Japan), Fourier transform infrared spectrometer
(FTIR, Nicolet 6700, Thermo Electron Corporation, Waltham, MA, America), Electronic analytical
balance (FA2004, Hengping (Shanghai) Instrument Co., Ltd., Shanghai, China), Electric drying oven
with forced convection (GZX-9070 MBE, INESA, Shanghai, China), Magnetic stirrer(GSP-80-04, Analyse
instrument (Jiangsu), Jiangsu, China), Electronic thermostat electric sets(DZTW, INESA, Shanghai,
China) etc.

2.2. Preparation of Surfactant-Modified AC

Samples of powdered activated carbon (10 g) were weighed into the 100 mL-Erlenmeyer flask,
with 1 g modifier and 25 mL deionized water, then placed on magnetic stirrer with low-speed stirring
of the reaction mixture for 24 h. Subsequently filtered and the filter-cake dried to constant weight at
70 ◦C, rushed, weighed and stored.

2.3. Adsorption Experiment

The standard stock solution of 100 mg/L Cr(VI) was prepared by using solid potassium
dichromate. The 20 mg/L Cr(VI) solution sample for the experiment was obtained by dilution
and for the kinetic experimental work was diluted as needed, and adjusted to target pH with HCl and
sodium NaOH (1:1 v/v). A 50ml sample of Cr(VI) solution was placed in the reaction bottle, with an
aliquot of modified activated carbon, and subject to reaction conditions over an appropriate period
of time.

2.4. Measurement and Analysis

The concentration of Cr(VI) was determined by Absorption Spectroscopy (UV-vis). The process
of determination was that 2 mL reaction solution was filtered through a 0.45 µm filter, and diluted
to 50 mL. A 0.5 mL portion of sulfuric acid and phosphoric acid (1:1 v/v) was added and 2 mL of
indicator, and shaken well for 2–10 min. The concentration of hexavalent chromium in the solution
was determined from absorbance at (540 nm) after reaction. The maximum measurement was 1 mg/L
and the minimum measurement was 0.2 µg/L. The structural characteristics of surfactant-modified
AC were observed by SEM, and the change of the active bond was observed by FTIR.

The isothermal adsorption models of Langmuir and Freundlich were used to describe the
isothermal adsorption behavior of adsorbents; the kinetic process is described by quasi-first-order
adsorption kinetics model and quasi-second-order adsorption kinetic model.

3. Results and Discussion

3.1. Surface Characteristics and Functional Group Analysis

The AC, DTAB-AC, PDDDAB-AC SEM images are shown in Figure 1. Compared with those
figures, the surface of the activated carbon was changed obviously under the influence of the modifier.
Figure 1a is the unmodified activated carbon, which has a smooth and regular surface and dense
structure without a gap. Under the modification of DTAB and PDDDAB (Figure 1b,c), the activated
carbon exhibits a rough surface and a large number of cavities.
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Figure 2. Infrared spectroscopy of Activated carbon and surfactant-modified materials. 

  

Figure 1. SEM images of AC (a); DTAB-AC (b); PDDDAB-AC (c).

Infrared spectrum of activated carbon is shown in Figure 2. We know that the –CH3 stretching
vibration generates a peak at 3423 cm−1, the peak at 1617 cm−1 can be attributed to C=C from activated
carbon skeleton, the peak at 1465 cm−1 can be attributed to –CH2–, at 1186 cm−1 can be attributed to
–CH2–, and at 3018 cm−1 can be attributed to methyl quaternary ammonium salt. After modification,
the absorption peak of the functional groups is clearly stronger, Combined with the SEM map and
the structure of DTAB and PDDDAB (Figure 3). The modification process increases the density
of functional groups, which can provide more coordination positions and higher adsorption of Cr
(VI) ions.
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3.2. Adsorption Effect of Cr (VI) at Different Modifier Dosage

