The Effect of Organic Carbon Addition on the Community Structure and Kinetics of Microcystin-Degrading Bacterial Consortia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Microcystin-Degrading Bacterial Consortia
2.2. Batch Degradation Experiments
2.3. Kinetic Model of Microcystin Biodegradation
2.4. Analysis of Bacterial Community Structure
3. Results
3.1. Microcystin Biodegradation Kinetics
3.2. Community Analysis of Microcystin-Degrading Consortia with and without Ethanol Addition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Paerl, H.W.; Paul, V.J. Climate change: Links to global expansion of harmful cyanobacteria. Water Res. 2012, 46, 1349–1363. [Google Scholar] [CrossRef] [PubMed]
- Huisman, J.; Matthijs, H.C.P.; Visser, P.M. Harmful Cyanobacteria; Springer Science & Business Media: Dordrecht, The Netherlands, 2006; ISBN 978-1-4020-3022-2. [Google Scholar]
- Edwards, C.; Lawton, L.A. Bioremediation of Cyanotoxins. In Advances in Applied Microbiology; Laskin, A., Sariaslani, S., Gadd, G., Eds.; Academic Press: San Diego, CA, USA, 2009; Volume 67, pp. 109–129. [Google Scholar]
- Cheung, M.Y.; Liang, S.; Lee, J. Toxin-producing cyanobacteria in freshwater: A review of the problems, impact on drinking water safety, and efforts for protecting public health. J. Microbiol. 2013, 51, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United States Environmental Protection Agency (US EPA). Drinking Water Health Advisory for the Cyanobacterial Microcystin Toxins; US EPA, Office of Water: Washington, DC, USA, 2015.
- Westrick, J.A.; Szlag, D.C.; Southwell, B.J.; Sinclair, J. A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment. Anal. Bioanal. Chem. 2010, 397, 1705–1714. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shimizu, K.; Sakharkar, M.K.; Utsumi, M.; Zhang, Z.; Sugiura, N. Comparative study for the effects of variable nutrient conditions on the biodegradation of microcystin-LR and concurrent dynamics in microcystin-degrading gene abundance. Bioresour. Technol. 2011, 102, 9509–9517. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shimizu, K.; Utsumi, M.; Nakamoto, T.; Sakharkar, M.K.; Zhang, Z.; Sugiura, N. Dynamics of the functional gene copy number and overall bacterial community during microcystin-LR degradation by a biological treatment facility in a drinking water treatment plant. J. Biosci. Bioeng. 2011, 111, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shimizu, K.; Akasako, H.; Lu, Z.; Akiyama, S.; Goto, M.; Utsumi, M.; Sugiura, N. Assessment of the factors contributing to the variations in microcystins biodegradability of the biofilms on a practical biological treatment facility. Bioresour. Technol. 2015, 175, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.; Gaudieux, A.-L.; Fanok, S.; Newcombe, G.; Humpage, A.R. Bacterial degradation of microcystin toxins in drinking water eliminates their toxicity. Toxicon 2007, 50, 438–441. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.; Sawade, E.; Newcombe, G. Biological treatment options for cyanobacteria metabolite removal—A review. Water Res. 2012, 46, 1536–1548. [Google Scholar] [CrossRef] [PubMed]
- Huck, P.M. Optimizing Filtration in Biological Filters; American Water Works Association Research Foundation: Denver, CO, USA, 2000; ISBN 978-1-58321-065-9. [Google Scholar]
- Urfer, D.; Huck, P.M.; Booth, S.D.J.; Coffey, B.M. Biological filtration for BOM and particle removal: A critical review. J. Am. Water Works Assoc. 1997, 89, 83–98. [Google Scholar] [CrossRef]
