Impacts of Sea Level Rise and Groundwater Extraction Scenarios on Fresh Groundwater Resources in the Nile Delta Governorates, Egypt
Abstract
:1. Introduction
2. Study Area
3. Method
3.1. Numerical Model
3.2. Future Scenarios
4. Results and Discussion
4.1. The Whole Nile Delta
4.2. The Nile Delta Governorates
5. Conclusions and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- EGSA. Egyptian General Survey and Mining: Topographical Map cover Nile Delta, Scale 1:2 000 000; Egyptian General Survey and Mining (Publishing Center): Cairo, Egypt, 1997. [Google Scholar]
- SADS2030—Sustainable Agricultural Development Strategy, 1st ed.; Ministry of Agriculture and Land Reclamation of Egypt: Cairo, Egypt, 2009; p. 197.
- Farid, M.S.M. Nile Delta Groundwater Study. Master’s Thesis, Cairo University, Cairo, Egypt, 1980. [Google Scholar]
- Mabrouk, M.B.; Jonoski, A.; Solomatine, D.; Uhlenbrook, S. A Review of Seawater Intrusion in the Nile Delta Groundwater System—The basis for Assessing Impacts due to Climate Changes, Sea Level Rise and Water Resources Development. Nile Water Sci. Eng. J. 2017, 10, 46–61. [Google Scholar]
- Diab, M.S.; Dahab, K.; El Fakharany, M. Impacts of the paleohydrological conditions on the groundwater quality in the northern part of Nile Delta, The geological society of Egypt. Geol. J. B 1997, 4112, 779–795. [Google Scholar]
- Custodio, E. Aquifer overexploitation: What does it mean? Hydrogeol. J. 2002, 10, 254–277. [Google Scholar] [CrossRef]
- Yihdego, Y.; Panda, S. Studies on Nature and Properties of Salinity across Globe with a View to its Management-A Review. Glob. J. Hum. Soc. Sci. Res. 2017, 17, 31–37. [Google Scholar]
- Oude Essink, G.H.P.; Van Baaren, E.S.; De Louw, P.G.B. Effects of climate change on coastal groundwater systems, a modeling study in the Netherlands. Water Resour. Res. J. 2010, 46, W00F04. [Google Scholar] [CrossRef]
- Yihdego, Y.; Al-Weshah, R.A. Assessment and prediction of saline sea water transport in groundwater using 3-D numerical modelling. Environ. Processes J. 2016, 4, 49–73. [Google Scholar] [CrossRef]
- Gorelick, S.M.; Zheng, C. Global change and the groundwater management challenge. Water Resour. Res. J. 2015, 51, 3031–3051. [Google Scholar] [CrossRef] [Green Version]
- Ojha, L.; Wilhelm, M.B.; Murchie, S.L.; McEwen, A.S.; Wray, J.J.; Hanley, J.; Massé, M.; Chojnacki, M. Spectral evidence for hydrated salts in recurring slope linear on Mars. Nat. Geosci. J. 2015, 8, 829. [Google Scholar] [CrossRef]
- Mahmoodzadeh, D.; Ketabchi, H.; Ataie-Ashtiani, B.; Simmons, C.T. Conceptualization of a fresh groundwater lens influenced by climate change, A modelling study of an arid-region island in the Persian Gulf, Iran. Hydrol. J. 2014, 519, 399–413. [Google Scholar] [CrossRef]
- Ketabchi, H.; Mahmoodzadeh, D.; Ataie-Ashtiani, B.; Simmons, C.T. Sea-level rise impacts on seawater intrusion in coastal aquifers: Review and integration. Hydrol. J. 2016. [Google Scholar] [CrossRef]
- Nofall, E.R.; Fekry, A.F.; El-Didy, S.M. Adaptation to the Impact of Sea Level Rise in the Nile Delta Coastal zone, Egypt. Am. Sci. J. 2014, 10, 17–29. [Google Scholar]
- Sefelnasr, A.; Sheriff, M.M. Impacts of Seawater Rise on Seawater Intrusion in the Nile Delta Aquifer, Egypt. Groundw. J. 2014, 52, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Sherif, M.M.; Sefelnasr, A.; Javadi, A. Incorporating the concept of Equivalent Fresh water Head in Successive Horizontal Simulations of Seawater Intrusion in the Nile Delta aquifer, Egypt. Hydrol. J. 2012, 464–465, 186–198. [Google Scholar] [CrossRef]