Activated carbon, modified by 7 different concentrations (0.1%, 0.2%, 0.5%, 1%, 2%, 5% and 10%)
of PDDDAB/DTAB respectively, were weighed with precision of 0.5 g into 7 reaction bottles, with
a 50 mL sample of solution. The concentration of chromium in the solution was determined after
shaking for 7 h on the shaker at the room temperature. Figure 4 shows the removal rate changes
with the modifier concentration. As the concentration of the modifier increases, the removal rate of
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Cr(VI) in the raw water increases. Due to the hydrophobic interaction between activated carbon and
modifier [26], activated carbon has a strong ability to fix PDDDAB and DTAB. Studies have shown
that anion exchange and electrostatic adsorption are the main adsorption mechanisms for cationic
surfactant-modified activated carbon [27]. The reaction can be described by the following reaction
equation: when the concentration of modifier and the removal rate of chromium by modified activated
carbon are higher, the removal rate of activated carbon to modifier is higher. When the carrying
capacity reaches the maximum, the removal is in a steady state. In the experiment, when the maximum
load was selected, the concentration of the modifier was 10%.

PDDDAB−AC− Br + MCr− → AC− PDDDAB−MCr− + Br− (1)

DTAB−AC− Br + MCr− → AC−DTAB−MCr− + Br− (2)

where AC and M− is activated carbon and chromate ion respectively. PDDDAB is a Propane
diamine didodecyl dimethyl ammonium bromide, Br− is bromide ion and DTAB is Dodecyl trimethyl
ammonium Bromide, MCr

− is chromate ion.
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3.3. Adsorption Effect of Cr (VI) at Different Adsorbent Dosage

Samples of modified activated carbon 0.04g, 0.06g, 0.1g, 0.2g, 0.5g and 1g were weighed precisely
into 6 reaction bottles, with a 50 mL sample of solution. The concentration of chromium in the
solution was determined after shaking for 4 h on the shaker at the room temperature. According to
Figure 5, with the increase of the adsorbent concentration, the removal rate of chromium increases
(Figure 5a) and the adsorption capacity of chromium decreases from the initial chromium concentration
(Figure 5b). As the concentration increases it reaches a concentration where the adsorption tends to be
balanced, and PDDDAB-AC chromium removal rate is much higher than the DTAB-AC. The effect is
due to that with the increasing adsorbent dosage, the total number of adsorption sites increased, which
allowed the removal rate to increase. When the volume and mass concentration of Cr (VI) solution
remain constant, increasing the adsorbent concentration will increase the amount of adsorbent in the
unsaturated state [28], so that the total adsorption capacity appears to decrease. It can be seen from
Figure 5a that PDDDAB-AC provides higher capacity for the adsorption of Cr (VI), and consequently
has better adsorption effect.



Water 2018, 10, 91 6 of 13

Water 2018, 10, 91  6 of 13 

 

adsorption tends to be balanced, and PDDDAB-AC chromium removal rate is much higher than the 
DTAB-AC. The effect is due to that with the increasing adsorbent dosage, the total number of 
adsorption sites increased, which allowed the removal rate to increase. When the volume and mass 
concentration of Cr (VI) solution remain constant, increasing the adsorbent concentration will 
increase the amount of adsorbent in the unsaturated state [28], so that the total adsorption capacity 
appears to decrease. It can be seen from Figure 5a that PDDDAB-AC provides higher capacity for the 
adsorption of Cr (VI), and consequently has better adsorption effect. 

0 5 10 15 20

20

40

60

80

100

 

Re
m

ov
al

 R
at

e 
(%

)

Adsorbent concentration (g/L)

 DTAB-AC
 PDDDAB-AC

(a)

0 5 10 15 20
0

1

2

3

4

5

6

7

8

A
ds

or
pt

io
n 

ca
pa

ci
ty

(m
g/

g)

Adsorbent Concentration(g/L)

 DTAB-AC
 PDDDAB-AC

(b)

 
Figure 5. The removal rate (a) and the adsorption capacity (b) of chromium with adsorbent 
concentration. 

3.4. Adsorption Effect of Cr (VI) at Different pH 

A series of 0.5 g samples of modified activated carbon were weighed into 6 reaction bottles with 
50 mL sample solution and the solution pH value was adjusted to 4, 5, 6, 7, 8, 9, and 10, using 
hydrochloric acid and sodium hydroxide (1:1 v/v). The concentration of chromium in the solution was 
determined after shaking for 4 h on the shaker at the room temperature. As shown in Figure 6, the 
removal rate for chromium decreases as the pH increases and this phenomenon is not obvious under 
the acidic conditions, but significant under alkaline conditions. The PDDDAB-AC has less of an effect 
than DTAB-AC and adapts to pH change. It has its highest removal rate at pH of 4–6 in this study. 