- Ho, L.; Hoefel, D.; Saint, C.; Newcombe, G. Degradation of Microcystin-LR through Biological Sand Filters. Pract. Period. Hazard. Toxic Radioact. Waste Manag. 2007, 11, 191–196. [Google Scholar] [CrossRef]
- Bourne, D.G.; Blakeley, R.L.; Riddles, P.; Jones, G.J. Biodegradation of the cyanobacterial toxin microcystin LR in natural water and biologically active slow sand filters. Water Res. 2006, 40, 1294–1302. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.; Meyn, T.; Keegan, A.; Hoefel, D.; Brookes, J.; Saint, C.P.; Newcombe, G. Bacterial degradation of microcystin toxins within a biologically active sand filter. Water Res. 2006, 40, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Dziga, D.; Lisznianska, M.; Wladyka, B. Bioreactor Study Employing Bacteria with Enhanced Activity toward Cyanobacterial Toxins Microcystins. Toxins 2014, 6, 2379–2392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rittmann, B.E.; Huck, P.M.; Bouwer, E.J. Biological treatment of public water supplies. Crit. Rev. Environ. Control 1989, 19, 119–184. [Google Scholar] [CrossRef]
- Lauderdale, C.; Chadik, P.; Kirisits, M.-J.; Brown, J. Engineered biofiltration: Enhanced biofilter performance through nutrient and peroxide addition. J. Am. Water Works Assoc. 2012, 104, 298–309. [Google Scholar] [CrossRef]
- Dziga, D.; Wasylewski, M.; Wladyka, B.; Nybom, S.; Meriluoto, J. Microbial Degradation of Microcystins. Chem. Res. Toxicol. 2013, 26, 841–852. [Google Scholar] [CrossRef] [PubMed]
- Bourne, D.G.; Jones, G.J.; Blakeley, R.L.; Jones, A.; Negri, A.P.; Riddles, P. Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR. Appl. Environ. Microbiol. 1996, 62, 4086–4094. [Google Scholar] [PubMed]
- Saito, T.; Okano, K.; Park, H.-D.; Itayama, T.; Inamori, Y.; Neilan, B.A.; Burns, B.P.; Sugiura, N. Detection and sequencing of the microcystin LR-degrading gene, mlrA, from new bacteria isolated from Japanese lakes. FEMS Microbiol. Lett. 2003, 229, 271–276. [Google Scholar] [CrossRef]
- Eleuterio, L.; Batista, J.R. Biodegradation studies and sequencing of microcystin-LR degrading bacteria isolated from a drinking water biofilter and a fresh water lake. Toxicon 2010, 55, 1434–1442. [Google Scholar] [CrossRef] [PubMed]
- Jimbo, Y.; Okano, K.; Shimizu, K.; Maseda, H.; Fujimoto, N.; Utsumi, M.; Sugiura, N. Quantification of Microcystin-degrading Bacteria in a Biofilm from a Practical Biological Treatment Facility by Real-time PCR. J. Water Environ. Technol. 2010, 8, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Shimizu, K.; Maseda, H.; Lu, Z.; Utsumi, M.; Zhang, Z.; Sugiura, N. Investigations into the biodegradation of microcystin-LR mediated by the biofilm in wintertime from a biological treatment facility in a drinking-water treatment plant. Bioresour. Technol. 2012, 106, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, R.; Li, J. Current research scenario for microcystins biodegradation—A review on fundamental knowledge, application prospects and challenges. Sci. Total Environ. 2017, 595, 615–632. [Google Scholar] [CrossRef] [PubMed]
- Christoffersen, K.; Lyck, S.; Winding, A. Microbial activity and bacterial community structure during degradation of microcystins. Aquat. Microb. Ecol. 2002, 27, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Chen, X.; Qian, H.; Xiao, B. Effects of nutrient elements on the biodegradation of microcystin under aerobic conditions. J. Agro-Environ. Sci. 2009, 11, 35. [Google Scholar]
