Effect of a Submerged Zone and Carbon Source on Nutrient and Metal Removal for Stormwater by Bioretention Cells
Abstract
:1. Introduction
2. Materials and Methods
- (a)
- (b)
- Transition layer (50–100 mm): coarse sand (0.5–2 mm; D60 = 1 mm);
- (c)
- Saturated zone (200–300 mm) with or without carbon source: (i) fine gravel (95%; 6–10 mm; D60 = 8 mm); and (ii) with and without wood chips (5%).
3. Results and Discussion
3.1. Physicochemical Parameters
3.2. Nitrogen Removal
3.3. Phosphorous Removal
3.4. Metal Removal
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Miller, J.D.; Kim, H.; Kjeldsen, T.R.; Packman, J.; Grebby, S.; Dearden, R. Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover. J. Hydrol. 2014, 515, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Hamel, P.; Daly, E.; Fletcher, T.D. Source-control stormwater management for mitigating the impacts of urbanisation on baseflow: A review. J. Hydrol. 2013, 485, 201–211. [Google Scholar] [CrossRef]
- Shafique, M. Rainfall runoff mitigation by retrofitted permeable pavement in an urban area. Sustainability 2018, 10, 1231. [Google Scholar] [CrossRef]
- Bonneau, J.; Burns, M.J.; Fletcher, T.D.; Witt, R.; Drysdale, R.N.; Costelloe, J.F. The impact of urbanization on subsurface flow paths—A paired-catchment isotopic study. J. Hydrol. 2018, 561, 413–426. [Google Scholar] [CrossRef]
- Dietz, M.E. Low impact development practices: A review of current research and recommendations for future directions. Water Air Soil Poll. 2015, 22, 543–563. [Google Scholar] [CrossRef]
- Yang, Y.; Chui, T.F.M. Integrated hydro-environmental impact assessment and alternative selection of low impact development practices in small urban catchments. J. Environ. Manag. 2018, 223, 324–337. [Google Scholar] [CrossRef] [PubMed]
- Trowsdale, S.A.; Simcock, R. Urban stormwater treatment using bioretention. J. Hydrol. 2011, 397, 167–174. [Google Scholar] [CrossRef]
- Dagenais, D.; Thomas, I.; Paquette, S. Siting green stormwater infrastructure in a neighbourhood to maximise secondary benefits: Lessons learned from a pilot project. Landsc. Res. 2017, 42, 1–16. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, D.; Adhityan, A.; Ng, W.J.; Dong, J.; Tan, S.K. Assessing cost-effectiveness of bioretention on stormwater in response to climate change and urbanization for future scenarios. J. Hydrol. 2016, 543, 423–432. [Google Scholar] [CrossRef]
- Winston, R.J.; Dorsey, J.D.; Hunt, W.F. Quantifying volume reduction and peak flow mitigation for three bioretention cells in clay soils in northeast Ohio. Sci. Total Environ. 2016, 553, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.S.; Choi, D.H.; Jung, J.W.; Lee, H.J.; Lee, H.; Yoon, K.S.; Cho, K.H. Optimizing low impact development (LID) for stormwater runoff treatment in urban area, Korea: Experimental and modeling approach. Water Res. 2015, 86, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Garcíaserrana, M.; Gulliver, J.S.; Nieber, J.L. Infiltration capacity of roadside filter strips with non-uniform overland flow. J. Hydrol. 2017, 545, 451–462. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, P.; Cao, X.; Zhou, Y.; Song, C. Efficiency promotion and its mechanisms of simultaneous nitrogen and phosphorus removal in stormwater biofilters. Bioresour. Technol. 2016, 218, 842–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Zhang, D.; Dong, J.; Tan, S.K. Application of constructed wetlands for treating agricultural runoff and agro-industrial wastewater: A review. Hydrobiologia 2018, 805, 1–31. [Google Scholar] [CrossRef]