3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

Re
m

ov
el

 R
at

e 
(%

)

Initial pH value

 DTAB-AC
 PDDDAB-AC

 
Figure 6. Effect of initial pH value on Cr(VI) removal. 

Some studies have previously shown that the removal of chromium worsens as the pH 
increases [29]. The appearance of this phenomenon is related to the nature of the activated carbon 
and the form in which Cr is present in the solution [30]. The main form exists of hexavalent 
chromium in water environment include CrO42−, HCrO4− and Cr2O72−.The stability is susceptible to 
the pH value of the solution, the redox substances and other conditions, it also can be interconverted 
under certain conditions [31]. 

Figure 5. The removal rate (a) and the adsorption capacity (b) of chromium with adsorbent concentration.

3.4. Adsorption Effect of Cr (VI) at Different pH

A series of 0.5 g samples of modified activated carbon were weighed into 6 reaction bottles
with 50 mL sample solution and the solution pH value was adjusted to 4, 5, 6, 7, 8, 9, and 10, using
hydrochloric acid and sodium hydroxide (1:1 v/v). The concentration of chromium in the solution was
determined after shaking for 4 h on the shaker at the room temperature. As shown in Figure 6, the
removal rate for chromium decreases as the pH increases and this phenomenon is not obvious under
the acidic conditions, but significant under alkaline conditions. The PDDDAB-AC has less of an effect
than DTAB-AC and adapts to pH change. It has its highest removal rate at pH of 4–6 in this study.
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Some studies have previously shown that the removal of chromium worsens as the pH
increases [29]. The appearance of this phenomenon is related to the nature of the activated carbon and
the form in which Cr is present in the solution [30]. The main form exists of hexavalent chromium in
water environment include CrO4

2−, HCrO4
− and Cr2O7

2−.The stability is susceptible to the pH value
of the solution, the redox substances and other conditions, it also can be interconverted under certain
conditions [31].

2CrO2−
4 + 2H+ ↔

(
2HCrO−4

)
↔ Cr2O2−

7 + H2O (3)

when the pH value of the solution is less than 7, Cr (VI) anions are mainly present in the form of
HCrO4

−, a HCrO4
− anion is adsorbed by ion exchange with Br- on the modified activated carbon.

At the same time, the functional groups such as hydroxyl groups, carboxyl groups and carbonyl
groups on the surface of activated carbon can react with hydrogen ions to form cations, so that the
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surface of the activated carbon carries a positive charge and the electrostatic force increased, with
consequently enhanced adsorption capacity of activated carbon for Cr (VI). As the pH value increases,
when the pH is greater than 6, the hexavalent chromium anion is progressively transformed its
existing form from HCrO4

− to CrO4
2−. The ion exchange mechanism is based on equimolar charge

relationship. Each mole of CrO4
2− requires 2 moles of charge, the adsorption capacity of Cr (VI)

decreases when the adsorption point is constant. Under the conditions that the pH value is more than
7, the carboxyl groups on the surface of activated carbon can react with OH- and form carboxylate
ion, so that the surface of the activated carbon carries negative charge. The electrostatic attraction
between modified activated carbon and the same negatively charged Cr (VI) anion is weakened and is
not conducive to adsorption. However, when the pH increases, the concentration of OH- ion increases,
and the competitive adsorption of Cr (VI) anions increases, which also affects the adsorption of Cr (VI).
Some studies have identified that there is a conversion between hexavalent chromium and trivalent
chromium in solution due to the presence of redox reaction [11], which affects this process.

