Unraveling the Dynamics of a Creeping Slope in Northwestern Colombia: Hydrological Variables, and Geoelectrical and Seismic Signatures
Abstract
:1. Introduction
2. Study Site and Methodology
3. Results and Discussion
3.1. Soil Profile and Properties
3.2. Precipitation Behavior
3.3. Runoff Behavior
3.4. Soil Percolation Behavior
3.5. Piezometric Levels
3.6. Electrical Resisitivity Tomography (ERT)
3.7. Vertical Electrical Soundings (VES)
3.8. Multichannel Analysis of Surface Waves (MASW)
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schuster, R.L.; Highland, L.M. Socioeconomic and Environmental Impacts of Landslides on the Western Hermisphere; USGS Open-File Report 2001-276; USGS: Reston, VA, USA, 2001; 46p. [Google Scholar]
- Aristizábal, E.; Yokota, S. Geomorfología aplicada a la ocurrencia de deslizamientos en el Valle de Aburrá. Dyna 2006, 149, 5–16. [Google Scholar]
- Aristizábal, E.; Gómez, J. Inventario de emergencias y desastres en el Valle de Aburrá originados por fenómenos naturales y antrópicos en el período 1880–2007. Gest Ambient. 2007, 10, 17–30. [Google Scholar]
- Garland, G.G.; Olivier, M.J. Predicting landslides from rainfall in a humid, sub-tropical región. Geomorphology 1993, 8, 165–173. [Google Scholar] [CrossRef]
- Aristizábal, E.; González, T.; Montoya, J.D.; Vélez, J.I.; Martínez, H.; Guerra, A. Análisis de umbrales empíricos de lluvia para el pronóstico de movimientos en masa en el Valle de Aburrá, Colombia. Rev. EIA 2011, 15, 95–111. [Google Scholar]
- Aristizábal, E.; Martínez-Carvajal, H.; García-Aristizábal, E. Modelling shallow landslides triggered by rainfall in tropical and mountainous basins. In Advancing Culture of Lining with Landslides; Mikos, M., Casagli, N., Yin, Y., Sassa, K., Eds.; WLF, Springer: Cham, Switzerland, 2017; pp. 207–212. [Google Scholar]
- Larsen, M.C.; Simon, A. A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico. Geogr. Ann. Ser. A Phys. Geogr. 2017, 75, 13–23. [Google Scholar] [CrossRef]
- Moreno, H.A.; Vélez, M.V.; Montoya, J.D.; Rhenals, R.L. La lluvia y los deslizamientos de tierra en Antioquia: Análisis de su ocurrencia en las escalas interanual, intra-anual y diaria. Rev. EIA 2006, 5, 59–69. [Google Scholar]
- Echeverri, O.; Valencia, Y. Análisis de los deslizamientos en la cuenca de la quebrada La Iguaná de la ciudad de Medellín a partir de la interacción lluvia–pendiente–formación geológica. Dyna 2004, 142, 33–45. [Google Scholar]
- Aristizábal, E.; Roser, B.; Yokota, S. Tropical chemical weathering of hillslope deposits and bedrock source in the Aburrá Valley, northern Colombian Andes. Eng. Geol. 2005, 81, 389–406. [Google Scholar] [CrossRef]
- Shrestha, H.K.; Yatabe, R.; Bhandary, N.P. Use of groundwater flow model in the analysis of a creeping lanslide in western Japan. Episodes 2006, 29, 20–25. [Google Scholar]
- Lindenmaier, F.; Zehe, E.; Wienhöfer, J.; Ihringer, J. Hydrological patterns and processes of a deep seated creeping slope at Ebnit, Vorarlberg. In Proceedings of the INTERPRAEVENT 2008, Dornbirn, Vorarlberg, Austria, 26–30 May 2008; Volume 2, pp. 183–194. [Google Scholar]
- Bogaard, T.A.; Greco, R. Landslide hydrology: From hydrology to pore pressure. WIREs Water 2016, 3, 439–459. [Google Scholar] [CrossRef]
- Loaiza-Usuga, J.C.; Pauwels, V.R.N. Calibration and multiple data set-based validation of a land surface model in a mountainous Mediterranean study area. J. Hydrol. 2008, 356, 223–233. [Google Scholar] [CrossRef]
- IGAC. Estudio General de Suelos y Zonificación de Tierras, Departamento de Antioquia; Instituto Geográfico Agustín Codazzi, IGAC: Bogota, Colombia, 2007. (In Spanish) [Google Scholar]
- Bond, W.J. Soil Physical Methods for Estimating Recharge—Part 3: Basics of Recharge and Discharge Series; CSIRO Publishing: Clayton, Australia, 2008; pp. 1–16. ISBN 9780643105355. [Google Scholar]
- Loke, M.H. Electrical Imaging Surveys for Environmental and Engineering Studies. A Practical Guide to 2-D and 3-D Surveys; GEOTOMO SOFTWARE SDN BHD: Penang, Malaysia, 2000; 67p. [Google Scholar]