- Muerdter, C.P.; Wong, C.K.; LeFevre, G.H. Emerging investigator series: The role of vegetation in bioretention for stormwater treatment in the built environment: Pollutant removal, hydrologic function, and ancillary benefits. Environ. Sci. Water Res. Technol. 2018, 4, 592–612. [Google Scholar] [CrossRef]
- Kim, M.H.; Chan, Y.S.; Li, M.H.; Chu, K.H. Bioretention for stormwater quality improvement in texas: Removal effectiveness of escherichia coli. Sep. Purif. Technol. 2012, 84, 120–124. [Google Scholar] [CrossRef]
- Shrestha, P.; Hurley, S.E.; Wemple, B.C. Effects of different soil media, vegetation, and hydrologic treatments on nutrient and sediment removal in roadside bioretention systems. Ecol. Eng. 2018, 112, 116–131. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, D.Q.; Su, J.; Dong, J.W.; Tan, S.K. Assessing hydrological effects and performance of low impact development practices based on future scenarios modeling. J. Clean. Prod. 2018, 179, 12–23. [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.; Li, P.; Li, Y.; Li, W. Study of Bioretention System on Heavy-Metal Removal Effect. Pol. J. Environ. Stud. 2018, 27, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Macnamara, J.; Derry, C. Pollution removal performance of laboratory simulations of Sydney’s street stormwater biofilters. Water 2017, 9, 907. [Google Scholar] [CrossRef]
- Kandel, S.; Vogel, J.; Penn, C.; Brown, G. Phosphorus Retention by Fly Ash Amended Filter Media in Aged Bioretention Cells. Water 2017, 9, 746. [Google Scholar] [CrossRef]
- Hermawan, A.A.; Chang, J.W.; Pasbakhsh, P.; Hart, F.; Talei, A. Halloysite nanotubes as a fine grained material for heavy metal ions removal in tropical biofiltration systems. Appl. Clay Sci. 2018, 160, 106–115. [Google Scholar] [CrossRef]
- Tedoldi, D.; Chebbo, G.; Pierlot, D.; Branchu, P.; Kovacs, Y.; Gromaire, M.C. Spatial distribution of heavy metals in the surface soil of source-control stormwater infiltration devices—Inter-site comparison. Sci. Total Environ. 2017, 579, 881–892. [Google Scholar] [CrossRef] [PubMed]
- Hunt, W.F.; Smith, J.T.; Jadlocki, S.J.; Hathaway, J.M.; Eubanks, P.R. Pollutant removal and peak flow mitigation by a bioretention cell in urban Charlotte, N.C. J. Environ. Eng. 2008, 134, 403–408. [Google Scholar] [CrossRef]
- Hsieh, D.H.; Davis, A.P. Multiple-event study of bioretention for treatment of urban stormwater runoff. Water Sci. Technol. 2005, 51, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Stander, E.K.; Borst, M. Hydraulic test of a bioretention media carbon amendment. J. Hydraul. Eng. 2010, 15, 531–536. [Google Scholar] [CrossRef]
- Kim, H.; Seagren, E.A.; Davis, A.P. Engineered bioretention for removal of nitrate from stormwater runoff. Water Environ. Res. 2003, 75, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Zinger, Y.; Blecken, G.T.; Fletcher, T.D.; Viklander, M.; Deletić, A. Optimising nitrogen removal in existing stormwater biofilters: Benefits and tradeoffs of a retrofitted saturated zone. Ecol. Eng. 2013, 51, 5–82. [Google Scholar] [CrossRef]
- Zinger, Y.; Fletcher, T.D.; Deletic, A.; Blecken, G.T.; Viklander, M. Optimisation of the nitrogen retention capacity of stormwater biofiltration systems. Surg. Endosc. Other Int. Tech. 2007, 17, 891–895. [Google Scholar]