3.5. Adsorption Effect of Cr (VI) at Different Ionic Strength

Samples of 0.5 g modified activated carbon were weighed into 6 reaction bottles with 50 mL
solution sample and concentration of NaCl in solution was 0 mmol/L, 5 mmol/L, 10 mmol/L,
20 mmol/L, 30 mmol/L, 40 mmol/L, 50 mmol/L, 60 mmol/L. The concentration of chromium in the
solution was determined after shaking for 4 h on the shaker at the room temperature. According to
Figure 7, the effect of ionic strength on the adsorption of chromium by two kinds of modified activated
carbon is significant, the removal rate decreases significantly with the increase of ionic strength in
the reaction solution, the removal rate of DTAB-AC and PDDDAB-AC were below 10% when the
NaCl concentration was greater than 40–60 mmol/L, the presence of a large amount of Cl- ions in the
solution produces a strong competitive adsorption with chromate ions and inhibits the adsorption of
chromium [32]. This conclusion is in accordance with the statement that the adsorption of hexavalent
chromium anions by modified activated carbon is based on the main mechanism of ion exchange
and electrostatic adsorption. The ionic reaction formula is shown in Equations (1) and (2). Studies
have shown that NaCl makes hexavalent chromium ions display a “salting-in” effect [13], so that
the distribution of adsorbate in the solution increased. The presence of NaCl may agglomerate the
adsorbent, resulting in a decrease in the number of adsorption points [33].
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3.6. Adsorption Isotherms

Modified activated carbon was weighed with precision of 0.5 g into 2 sets of reactors, with 50 mL
solution sample at pH 4. The concentration of Cr(VI) in the solution was determined after shaking on
the shaker at the room temperature.
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Langmuir and Freundlich isothermal adsorption models can be used to describe the adsorbent
isothermal adsorption behavior to adsorbate. Langmuir [34] (Equation (4)), Freundlich [35]
(Equation (5)) isothermal expression is described as follows:

1
qe

=
1
Q

+
1

QB
1

Ce
(4)

where: qe: the saturated adsorption capacity of the unit adsorbent at equilibrium (mg/g);
Q: single-layer saturated adsorption capacity of adsorbent (mg/g); Ce: concentration at equilibrium
(mg/L); B: Constant associated with temperature or enthalpy change.

Inqe = InK +
1
n

InCe (5)

where: both K and n are Freundlich constants at a certain temperature, K generally decreases with
increasing temperature, 1/n is generally between 0 and 1.

In this experiment, two adsorption tests were fitted using the linear form of Langmuir adsorption
isothermal formula and Freundlich adsorption isothermal formula respectively. The results of the
fitting curve are shown in Figures 8 and 9; the fitting degree and the adsorption isotherm equation are
listed in Table 2.
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Figure 8. Langmuir adsorption isotherms of Cr(VI) onto PDDDAB and DTAB.
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Figure 9. Freundlich adsorption isotherms of Cr(VI) onto PDDDAB and DTAB.



Water 2018, 10, 91 9 of 13

Table 2. Isotherm equations and R2 of Cr(VI) onto PDDDAB and DTAB.

Langmuir Model Freundlich Model

PDDDAB-AC
1
qe

= 3.876 1
Ce
− 0.2312

R2 = 0.8955
ln qe = 1.3863 ln Ce − 1.4749

R2 = 0.9396

DTAB-AC
1
qe

= 32.102 1
Ce
− 1.8984

R2 = 0.9667
ln qe = 3.7272 ln Ce − 8.7844

R2 = 0.9991

From Table 2, due to having high correlation coefficient and R2 values, the results show that
Langmuir and Freundlich isotherm model can correctly describe the adsorption data obtained for
Cr(VI) onto both PDDDAB-AC and DTAB-AC. The Langmuir isotherm model suggests that the
homogenous surface and the adsorption follow physisorption of monolayer adsorption patterns [36].
The better fit of Freundlich model to adsorption Cr(VI) onto both surfactant-modified activated carbons
reveals that the adsorption takes place in the heterogeneous surface and interaction among adsorbed
molecules can occur and multilayer adsorption is also possible [36]. Furthermore, the dimensionless
constant of separation factor (RL), which is given in Equation 6, is used to express the fundamental
characteristics of the Langmuir isotherm [37].

RL =
1

1 + bC0
(6)

where C0 represent the initial concentration of adsorbate (mg/L), b represents Langmuir constants.
RL can take values between 1 and 0. The value of RL indicates the situation of the isotherm to linear
(RL = 1), favorable (0 < RL < 1), or irreversible (RL = 0) [37]. In this study, the value of RL was found to
be between 0 and 1 (RL,PDDDAB-AC = 0.456, RL,DTAB-AC = 0.458) suggesting that the adsorption of Cr(VI)
onto both two surfactant-modified activated carbons is favorable process.