- Abdelaty, I.M.; Abd-Elhamid, H.F.; Fahmy, M.F.; Abdelaal, G.M. Investigation of some potential parameters and its impacts on saltwater intrusion in Nile Delta aquifer. J. Eng. Sci. 2014, 42, 931–955. [Google Scholar] [CrossRef]
- Mabrouk, M.B.; Jonoski, A.; Oude Essink, G.H.P.; Uhlenbrook, S. Delineating the fresh-saline groundwater distribution in the Nile Delta using a 3D variable-density groundwater flow model coupled with salt transport. Hydrol. J. Reg. Stud. 2018. under review. [Google Scholar]
- Field, C.B.; Barros, V.R.; Dokken, D.J.; Mach, K.J.; Mastrandrea, M.D.; Bilir, T.E.; Chatterjee, M.; Ebi, K.L.; Estrada, Y.O.; Genova, R.C.; et al. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Delsman, J.R.; Hu-a-ng, K.R.M.; Vos, P.C.C.; De Louw, P.G.B.; Oude Essink, G.H.P.; Stuyfzand, P.J.; Bierkens, M.F.P. Paleo-modeling of coastal saltwater intrusion during the Holocene, An application to the Netherlands. Hydrol. Earth Syst. Sci. J. 2014, 18, 3891–3905. [Google Scholar] [CrossRef] [Green Version]
- Sestini, G. Nile Delta: A review of depositional environments and geological history. Geol. Soc. Lond. Spec. Publ. 1989, 41, 99–127. [Google Scholar] [CrossRef]
- Morsy, W.S. Environmental Management to Groundwater Resources for Nile Delta Region. Ph.D. Thesis, Faculty. of Engineering, Cairo University, Cairo, Egypt, 2009. [Google Scholar]
- Van Engelen, J.; Oude Essink, G.H.P.; Kooi, H.; Bierkens, M.F.P. On the origins of hypersaline groundwater in the Nile Delta aquifer. Hydrol. J. 2018, 560, 301–317. [Google Scholar] [CrossRef]
- Bear, J. Hydraulics of Groundwater; McGraw-Hill Book Company: New York, NY, USA, 1979; p. 592. ISBN 0-486-45355. [Google Scholar]
- CAPMAS. The Central Authority for Public Mobilization and Statistics, Egypt, Egypt in Numbers; Ministry of Communication and Information Technology (Publishing Center): Cairo, Egypt, 2010. [Google Scholar]
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2015 Revision, Key Findings and Advance Tables, United Nations, New York 2015, Working Paper No. ESA/P/WP.241. Available online: https://esa.un.org/unpd/wpp/publications/files/key_findings_wpp_2015.pdf (accessed on 15 November 2018).
- Yihdego, Y.; Khalil, A.; Salem, H.S. Nile Rivers Basin Dispute: Perspectives of the Grand Ethiopian Renaissance Dam (GERD). Hum. Soc. Sci. Res. J. 2017, 17, 1–21. [Google Scholar]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- DeConto, R.M.; Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 2016, 531, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Jevrejeva, S.; Grinsted, A.; Moore, J.C. Upper limit for sea level projections by 2100. Environ. Res. Lett. 2014, 9, 104008. [Google Scholar] [CrossRef] [Green Version]
- Le Bars, D.; Drijfhout, S.; de Vries, H. A high-end sea level rise probabilistic projection including rapid Antarctic ice sheet mass loss. Environ. Res. Lett. 2017, 12, 044013. [Google Scholar] [CrossRef]
- Meisler, H.; Leahy, P.P.; Knobel, L.L. Effect of Eustatic Sea-Level Changes on Saltwater-Fresh Water in the Northern Atlantic Coastal Plain; USGS Water Supply Paper; US Government Printing Office: Alexandra, VA, USA, 1984; Volume 2255, p. 34.