- Ho, L.; Hoefel, D.; Palazot, S.; Sawade, E.; Newcombe, G.; Saint, C.P.; Brookes, J.D. Investigations into the biodegradation of microcystin-LR in wastewaters. J. Hazard. Mater. 2010, 180, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.J.; Bourne, D.G.; Blakeley, R.L.; Doelle, H. Degradation of the cyanobacterial hepatotoxin microcystin by aquatic bacteria. Nat. Toxins 1994, 2, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Shi, H.; Liu, A.; Cao, Z.; Hao, J.; Gong, R. Identification of a New Microcystin-Degrading Bacterium Isolated from Lake Chaohu, China. Bull. Environ. Contam. Toxicol. 2015, 94, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Surono, I.S.; Collado, M.C.; Salminen, S.; Meriluoto, J. Effect of glucose and incubation temperature on metabolically active Lactobacillus plantarum from dadih in removing microcystin-LR. Food Chem. Toxicol. 2008, 46, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Mou, X.; Lu, X.; Jacob, J.; Sun, S.; Heath, R. Metagenomic Identification of Bacterioplankton Taxa and Pathways Involved in Microcystin Degradation in Lake Erie. PLoS ONE 2013, 8, e61890. [Google Scholar] [CrossRef] [PubMed]
- Tsao, S.; Wei, D.-J.; Chang, Y.-T.; Lee, J.-F. Aerobic biodegradation of microcystin-LR by an indigenous bacterial mixed culture isolated in Taiwan. Int. Biodeterior. Biodegrad. 2017, 124, 101–108. [Google Scholar] [CrossRef]
- Izaguirre, G.; Jungblut, A.-D.; Neilan, B.A. Benthic cyanobacteria (Oscillatoriaceae) that produce microcystin-LR, isolated from four reservoirs in southern California. Water Res. 2007, 41, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Babel, W.; Müller, R.H. Mixed Substrate Utilization in Micro-organisms: Biochemical Aspects and Energetics. Microbiology 1985, 131, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Lovanh, N.; Hunt, C.S.; Alvarez, P.J.J. Effect of ethanol on BTEX biodegradation kinetics: Aerobic continuous culture experiments. Water Res. 2002, 36, 3739–3746. [Google Scholar] [CrossRef]
- Nguyen, M.; Westerhoff, P.; Baker, L.; Hu, Q.; Esparza-Soto, M.; Sommerfeld, M. Characteristics and Reactivity of Algae-Produced Dissolved Organic Carbon. J. Environ. Eng. 2005, 131, 1574–1582. [Google Scholar] [CrossRef]
- Zhou, S.; Shao, Y.; Gao, N.; Deng, Y.; Li, L.; Deng, J.; Tan, C. Characterization of algal organic matters of Microcystis aeruginosa: Biodegradability, DBP formation and membrane fouling potential. Water Res. 2014, 52, 199–207. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency (US EPA). National Lakes Assessment 2012: A Collaborative Survey of Lakes in the United States; US EPA: Washington, DC, USA, 2016.
- Ingram, L.O. Ethanol tolerance in bacteria. Crit. Rev. Biotechnol. 1990, 9, 305–319. [Google Scholar] [CrossRef] [PubMed]
- Ingram, L.O. Microbial tolerance to alcohols: Role of the cell membrane. Trends Biotechnol. 1986, 4, 40–44. [Google Scholar] [CrossRef]
- Wang, J.; Chen, L.; Tian, X.; Gao, L.; Niu, X.; Shi, M.; Zhang, W. Global Metabolomic and Network analysis of Escherichia coli Responses to Exogenous Biofuels. J. Proteome Res. 2013, 12, 5302–5312. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Chen, L.; Wang, J.; Zhang, W. Engineering biofuel tolerance in non-native producing microorganisms. Biotechnol. Adv. 2014, 32, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Ouiroga, J.M.; Perales, J.A.; Romero, L.I.; Sales, D. Biodegradation kinetics of surfactants in seawater. Chemosphere 1999, 39, 1957–1969. [Google Scholar] [CrossRef]