3.7. Adsorption Kinetics

The kinetics of metal ion sorption processes in a batch system is also necessary for determining
the type of processes that govern the mechanism of sorption. In this study, the applicability of the
pseudo-first-order model (Equation (7)) and pseudo-second-order model (Equation (8)) have been
tested for the sorption of Cr(VI) onto modified activated carbons [38]. The best-fit model was selected
based on the linear regression correlation coefficient, R2 values.

ln(qe − qt) = ln(qe)− k1t (7)

t
qt

=
t
qe

+
1

k2qe2 (8)

where: qe: unit adsorption of chromium by modified activated carbon at equilibrium time (mg/g);
qt: unit adsorption of chromium by modified activated carbon at time t (mg/g); k1 is the constant of
quasi-first-order model (min−1); k2 is the constant of quasi-second-order model (g/(mg·min)).

The kinetic experiments were carried out with 0.5 g DTAB-AC/PDDDAB-AC and 50 mL sample
solution at pH 4. The concentration of chromium in the solution was determined repeatedly by
sampling the reaction solution after shaking the shaker at room temperature over a 7 h period.
The relationship between the adsorption time T and the chromium removal rate was plotted as
Figure 10. From this figure, it was observed that DTAB-AC adsorption of chromium in the reaction
achieved the maximum removal rate of 70% within 1 min, PDDDAB-AC adsorption of chromium
achieved the maximum removal rate of 92% in about 30–60 min. Thereafter, the removal rate was
found to be slightly decreased, which may be attributed to physical desorption of Cr(VI) from activated
carbon. Finally, the curve of removal rate slowly tends to a smooth line. The final PDDDAB-AC
removal rate falls from 92% to about 80%, DTAB-AC adsorption chromium removal rate falls from
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70% to 60%. The rapid increase in removal at the initial period may be due to an increased number of
vacant sites available at the initial stage, thus there exist increased concentration gradients between
adsorbate in solution and adsorbate in the adsorbent surface. This increase in concentration gradients
tends to allow rapid increase of Cr(VI) removal at the initial stages [39]. Although DTAB-AC achieves
equilibrium in a slightly shorter time than PDDDAB-AC, PDDDAB-AC is more efficient in removal
than DTAB-AC, and the equilibrium time of both adsorption reactions was about 4 h.

Water 2018, 10, 91  10 of 13 

 

achieved the maximum removal rate of 92% in about 30–60 min. Thereafter, the removal rate was 
found to be slightly decreased, which may be attributed to physical desorption of Cr(VI) from 
activated carbon. Finally, the curve of removal rate slowly tends to a smooth line. The final 
PDDDAB-AC removal rate falls from 92% to about 80%, DTAB-AC adsorption chromium removal 
rate falls from 70% to 60%. The rapid increase in removal at the initial period may be due to an 
increased number of vacant sites available at the initial stage, thus there exist increased 
concentration gradients between adsorbate in solution and adsorbate in the adsorbent surface. This 
increase in concentration gradients tends to allow rapid increase of Cr(VI) removal at the initial 
stages [39]. Although DTAB-AC achieves equilibrium in a slightly shorter time than PDDDAB-AC, 
PDDDAB-AC is more efficient in removal than DTAB-AC, and the equilibrium time of both 
adsorption reactions was about 4 h. 

0 1 2 3 4 5 6 7 8
0

20

40

60

80

100

 

Re
m

ov
el

 R
at

e 
(%

)

Time (h)

 DTAB-AC
 PDDDAB-AB

 
Figure 10. Adsorption kinetics for Cr(VI) onto DTAB-AC and PDDDAB-AC. 

Figure 11 shows the pseudo-first-order kinetics model for Cr(VI) onto DTAB-AC and 
PDDDAB-AC. Figure 12 shows the pseudo-second-order kinetics model for Cr(VI) onto PDDDAB-AC 
and DTAB-AC, and kinetic modeling equations and those parameters are shown in Table 3. 

0 100 200 300 400 500

-7

-6

-5

-4

-3

-2

-1

0

 

Lo
g(

q e-q
t)

Time(min)

DTAB
PDDDAB

 
Figure 11. Pseudo-first-order kinetics for Cr(VI) onto PDDDAB-AC and DTAB-AC. 