- Zinger, Y.; Deletic, A.; Fletcher, T. The effect of various intermittent dry-wet cycles on nitrogen removal capacity in biofilters systems. In Rainwater and Urban Design 2007; Engineers Australia: Barton, Australia, 2007; pp. 1195–1202. [Google Scholar]
- Passeport, E.; Hunt, W.F.; Line, D.E.; Smith, R.A.; Brown, R.A. Field study of the ability of two grassed bioretention cells to reduce storm-water runoff pollution. J. Irrig. Drain Eng. 2009, 135, 505–510. [Google Scholar] [CrossRef]
- Dietz, M.E.; Clausen, J.C. Saturation to improve pollutant retention in a rain garden. Environ. Sci. Technol. 2006, 40, 1335–1340. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.P. Field performance of bioretention: Water quality. Environ. Eng. Sci. 2007, 24, 1048–1064. [Google Scholar] [CrossRef]
- Hatt, B.E.; Deletic, A.; Fletcher, T. D Stormwater reuse: Designing biofiltration system for reliable treatment. Water Sci. Technol. 2007, 55, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.P.; Shokouhian, M.; Sharma, H.; Minami, C. Water quality improvement through bioretention media: Nitrogen and phosphorus removal. Water Environ. Res. 2006, 78, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Peltier, E.; Sturm, B.S.; Young, C.B. Nitrogen removal and nitrifying and denitrifying bacteria quantification in a stormwater bioretention system. Water Res. 2013, 47, 1691–1700. [Google Scholar] [CrossRef] [PubMed]
- Kratky, H.; Li, Z.; Chen, Y.; Wang, C.; Li, X.; Yu, T. A critical literature review of bioretention research for stormwater management in cold climate and future research recommendations. Front. Environ. Sci. Eng. 2017, 11, 23–37. [Google Scholar] [CrossRef]
- Tahvonen, O. Adapting bioretention construction details to local practices in Finland. Sustainability 2018, 10, 276. [Google Scholar] [CrossRef]
- Chan, F.K.S.; Griffiths, J.A.; Higgitt, D.; Xu, S.; Zhu, F.; Tang, Y.T.; Xu, Y.; Thorne, C.R. “Sponge City” in China—A breakthrough of planning and flood risk management in the urban context. Land Use Policy 2018, 76, 772–778. [Google Scholar] [CrossRef]
- Afrooz, A.R.M.N.; Boehm, A.B. Effects of submerged zone, media aging, and antecedent dry period on the performance of biochar-amended biofilters in removing fecal indicators and nutrients from natural stormwater. Ecol. Eng. 2017, 102, 320–330. [Google Scholar] [CrossRef]
- Huett, D.O.; Morris, S.G.; Smith, G.; Hunt, N. Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands. Water Res. 2005, 39, 3259–3272. [Google Scholar] [CrossRef] [PubMed]
- Pitt, R.; Clark, S.; Steets, B. Laboratory Evaluations to Support the Design of Bioretention Systems in the Southwestern US. In World Environmental and Water Resources Congress 2010: Challenges of Change; ASCE: Reston, VA, USA, 2010; pp. 2977–2993. [Google Scholar]
- DeBusk, K.; Hunt, W.; Line, D. Bioretention outflow: Does it mimic nonurban watershed shallow interflow? J. Hydrol. Eng. 2011, 16, 274–279. [Google Scholar] [CrossRef]
- FAWB (Facility for Advancing Water Biofiltration). Adoption Guidelines for Stormwater Biofiltration Systems: Facility for Advancing Water Biofiltration; Monash University: Melbourne, Australia, 2009. [Google Scholar]
- Davis, A.P.; Hunt, W.F.; Traver, R.G.; Clar, M. Bioretention technology: Overview of current practice and future needs. J. Environ. Eng. 2009, 135, 109–117. [Google Scholar] [CrossRef]
- Hatt, B.E.; Fletcher, T.D.; Deletic, A. Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale. J. Hydrol. 2009, 365, 310–321. [Google Scholar] [CrossRef]