- Laloy, E.; Vrugt, J.A. High-dimensional posterior exploration of hydrologic models using multiple-try DREAM(ZS) and high-performance computing. Water Resour. Res. 2012, 48, W01526. [Google Scholar] [CrossRef]
- Vrugt, J.A. Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation. Environ. Model. Softw. 2016, 75, 273–316. [Google Scholar] [CrossRef] [Green Version]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parks, D.H.; Tyson, G.W.; Hugenholtz, P.; Beiko, R.G. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics 2014, 30, 3123–3124. [Google Scholar] [CrossRef] [PubMed]
- Jost, L. Entropy and diversity. Oikos 2006, 113, 363–375. [Google Scholar] [CrossRef]
- Jost, L. Partitioning Diversity into Independent Alpha and Beta Components. Ecology 2007, 88, 2427–2439. [Google Scholar] [CrossRef] [PubMed]
- Jost, L. Mismeasuring biological diversity: Response to Hoffmann and Hoffmann (2008). Ecol. Econ. 2009, 68, 925–928. [Google Scholar] [CrossRef]
- Tuomisto, H. A consistent terminology for quantifying species diversity? Yes, it does exist. Oecologia 2010, 164, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Chao, A.; Chiu, C.-H.; Jost, L. Unifying Species Diversity, Phylogenetic Diversity, Functional Diversity, and Related Similarity and Differentiation Measures Through Hill Numbers. Annu. Rev. Ecol. Evolut. Syst. 2014, 45, 297–324. [Google Scholar] [CrossRef]
- Chao, A.; Jost, L. Diversity Analysis; Taylor & Francis: Milton Keynes, UK, 2008. [Google Scholar]
- Hill, M.O. Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Pallmann, P.; Schaarschmidt, F.; Hothorn, L.A.; Fischer, C.; Nacke, H.; Priesnitz, K.U.; Schork, N.J. Assessing group differences in biodiversity by simultaneously testing a user-defined selection of diversity indices. Mol. Ecol. Resour. 2012, 12, 1068–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coe, R. It’s the Effect Size, Stupid: What Effect Size is and why it is important. Presented at the Annual Conference of the British Educational Research Association, Exeter, UK, 12–14 September 2002. [Google Scholar]
- Linz, A.M.; Crary, B.C.; Shade, A.; Owens, S.; Gilbert, J.A.; Knight, R.; McMahon, K.D. Bacterial Community Composition and Dynamics Spanning Five Years in Freshwater Bog Lakes. mSphere 2017, 2, e00169-17. [Google Scholar] [CrossRef] [PubMed]
- Woodhouse, J.N.; Ziegler, J.; Grossart, H.-P.; Neilan, B.A. Cyanobacterial Community Composition and Bacteria–Bacteria Interactions Promote the Stable Occurrence of Particle-Associated Bacteria. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lezcano, M.Á.; Morón-López, J.; Agha, R.; López-Heras, I.; Nozal, L.; Quesada, A.; El-Shehawy, R. Presence or Absence of mlr Genes and Nutrient Concentrations Co-Determine the Microcystin Biodegradation Efficiency of a Natural Bacterial Community. Toxins 2016, 8, 318. [Google Scholar] [CrossRef] [PubMed]
- Hengy, M.H.; Horton, D.J.; Uzarski, D.G.; Learman, D.R. Microbial community diversity patterns are related to physical and chemical differences among temperate lakes near Beaver Island, MI. PeerJ 2017, 5, e3937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.; Chen, X.; Jiang, X.; Zheng, B. Characterization of sediment bacterial communities in plain lakes with different trophic statuses. MicrobiologyOpen 2017, 6, e00503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wobus, A.; Bleul, C.; Maassen, S.; Scheerer, C.; Schuppler, M.; Jacobs, E.; Röske, I. Microbial diversity and functional characterization of sediments from reservoirs of different trophic state. FEMS Microbiol. Ecol. 2003, 46, 331–347. [Google Scholar] [CrossRef] [Green Version]