- Loke, M.H.; Acworth, I.; Dahlin, T. A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Explor. Geophys. 2003, 34, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Loke, M.H. RES2DINV: Rapid 2-D Resistivity and IP Inversion Using the Least-Squares Method; Geotomo Software: Penang, Malaysia, 2003. [Google Scholar]
- Burger, R.; Sheehan, A.F.; Jones, C.H. Introduction to Applied Geophysics: Exploring the Shallow Subsurface, 2nd ed.; W.W. Norton & Company, Inc.: New York, NY, USA, 2006; pp. 1–554. ISBN 0-393-92637-0. [Google Scholar]
- Park, C.B.; Miller, R.D.; Xia, J. Multichannel analysis of surface waves. Geophysics 1999, 64, 800–808. [Google Scholar] [CrossRef]
- ELIOSOFT, Geophysical Software and Services. winMASW2018, User Manual; ELIOSOFT: Palmanova, Italy, 2018; 248p. [Google Scholar]
- Dal Moro, G.; Pipan, M.; Gabrielli, P. Rayleigh wave dispersion curve inversion via genetic algorithms and marginal posterior probability density estimation. J. Appl. Geophys. 2006, 61, 39–55. [Google Scholar] [CrossRef]
- Loaiza-Usuga, J.C.; Sánchez, J.A.; Rubiano, Y.; Poch, R.M. Late Pleistocene polygenetic Andean wetland soils. Geo. Res. J. 2017, 14, 20–35. [Google Scholar] [CrossRef]
- Soil Science Division Staff (SSDS). Soil Survey Manual; Ditzler, C., Scheffe, K., Monger, H.C., Eds.; United States Department of Agriculture (USDA), Government Printing Office: Washington, DC, USA, 2017; pp. 1–585. [Google Scholar]
- Hobson, W.A.; Dahlgren, R.A. Wetland soils of basins and depressions: Case studies of vernal pools. In Wetland Soils, Genesis, Hydrology, Landscapes and Classification; Richardson, J.L., Vepraskas, M.J., Eds.; Lewis Publishers: Boca Ratón, FL, USA, 2001; pp. 267–282. ISBN 13. [Google Scholar]
- Boixadera, J.; Poch, R.M.; García González, M.T.; Vizcayno, C. Hydromorphic and clay-related processes in soils from the Llanos de Moxos (northern Bolivia). Catena 2003, 54, 403–424. [Google Scholar] [CrossRef]
- Khawmee, K.; Suddhiprakarn, A.; Kheoruenromne, I.; Singh, B. Surface charge properties of kaolinite from Thai soils. Geoderma 2013, 192, 120–131. [Google Scholar] [CrossRef]
- CUCE. Cation Exchange Capacity (CEC). Agronomy Fact Sheet Series # 22; Department of Crop and Soil Sciences, College of Agriculture and Life Sciences, Cooperative Extension (CUCE), Cornell University: Ithaca, NY, USA, 2007; 2p. [Google Scholar]
- Highland, L.M.; Bobrowsky, P. The Landslide Handbook—A Guide to Understanding Landslides; USGS Circular 1325; USGS: Reston, VA, USA, 2008; 129p. [Google Scholar]
- Bowman, E.T.; Soga, K. Creep, ageing and microstructural change in dense granular materials. Soils Found. 2003, 43, 107–117. [Google Scholar] [CrossRef]
- Schmertmann, J.H. The mechanical aging of soils. J. Geotech. Eng. 1991, 117, 1288–1330. [Google Scholar] [CrossRef]
- Maass, M.; Ahedo-Hernández, R.; Araiza, S.; Verduzco, A.; Martínez-Yrízar, A.; Jaramillo, V.J.; Parker, G.; Pascual, F.; García-Méndez, G.; Sarukhán, J. Long-term (33 years) rainfall and runoff dynamics in a tropical dry forest ecosystem in western Mexico: Management implications under extreme hydrometeorological events. For. Ecol. Manag. 2018, 426, 7–17. [Google Scholar] [CrossRef]
- Verdú, J.M.; Batalla, R.J.; Poch, R.M. Dinámica erosiva y aplicabilidad de modelos físicos de erosión en una cuenca de montaña mediterránea (Ribera Salada, Cuenca del Segre, Lleida, España). Pirineos 2000, 155, 37–57. [Google Scholar] [CrossRef]
- Orozco, M.; Poch, R.M.; Batalla, R.J.; Balasch, J.C. Hydrochemical budget of a Mediterranean mountain basin in relation to land use (The Ribera Salada, Catalan Pre-Pyrenees, NE Spain). Z. Geomorphol. 2006, 50, 77–94. [Google Scholar] [CrossRef]
- Patin, J.; Mouche, E.; Ribolzi, O.; Chaplot, V.; Sengtahevanghoung, O.; Latsachak, K.O.; Soulileuth, B.; Valentin, C. Analysis of runoff production at the plot scale during a long-term survey of a small agricultural catchment in Lao PDR. J. Hydrol. 2012, 426–427, 79–92. [Google Scholar] [CrossRef]