- Sun, X.L.; Davis, A.P. Heavy metal fates in laboratory bioretention systems. Chemosphere 2007, 66, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.; Davis, A.P. Evaluation and optimization of bioretention media for treatment of urban storm water runoff. J. Environ. Eng. 2005, 131, 1521–1531. [Google Scholar] [CrossRef]
- Henderson, C.; Greenway, M.; Phillips, I. Removal of dissolved nitrogen, phosphorus and carbon from storm water by biofiltration mesocosms. Water Sci. Technol. 2007, 55, 183–191. [Google Scholar] [CrossRef] [PubMed]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 17th ed.; American Public Health Association: Washington, DC, USA, 1989. [Google Scholar]
- Zhang, D.Q.; Tan, S.K.; Gersberg, R.M.; Zhu, J.; Sadreddini, S.; Li, Y. Nutrient removal in tropical subsurface flow constructed wetlands under batch and continuous flow conditions. J. Environ. Manag. 2012, 96, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Blecken, G.T.; Zinger, Y.; Deletić, A.; Fletcher, T.D.; Viklander, M. Impact of a submerged zone and a carbon source on heavy metal removal in stormwater biofilters. Ecol. Eng. 2009, 35, 769–778. [Google Scholar] [CrossRef]
- Mei, Y.; Gao, L.; Zhou, H.; Wei, K.H.; Cui, N.Q.; Chang, C.C. Ranking media for multi-pollutant removal efficiency in bioretention. Water Sci. Technol. 2018, 77, 2023–2035. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Rengel, Z.; Liaghati, T.; Antoniette, T.; Meney, K. Influence of plant species and submerged zone with carbon addition on nutrient removal in stormwater biofilter. Ecol. Eng. 2011, 37, 1833–1841. [Google Scholar] [CrossRef]
- Lucas, W.C.; Greenway, M. Hydraulic response and nitrogen retention in bioretention mesocosms with regulated outlets: Part II—Nitrogen retention. Water Environ. Res. 2011, 83, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Brix, H. Function of macrophytes in constructed wetlands. Water Sci. Technol. 1994, 29, 71–78. [Google Scholar] [CrossRef]
- Masi, M. A swmm-5 model of a denitrifying bioretention system to estimate nitrogen removal from stormwater runoff. Diss. Theses Gradworks 2011, 69, 133–148. [Google Scholar]
- Cho, K.W.; Song, K.G.; Cho, J.W.; Kim, T.G.; Ahn, K.H. Removal of nitrogen by a layered soil infiltration system during intermittent storm events. Chemosphere 2009, 76, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, S.P.; Richardson, G.J. Physical and chemical characteristics of freshwater wetland soils. In Constructed Wetlands for Wastewater Treatment. Municipal, Industrial and Agricultural; Hammer, D.A., Ed.; Lewis Publishers: Chelsea, MI, USA, 1989; pp. 41–72. [Google Scholar]
- RoyPoirier, A.; Champagne, P.; Filion, Y. Bioretention processes for phosphorus pollution control. Dossiers Environ. 2010, 18, 159–173. [Google Scholar] [CrossRef]
- Jay, J.G.; Brown, S.L.; Kurtz, K.; Grothkopp, F. Predictors of phosphorus leaching from bioretention soil media. J. Environ. Qual. 2017, 46, 1098–1105. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.R.; Condron, L.M.; Clough, T.J.; Fiers, M.; Stewart, A.; Hill, R.A.; Sherlock, R.R. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 2011, 54, 309–320. [Google Scholar] [CrossRef]
- Lucas, W.C.; Greenway, M. Nutrient retention in vegetated and nonvegetated bioretention mesocosms. J. Irrig. Drain. Eng. 2008, 134, 613–623. [Google Scholar] [CrossRef]
- Gülbaz, S.; Kazezyılmaz-Alhan, C.M.; Copty, N.K. Evaluation of heavy metal removal capacity of bioretention systems. Water Air Soil Poll. 2015, 226, 376. [Google Scholar] [CrossRef]