- Bouzat, J.L.; Hoostal, M.J.; Looft, T. Spatial patterns of bacterial community composition within Lake Erie sediments. J. Great Lakes Res. 2013, 39, 344–351. [Google Scholar] [CrossRef]
- Winters, A.D.; Marsh, T.L.; Brenden, T.O.; Faisal, M. Molecular characterization of bacterial communities associated with sediments in the Laurentian Great Lakes. J. Great Lakes Res. 2014, 40, 640–645. [Google Scholar] [CrossRef]
- Newton, R.J.; McLellan, S.L. A unique assemblage of cosmopolitan freshwater bacteria and higher community diversity differentiate an urbanized estuary from oligotrophic Lake Michigan. Front. Microbiol. 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Yannarell, A.C.; Triplett, E.W. Geographic and Environmental Sources of Variation in Lake Bacterial Community Composition. Appl. Environ. Microbiol. 2005, 71, 227–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwirglmaier, K.; Keiz, K.; Engel, M.; Geist, J.; Raeder, U. Seasonal and spatial patterns of microbial diversity along a trophic gradient in the interconnected lakes of the Osterseen Lake District, Bavaria. Front. Microbiol. 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Okpokwasili, G.C.; Nweke, C.O. Microbial growth and substrate utilization kinetics. Afr. J. Biotechnol. 2006, 5, 305–317. [Google Scholar]
- Bugg, T.; Foght, J.M.; Pickard, M.A.; Gray, M.R. Uptake and Active Efflux of Polycyclic Aromatic Hydrocarbons by Pseudomonas fluorescens LP6a. Appl. Environ. Microbiol. 2000, 66, 5387–5392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Fernandez, M.; Kucherenko, S.; Pantelides, C.; Shah, N. Optimal experimental design based on global sensitivity analysis. In Computer Aided Chemical Engineering, Proceedings of the 17 European Symposium on Computer Aided Process Engineering, Bucharest, Romania, 27–30 May 2007; Pleşu, V., Agachi, P.Ş., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 63–68. [Google Scholar]
- Chu, Y.; Hahn, J. Quantitative Optimal Experimental Design Using Global Sensitivity Analysis via Quasi-Linearization. Ind. Eng. Chem. Res. 2010, 49, 7782–7794. [Google Scholar] [CrossRef]
- Chu, Y.; Hahn, J. Necessary condition for applying experimental design criteria to global sensitivity analysis results. Comput. Chem. Eng. 2013, 48, 280–292. [Google Scholar] [CrossRef]
- Egli, T. The Ecological and Physiological Significance of the Growth of Heterotrophic Microorganisms with Mixtures of Substrates. In Advances in Microbial Ecology; Jones, J.G., Ed.; Plenum Press: New York, NY, USA, 1995; pp. 305–386. ISBN 978-1-4684-7726-9. [Google Scholar]
- Egli, T. How to live at very low substrate concentration. Water Res. 2010, 44, 4826–4837. [Google Scholar] [CrossRef] [PubMed]
- Giaramida, L.; Manage, P.M.; Edwards, C.; Singh, B.K.; Lawton, L.A. Bacterial communities’ response to microcystins exposure and nutrient availability: Linking degradation capacity to community structure. Int. Biodeterior. Biodegrad. 2013, 84, 111–117. [Google Scholar] [CrossRef]
- Merel, S.; Walker, D.; Chicana, R.; Snyder, S.; Baurès, E.; Thomas, O. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ. Int. 2013, 59, 303–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francy, D.S.; Graham, J.L.; Stelzer, E.A.; Ecker, C.D.; Brady, A.M. Water Quality, Cyanobacteria, and Environmental Factors and Their Relations to Microcystin Concentrations for Use in Predictive Models at Ohio Lake Erie and Inland Lake Recreational Sites, 2013-14; United States Geological Survey: Reston, VA, USA, 2015.