Figure 10. Adsorption kinetics for Cr(VI) onto DTAB-AC and PDDDAB-AC.

Figure 11 shows the pseudo-first-order kinetics model for Cr(VI) onto DTAB-AC and
PDDDAB-AC. Figure 12 shows the pseudo-second-order kinetics model for Cr(VI) onto PDDDAB-AC
and DTAB-AC, and kinetic modeling equations and those parameters are shown in Table 3.

Water 2018, 10, 91  10 of 13 

 

achieved the maximum removal rate of 92% in about 30–60 min. Thereafter, the removal rate was 
found to be slightly decreased, which may be attributed to physical desorption of Cr(VI) from 
activated carbon. Finally, the curve of removal rate slowly tends to a smooth line. The final 
PDDDAB-AC removal rate falls from 92% to about 80%, DTAB-AC adsorption chromium removal 
rate falls from 70% to 60%. The rapid increase in removal at the initial period may be due to an 
increased number of vacant sites available at the initial stage, thus there exist increased 
concentration gradients between adsorbate in solution and adsorbate in the adsorbent surface. This 
increase in concentration gradients tends to allow rapid increase of Cr(VI) removal at the initial 
stages [39]. Although DTAB-AC achieves equilibrium in a slightly shorter time than PDDDAB-AC, 
PDDDAB-AC is more efficient in removal than DTAB-AC, and the equilibrium time of both 
adsorption reactions was about 4 h. 

0 1 2 3 4 5 6 7 8
0

20

40

60

80

100

 

Re
m

ov
el

 R
at

e 
(%

)

Time (h)

 DTAB-AC
 PDDDAB-AB

 
Figure 10. Adsorption kinetics for Cr(VI) onto DTAB-AC and PDDDAB-AC. 

Figure 11 shows the pseudo-first-order kinetics model for Cr(VI) onto DTAB-AC and 
PDDDAB-AC. Figure 12 shows the pseudo-second-order kinetics model for Cr(VI) onto PDDDAB-AC 
and DTAB-AC, and kinetic modeling equations and those parameters are shown in Table 3. 

0 100 200 300 400 500

-7

-6

-5

-4

-3

-2

-1

0

 

Lo
g(

q e-q
t)

Time(min)

DTAB
PDDDAB

 
Figure 11. Pseudo-first-order kinetics for Cr(VI) onto PDDDAB-AC and DTAB-AC. Figure 11. Pseudo-first-order kinetics for Cr(VI) onto PDDDAB-AC and DTAB-AC.

Water 2018, 10, 91  11 of 13 

 

0 100 200 300 400 500
0

60

120

180

240

300

360

 

t/q
t

Time(min)

DTAB
 PDDDAB

 
Figure 12. Pseudo-second-order kinetics for Cr(VI) onto PDDDAB-AC and DTAB-AC. 

Table 3. Parameters of two kinetic models for Cr(VI) onto PDDDAB-AC and DTAB-AC. 

 Pseudo-First-Order Model Pseudo-Second-Order Model

DTAB-AC 
2

log(0.1733 ) 0.0043 1.7529

0.1125
tq t

R
− = −

=
 

2

0.8514 0.2742

0.9994
t

t t
q
R

= −

=

 

PDDDAB-AC 
2

log(0.1672 ) 0.0024 1.7888

0.0454
tq t

R
− = −

=
 

2

0.5941 0.5915

0.9999
t

t t
q
R

= −

=

 

From Table 3, it was observed that, for the uptake of Cr(VI) by both DTAB-AC and 
PDDDAB-AC, the R2 values for pseudo-second-order were found to be higher than the R2 values for 
pseudo-first-order. This pseudo-second-order kinetics is presumed to proceed via chemisorption, 
which may involve valence forces through the sharing or exchange of electrons between the 
surfactant-modified activated carbons and the Cr(VI) ion as covalent forces and ion exchange [40]. 