- Lim, H.S.; Lim, W.; Hu, J.Y.; Ziegler, A.; Ong, S.L. Comparison of filter media materials for heavy metal removal from urban stormwater runoff using biofiltration systems. J. Environ. Manag. 2015, 147, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Bennasir, H.; Sridhar, S. Health hazards due to heavy metal poisoning and other factors in sea foods. Int. J. Pharm. Sci. Rev. Res. 2013, 18, 33–37. [Google Scholar]
- Hrubá, F.; Strömberg, U.; Černá, M.; Chen, C.; Harari, F.; Harari, R.; Horvat, M.; Koppová, K.; Kos, A.; Krsková, A.; et al. Blood cadmium, mercury, and lead in children: An international comparison of cities in six European countries, and China, Ecuador, and Morocco. Environ. Int. 2012, 41, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Yousef, Y.A.; Wanielista, M.P.; Hvitved-Jacobsen, T.; Harper, H.H. Fate of heavy metals in stormwater runoff from highway bridges. Sci. Total Environ. 1984, 33, 233–244. [Google Scholar] [CrossRef]
- Crabtree, B.; Dempsey, P.; Johnson, I.; Whitehead, M. The development of a risk-based approach to managing the ecological impact of pollutants in highway runoff. Water Sci. Technol. 2008, 57, 1595–1600. [Google Scholar] [CrossRef] [PubMed]
- Kayhanian, M.; Stransky, C.; Bay, S.; Lau, S.L.; Stenstrom, M.K. Toxicity of urban highway runoff with respect to storm duration. Sci. Total Environ. 2008, 389, 386–406. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Davis, A.P. Heavy metal capture and accumulation in bioretention media. Environ. Sci. Technol. 2008, 42, 5247–5253. [Google Scholar] [CrossRef] [PubMed]
- Fritioff, Ǻ.; Greger, M. Aquatic and terrestrial plant species with potential to remove heavy metals from stormwater. Int. J. Phytoremediat. 2003, 5, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Impellitteri, C.A.; You, S.-J.; Allen, H.E. The importance of soil organic matter distribution and extract soil: Solution ratio on the desorption of heavy metals form soils. Sci. Total Environ. 2002, 287, 107–119. [Google Scholar] [CrossRef]
- Förstner, U.; Ahlf, W.; Calmano, W. Studies on the transfer of heavy metals between sedimentary phases with a multi-chamber device: Combined effects of salinity and redox variation. Mar. Chen. 1989, 28, 145–158. [Google Scholar] [CrossRef] [Green Version]
- Temminghoff, E.J.; Van der Zee, S.E.; de Haan, F.A. Copper Mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter. Environ. Sci. Technol. 1997, 31, 1109–1115. [Google Scholar] [CrossRef]
Influent Concentration (mg L−1) | Pollutant Source | |
---|---|---|
pH | 7.0 | Hydrogen chloride (HCl) or Sodium hydroxide (NaOH) |
Phosphorus | 2.0 (as P) | Potassium phosphate (KH2PO4) |
Nitrate | 2.0 (as N) | Potassium nitrate (KNO3) |
Ammonium | 0.5 (as N) | Ammonium sulphate (NH4)2SO4 |
Copper | 0.5 | Copper chloride (CuCl2) |
Zinc | 1.0 | Zinc chloride (ZnCl2) |
HRT (day) | Temperature (°C) | pH | Conductivity (S m−1) | DO (mg L−1) | |
---|---|---|---|---|---|
(a) | 1 (n = 20) | 24.04 ± 2.45 | 6.50 ± 0.21 | 377 ± 67 | 7.07 ± 0.64 |
2 (n = 15) | 24.18 ± 2.60 | 7.40 ± 0.45 | 521 ± 117 | 7.86 ± 0.48 | |
3 (n = 10) | 24.09 ± 2.33 | 6.55 ± 0.51 | 337 ± 57 | 8.55 ± 0.39 | |
(b) | 1 (n = 20) | 23.94 ± 2.70 | 6.39 ± 0.17 | 395 ± 55 | 7.02 ± 0.60 |
2 (n = 15) | 24.15 ± 3.04 | 7.11 ± 0.45 | 615 ± 107 | 7.29 ± 0.70 | |
3 (n = 10) | 24.09 ± 2.57 | 6.26 ± 0.24 | 371 ± 46 | 8.24 ± 0.62 | |
(c) | 1 (n = 20) | 23.89 ± 2.67 | 6.27 ± 0.10 | 585 ± 92 | 4.55 ± 1.57 |