- Billam, M.; Tang, L.; Cai, Q.; Mukhi, S.; Guan, H.; Wang, P.; Wang, Z.; Theodorakis, C.W.; Kendall, R.J.; Wang, J.-S. Seasonal variations in the concentration of microcystin-LR in two lakes in western Texas, USA. Environ. Toxicol. Chem. 2006, 25, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Heiskary, S.; Lindon, M.; Anderson, J. Summary of microcystin concentrations in Minnesota lakes. Lake Reserve Manag. 2014, 30, 268–272. [Google Scholar] [CrossRef]
- Hollister, J.W.; Kreakie, B.J. Associations between chlorophyll a and various microcystin health advisory concentrations. F1000Res 2016, 5, 151. [Google Scholar] [CrossRef] [Green Version]
- Loftin, K.A.; Graham, J.L.; Hilborn, E.D.; Lehmann, S.C.; Meyer, M.T.; Dietze, J.E.; Griffith, C.B. Cyanotoxins in inland lakes of the United States: Occurrence and potential recreational health risks in the EPA National Lakes Assessment 2007. Harmful Algae 2016, 56, 77–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howard, M.D.A.; Nagoda, C.; Kudela, R.M.; Hayashi, K.; Tatters, A.; Caron, D.A.; Busse, L.; Brown, J.; Sutula, M.; Stein, E.D. Microcystin Prevalence throughout Lentic Waterbodies in Coastal Southern California. Toxins 2017, 9, 231. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.; Chen, W.; Wang, E.; Wang, J.; Liu, Z.; Li, Y.; Wei, G. Microbial succession in response to pollutants in batch-enrichment culture. Sci. Rep. 2016, 6, 21791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Consortia ID | Half-Life (Day) | t-Test p-Value | |
---|---|---|---|
NE | WE | ||
10B | 1.98 ± 0.003 | 3.28 ± 0.371 | <1 × 10−8 |
11B | 2.14 ± 0.017 | 2.30 ± 0.016 | <1 × 10−8 |
12B | 2.74 ± 0.765 | 3.37 ± 0.367 | <1 × 10−8 |
14A | 2.14 ± 0.835 | 2.47 ± 0.046 | <1 × 10−8 |
LSB | 2.16 ± 0.016 | 4.41 ± 0.307 | <1 × 10−8 |
Diversity Order | Consortia ID | ||||
---|---|---|---|---|---|
10B | 11B | 12B | 14A | LSB | |
D−1 | <1 × 10−8 | <1 × 10−8 | <1 × 10−8 | <1 × 10−8 | <1 × 10−8 |
D0 | <1 × 10−8 | <1 × 10−8 | <1 × 10−8 | <1 × 10−8 | 4.80 × 10−8 |
D1 | <1 × 10−8 | 5.04 × 10−5 | <1 × 10−8 | <1 × 10−8 | <1 × 10−8 |
D2 | <1 × 10−8 | 1 | <1 × 10−8 | <1 × 10−8 | <1 × 10−8 |
D3 | <1 × 10−8 | 1 | <1 × 10−8 | <1 × 10−8 | <1 × 10−8 |
Consortia ID | Unweighted Unifrac Distance | Weighted Unifrac Distance | Bonferroni Corrected p-Value |
---|---|---|---|
10B | 0.957 | 0.218 | <1 × 10−8 |
11B | 0.425 | 0.075 | 1 |
12B | 0.921 | 0.382 | <1 × 10−8 |
14A | 0.775 | 0.218 | 1 |
LSB | 0.561 | 0.112 | <1 × 10−8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manheim, D.; Cheung, Y.-M.; Jiang, S. The Effect of Organic Carbon Addition on the Community Structure and Kinetics of Microcystin-Degrading Bacterial Consortia. Water 2018, 10, 1523. https://doi.org/10.3390/w10111523
Manheim D, Cheung Y-M, Jiang S. The Effect of Organic Carbon Addition on the Community Structure and Kinetics of Microcystin-Degrading Bacterial Consortia. Water. 2018; 10(11):1523. https://doi.org/10.3390/w10111523
Chicago/Turabian StyleManheim, Derek, Yuen-Ming Cheung, and Sunny Jiang. 2018. "The Effect of Organic Carbon Addition on the Community Structure and Kinetics of Microcystin-Degrading Bacterial Consortia" Water 10, no. 11: 1523. https://doi.org/10.3390/w10111523
APA StyleManheim, D., Cheung, Y. -M., & Jiang, S. (2018). The Effect of Organic Carbon Addition on the Community Structure and Kinetics of Microcystin-Degrading Bacterial Consortia. Water, 10(11), 1523. https://doi.org/10.3390/w10111523