4. Conclusion 

The removal of Cr(VI) by PDDDAB-AC adsorbent is higher than that of DTAB-AC, the 
adsorption capacity is larger and the adsorption performance is more superior and more stable. The 
adsorption properties of two kinds of activated carbon are greatly affected by the ionic strength of 
solution, and the removal rate decreases as it increases. The removal of chromium in PDDDAB-AC 
and DTAB-AC decreased with the increase of pH value in the range of pH = 4 ~ 10, and the removal 
rate reaches the highest when pH is about 4–6. In this study, it could be concluded that 
PDDDAB-AC is better than DTAB-AC for Cr(VI) removal. 

After about 30–60 min, PDDDAB-AC adsorbent reached a maximum removal of 92%, and the 
removal rate was 80% at equilibrium, which was significantly higher than that of DTAB-AC and the 
maximum removal rate was 70% and the removal rate was 60% at equilibrium. It is clear that the 
uptake of Cr(VI) by PDDDAB-AC is more efficient than those by DTAB-AC. 

The comparison of different isotherm models indicated that the Langmuir and Freundlich isotherm 
models can correctly describe the adsorption data obtained for Cr(VI) onto both PDDDAB-AC and 
DTAB-AC. The better fit of Freundlich model to adsorption Cr(VI) onto both surfactant-modified 
activated carbons reveals that the adsorption takes place in the heterogeneous surface and interaction 
among adsorbed molecules can occur and multilayer adsorption is also possible. Moreover, the 
adsorption process is favorable. After the kinetic adsorption data were fitted with different kinetic 
models, a pseudo-second-order kinetic model can better describe the kinetics of two adsorption 
processes, which indicates that the main adsorption reaction is chemical adsorption. 

Figure 12. Pseudo-second-order kinetics for Cr(VI) onto PDDDAB-AC and DTAB-AC.



Water 2018, 10, 91 11 of 13

Table 3. Parameters of two kinetic models for Cr(VI) onto PDDDAB-AC and DTAB-AC.

Pseudo-First-Order Model Pseudo-Second-Order Model

DTAB-AC
log(0.1733− qt) = 0.0043t− 1.7529

R2 = 0.1125

t
qt

= 0.8514t− 0.2742
R2 = 0.9994

PDDDAB-AC
log(0.1672− qt) = 0.0024t− 1.7888

R2 = 0.0454

t
qt

= 0.5941t− 0.5915
R2 = 0.9999

From Table 3, it was observed that, for the uptake of Cr(VI) by both DTAB-AC and
PDDDAB-AC, the R2 values for pseudo-second-order were found to be higher than the R2 values for
pseudo-first-order. This pseudo-second-order kinetics is presumed to proceed via chemisorption,
which may involve valence forces through the sharing or exchange of electrons between the
surfactant-modified activated carbons and the Cr(VI) ion as covalent forces and ion exchange [40].

4. Conclusion

The removal of Cr(VI) by PDDDAB-AC adsorbent is higher than that of DTAB-AC, the adsorption
capacity is larger and the adsorption performance is more superior and more stable. The adsorption
properties of two kinds of activated carbon are greatly affected by the ionic strength of solution, and
the removal rate decreases as it increases. The removal of chromium in PDDDAB-AC and DTAB-AC
decreased with the increase of pH value in the range of pH = 4 ~10, and the removal rate reaches the
highest when pH is about 4–6. In this study, it could be concluded that PDDDAB-AC is better than
DTAB-AC for Cr(VI) removal.

After about 30–60 min, PDDDAB-AC adsorbent reached a maximum removal of 92%, and the
removal rate was 80% at equilibrium, which was significantly higher than that of DTAB-AC and the
maximum removal rate was 70% and the removal rate was 60% at equilibrium. It is clear that the
uptake of Cr(VI) by PDDDAB-AC is more efficient than those by DTAB-AC.

The comparison of different isotherm models indicated that the Langmuir and Freundlich
isotherm models can correctly describe the adsorption data obtained for Cr(VI) onto both PDDDAB-AC
and DTAB-AC. The better fit of Freundlich model to adsorption Cr(VI) onto both surfactant-modified
activated carbons reveals that the adsorption takes place in the heterogeneous surface and interaction
among adsorbed molecules can occur and multilayer adsorption is also possible. Moreover, the
adsorption process is favorable. After the kinetic adsorption data were fitted with different kinetic
models, a pseudo-second-order kinetic model can better describe the kinetics of two adsorption
processes, which indicates that the main adsorption reaction is chemical adsorption.
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