- Larsen, F.; Tran, L.T.L.V.; Van Hoang, H.; Tran, L.T.L.V.; Christiansen, A.V.; Pham, N.Q. Groundwater salinity influenced by Holocene seawater trapped in incised valleys in the Red River delta plain. Nat. Geosci. 2017, 10, 376–381. [Google Scholar] [CrossRef]
- Lide, D.R. (Ed.) CRC Handbook of Chemistry and Physics, 86th ed.; CRC Press: Boca Raton, FL, USA, 2015; p. 5585. ISBN 0-8493-0486-5. [Google Scholar]
- Metz, H.C. (Ed.) Egypt: A Country Study; GPO for the Library of Congress: Washington, DC, USA, 1990. [Google Scholar]
Scenario (Sc.) | SLR (m) | Extraction (109 m3/Year) | Time (Year) |
---|---|---|---|
Reference | 0 | 4.9 | 2010 |
Sc.1 Long run | 0 | 4.9 | 2500 |
Sc.2 Extreme | 1.5 | 12 | 2100 |
Sc.3 Moderate | 1 | 8 | 2100 |
Sc.4 Restrictive | 0 | 4.9 | 2100 |
Sc.5 High ext. | 0 | 12 | 2100 |
Sc.6 High SLR | 1.5 | 4.9 | 2100 |
Groundwater Types kg/m3 | Current 2010 Reference | Sc.1 2500 Long Run | Sc.2 2100 Extreme | Sc.3 2100 Moderate | Sc.4 2100 Restrictive | Sc.5 2100 High Ext. | Sc.6 2100 High SLR |
---|---|---|---|---|---|---|---|
Fresh water 0–1 | 1290 | 893 −31% | 1049 −18.7% | 1119 −13.3% | 1190 −7.7% | 1090 −15.5% | 1147 −11.1% |
Light brackish 1–5 | 421 | 436 +3.6% | 434 +3% | 432 +2.7% | 431 +2.4% | 433 +2.9% | 432 +2.8% |
Brackish 5–30 | 829 | 1051 +26.8% | 900 +8.5% | 888 +7.1% | 886 +6.9% | 894 +7.9% | 890 +7.4% |
Saline water >30 | 1513 | 1734 +14.6% | 1691 +11.7% | 1600 +5.7% | 1548 +2.2% | 1631 +7.7% | 1611 +6.4% |
Governorate | Area 103 km2 | Extraction 2010 106 m3/year | Current 2010 | Sc.1 Long Run | Sc.2 Extreme | Sc.3 Moderate | Sc.4 Restrictive | Sc.5 High ext. | Sc.6 High SLR |
---|---|---|---|---|---|---|---|---|---|
El-Buhaira | 10.130 | 1931 | 258 | 180 | 228 | 253 | 250 | 234 | 243 |
Daghleya | 3.5 | 114 | 160 | 62 | 100 | 135 | 143 | 118 | 127 |
Damietta | 1.029 | 362.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Gharbeya | 1.942 | 291.7 | 306 | 200 | 274 | 289 | 294 | 279 | 286 |
Ismailiya | 2.10 | 163.8 | 31 | 8 | 16 | 26 | 28 | 20 | 24 |
Kafr El Sheikh | 3.437 | 0.9 | 24 | 0 | 11 | 19 | 20 | 16 | 18 |
Monofeya | 2.543 | 791.5 | 120 | 105 | 113 | 117 | 118 | 114 | 116 |
Qalyobeya | 1.124 | 408.2 | 66 | 51 | 54 | 61 | 63 | 56 | 60 |
Sharkeya | 4.18 | 681.5 | 318 | 210 | 276 | 295 | 302 | 281 | 290 |
Alexandria | 2.679 | 2.4 | 22 | 5 | 7 | 14 | 15 | 9 | 13 |
Portsaid | 1.351 | 154.2 | 57 | 96 | 45 | 50 | 51 | 46 | 49 |
Governorate | Recommendation | Reason |
---|---|---|
-Coastal governorates Kafr El Sheikh Alexandria Damietta Port Said | Ban groundwater extraction Search for alternatives | -Limited or no fresh groundwater -Sensitive to SWI (saltwater intrusion) |
-Middle governorates El Buhaira Gharbeya Sharkeya | Extraction in the Southern region | -Fresh water is decreasing rapidly -Suffer from combined effects of excessive groundwater extraction and SLR -Have the highest fresh water volumes |
Ismailiya Dagahleya | No groundwater extraction No investment in agriculture that relies on groundwater | -A huge drop of fresh water volume between different scenarios -SWI and ext. that intensify the criticality of its small fresh water volume |
-Southern governorates Qalyobeya Monofeya | Groundwater extraction is recommended | -Fresh water is decreasing slowly -Far from SWI |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mabrouk, M.; Jonoski, A.; H. P. Oude Essink, G.; Uhlenbrook, S. Impacts of Sea Level Rise and Groundwater Extraction Scenarios on Fresh Groundwater Resources in the Nile Delta Governorates, Egypt. Water 2018, 10, 1690. https://doi.org/10.3390/w10111690
Mabrouk M, Jonoski A, H. P. Oude Essink G, Uhlenbrook S. Impacts of Sea Level Rise and Groundwater Extraction Scenarios on Fresh Groundwater Resources in the Nile Delta Governorates, Egypt. Water. 2018; 10(11):1690. https://doi.org/10.3390/w10111690
Chicago/Turabian StyleMabrouk, Marmar, Andreja Jonoski, Gualbert H. P. Oude Essink, and Stefan Uhlenbrook. 2018. "Impacts of Sea Level Rise and Groundwater Extraction Scenarios on Fresh Groundwater Resources in the Nile Delta Governorates, Egypt" Water 10, no. 11: 1690. https://doi.org/10.3390/w10111690
APA StyleMabrouk, M., Jonoski, A., H. P. Oude Essink, G., & Uhlenbrook, S. (2018). Impacts of Sea Level Rise and Groundwater Extraction Scenarios on Fresh Groundwater Resources in the Nile Delta Governorates, Egypt. Water, 10(11), 1690. https://doi.org/10.3390/w10111690