2 (n = 15) | 24.69 ± 3.12 | 6.88 ± 0.46 | 719 ± 102 | 5.81 ± 0.73 | |
3 (n = 10) | 24.51 ± 2.39 | 6.10 ± 0.21 | 512 ± 77 | 6.08 ± 0.58 | |
(d) | 1 (n = 20) | 23.99 ± 2.48 | 6.72 ± 0.29 | 525 ± 75 | 7.21 ± 0.64 |
2 (n = 15) | 23.99 ± 2.24 | 7.41 ± 0.55 | 599 ± 116 | 7.80 ± 0.50 | |
3 (n = 10) | 23.96 ± 2.33 | 6.31 ± 0.22 | 423 ± 31 | 8.28 ± 0.44 |
HRT (day) | NH4+-N (mg L−1) | NO3−-N (mg L−1) | PO43− (mg L−1) | TP (mg L−1) | |
---|---|---|---|---|---|
(a) | 1 (n = 20) | 0.35 ± 0.05 | 0.63 ± 0.13 | 0.92 ± 0.21 | 1.60 ± 0.31 |
2 (n = 15) | 0.35 ± 0.07 | 0.56 ± 0.09 | 0.52 ± 0.12 | 1.50 ± 0.12 | |
3 (n = 10) | 0.25 ± 0.11 | 0.46 ± 0.13 | 0.65 ± 0.15 | 1.48 ± 0.19 | |
(b) | 1 (n = 20) | 0.23 ± 0.05 | 0.59 ± 0.14 | 1.02 ± 0.29 | 1.52 ± 0.20 |
2 (n = 15) | 0.16 ± 0.07 | 0.54 ± 0.08 | 1.10 ± 0.33 | 1.63 ± 0.30 | |
3 (n = 10) | 0.15 ± 0.09 | 0.28 ± 0.08 | 0.78 ± 0.31 | 1.53 ± 0.15 | |
(c) | 1 (n = 20) | 0.11 ± 0.07 | 0.29 ± 0.08 | 0.30 ± 0.08 | 0.65 ± 0.16 |
2 (n = 15) | 0.07 ± 0.05 | 0.26 ± 0.06 | 0.24 ± 0.02 | 0.58 ± 0.22 | |
3 (n = 10) | 0.04 ± 0.02 | 0.13 ± 0.02 | 0.20 ± 0.04 | 0.52 ± 0.09 | |
(d) | 1 (n = 20) | 0.22 ± 0.06 | 0.51 ± 0.11 | 0.42 ± 0.13 | 1.62 ± 0.22 |
2 (n = 15) | 0.19 ± 0.09 | 0.48 ± 0.10 | 0.39 ± 0.02 | 1.11 ± 0.18 | |
3 (n = 10) | 0.11 ± 0.05 | 0.36 ± 0.07 | 0.34 ± 0.12 | 1.03 ± 0.16 |
HRT (day) | Cu (µg L−1) | Zn (µg L−1) | Pb (µg L−1) | |
---|---|---|---|---|
(a) | 1 (n = 20) | 38.44 ± 8.45 (92.3%) | 58.28 ± 13.07 (94.8%) | 0.64 ± 0.09 (93.6%) |
2 (n = 15) | 35.54 ± 9.87 (92.9%) | 58.49 ± 9.89 (94.2%) | 0.58 ± 0.10 (94.2%) | |
3 (n = 10) | 29.57 ± 5.31 (94.1%) | 31.80 ± 5.78 (96.8%) | 0.52 ± 0.21 (94.8%) | |
(b) | 1 (n = 20) | 35.52 ± 4.62 (92.9%) | 58.46 ± 5.95 (94.0%) | 0.71 ± 0.13 (92.9%) |
2 (n = 15) | 32.99 ± 8.44 (93.4%) | 55.57 ± 7.41 (94.4%) | 0.65 ± 0.14 (93.5%) | |
3 (n = 10) | 24.05 ± 3.30 (95.2%) | 43.58 ± 7.67 (95.6%) | 0.48 ± 0.08 (95.2%) | |
(c) | 1 (n = 20) | 27.28 ± 4.41 (94.5%) | 51.93 ± 11.64 (94.8%) | 0.20 ± 0.02 (98.0%) |
2 (n = 15) | 23.59 ± 9.05 (95.5%) | 41.30 ± 8.04 (95.9%) | 0.17 ± 0.04 (98.3%) | |
3 (n = 10) | 16.43 ± 4.31 (96.8%) | 38.12 ± 9.90 (96.2%) | 0.15 ± 0.14 (98.5%) | |
(d) | 1 (n = 20) | 29.19 ± 7.09 (94.2%) | 45.73 ± 8.39 (95.4%) | 0.38 ± 0.15 (96.2%) |
2 (n = 15) | 13.90 ± 10.37 (97.2%) | 41.01 ± 5.91 (95.9%) | 0.32 ± 0.05 (96.8%) | |
3 (n = 10) | 16.79 ± 4.57 (96.6%) | 32.19 ± 5.49 (96.7%) | 0.30 ± 0.47 (97.0%) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Zhang, D.; Li, Y.; Hou, Q.; Yu, Y.; Qi, J.; Fu, W.; Dong, J.; Cheng, Y. Effect of a Submerged Zone and Carbon Source on Nutrient and Metal Removal for Stormwater by Bioretention Cells. Water 2018, 10, 1629. https://doi.org/10.3390/w10111629
Wang M, Zhang D, Li Y, Hou Q, Yu Y, Qi J, Fu W, Dong J, Cheng Y. Effect of a Submerged Zone and Carbon Source on Nutrient and Metal Removal for Stormwater by Bioretention Cells. Water. 2018; 10(11):1629. https://doi.org/10.3390/w10111629
Chicago/Turabian StyleWang, Mo, Dongqing Zhang, Yong Li, Qinghe Hou, Yuying Yu, Jinda Qi, Weicong Fu, Jianwen Dong, and Yuning Cheng. 2018. "Effect of a Submerged Zone and Carbon Source on Nutrient and Metal Removal for Stormwater by Bioretention Cells" Water 10, no. 11: 1629. https://doi.org/10.3390/w10111629
APA StyleWang, M., Zhang, D., Li, Y., Hou, Q., Yu, Y., Qi, J., Fu, W., Dong, J., & Cheng, Y. (2018). Effect of a Submerged Zone and Carbon Source on Nutrient and Metal Removal for Stormwater by Bioretention Cells. Water, 10(11), 1629. https://doi.org/10.3390/w10111629