- Liu, W.; Luo, Q.; Lu, H.; Wu, J.; Duan, W. The effect of litter layer on controlling surface runoff and erosion in rubber plantations on tropical mountain slopes, SW China. Catena 2017, 149, 167–175. [Google Scholar] [CrossRef]
- Gomez, J.; Nearing, M.; Giraldez, J.; Alberts, E. Analysis of sources of variability of runoff volume in a 40 plot experiment using a numerical model. J. Hydrol. 2001, 248, 183–197. [Google Scholar] [CrossRef]
- Ali, G.A.; L’Heureux, C.; Roy, A.G.; Turmel, M.; Courchesne, F. Linking spatial patterns of perched groundwater storage and stormflow generation processes in a headwater forested cachment. Hydrol. Process. 2011, 25, 3843–3857. [Google Scholar] [CrossRef]
- Sidle, R.C. Shallow groundwater fluctuations in unstable hillslopes of coastal Alaska. Z. Gletscherkunde Glazialgeol. 1984, 20, 79–95. [Google Scholar]
- Jeong, J.; Park, E.; Han, W.S.; Kim, K.Y.; Suk, H.; Jo, S. A generalized groundwater fluctuation model based on precipitation for estimating water table levels of deep unconfined aquifers. J. Hydrol. 2018, 562, 749–757. [Google Scholar] [CrossRef]
- Park, E.; Kim, K.Y.; Ding, G.; Kim, K.; Han, W.S.; Kim, Y.; Kim, N. A delineation of regional hydraulic conductivity based on water table fluctuation. J. Hydrol. 2011, 399, 235–245. [Google Scholar] [CrossRef]
- Millar, D.J.; Coopera, D.J.; Ronaynec, M.J. Groundwater dynamics in mountain peatlands with contrasting climate, vegetation, and hydrogeological setting. J. Hydrol. 2018, 561, 908–917. [Google Scholar] [CrossRef]
- Bowles, J.E. Foundation Analysis and Design, 5th ed.; The McGraw-Hill Companies, Inc.: Singapore, 1996; pp. 1–1169. ISBN 0-07-118844-4. [Google Scholar]
Properties | Site 1 | Site 2 | Soil Parameter | Values |
---|---|---|---|---|
Land use | Marginal Cattle | sand (%) | 32 | |
Cartographic Unit (IGAC, 2007) | Niquia | silt (%) | 22 | |
Soil type (SSS, 2014) | Typic Dystrudept | clay (%) | 46 | |
Holdridge Life Zone | Pre Montane Wet Forest | Texture | Clay | |
Slope (%) | 35 | 24 | pH | 6.0 |
Geomorphologic position | Concave Slope | Organic Mater | 4.16 | |
Drainage | Well Drained | Cation Exchange Capacity | 7.3 | |
Root Zone Depth | Moderately Depth | Bases Saturation | 52 | |
Stone content (%) | 15–35% | bulk density (g/cm3) | 0.8 | |
A horizon thickness (cm) | 55 | 20 | Porosity (%) | 70 |
Lysimeter 1 depth (cm) | 50 | 20 | Soil moisture −33 kPa (%) | 38 |
Lysimeter 2 depth (cm) | 80 | 60 | Soil moisture −1500 kPa (%) | 26 |
Site | Rainfall | Runoff | Infiltration | Lysimetric Percolation | Drainage Water |
---|---|---|---|---|---|
Plot 1 | 1693 | 70 | 1623 | 1374 | 249 |
Plot 2 | 178 | 1515 | 953 | 562 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loaiza-Usuga, J.C.; Monsalve, G.; Pertuz-Paz, A.; Arce-Monsalve, L.; Sanín, M.; Ramírez-Hoyos, L.F.; Sidle, R.C. Unraveling the Dynamics of a Creeping Slope in Northwestern Colombia: Hydrological Variables, and Geoelectrical and Seismic Signatures. Water 2018, 10, 1498. https://doi.org/10.3390/w10111498
Loaiza-Usuga JC, Monsalve G, Pertuz-Paz A, Arce-Monsalve L, Sanín M, Ramírez-Hoyos LF, Sidle RC. Unraveling the Dynamics of a Creeping Slope in Northwestern Colombia: Hydrological Variables, and Geoelectrical and Seismic Signatures. Water. 2018; 10(11):1498. https://doi.org/10.3390/w10111498
Chicago/Turabian StyleLoaiza-Usuga, Juan C., Gaspar Monsalve, Aleen Pertuz-Paz, Laura Arce-Monsalve, Mateo Sanín, León F. Ramírez-Hoyos, and Roy C. Sidle. 2018. "Unraveling the Dynamics of a Creeping Slope in Northwestern Colombia: Hydrological Variables, and Geoelectrical and Seismic Signatures" Water 10, no. 11: 1498. https://doi.org/10.3390/w10111498
APA StyleLoaiza-Usuga, J. C., Monsalve, G., Pertuz-Paz, A., Arce-Monsalve, L., Sanín, M., Ramírez-Hoyos, L. F., & Sidle, R. C. (2018). Unraveling the Dynamics of a Creeping Slope in Northwestern Colombia: Hydrological Variables, and Geoelectrical and Seismic Signatures. Water, 10(11), 1498. https://doi.org/10.3390/w10111498