Cross-Scale Baroclinic Simulation of the Effect of Channel Dredging in an Estuarine Setting
Abstract
:1. Introduction
2. Study Object
2.1. Spatial Domain
2.2. Project Specification
2.3. Observational Assets
3. Model Setup
4. Validation of the Baseline Model
5. Simulation of the Proposed Scenario
5.1. Salinity
5.2. Non-Tidal Circulation
5.3. Tidal Currents and an Extreme Event
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kennish, M.J. Coastal salt marsh systems in the US: A review of anthropogenic impacts. J. Coast. Res. 2001, 17, 731–748. [Google Scholar]
- Howarth, R.W. Coastal nitrogen pollution: A review of sources and trends globally and regionally. Harmful Algae 2008, 8, 14–20. [Google Scholar] [CrossRef]
- Newell, R.; Seiderer, L.; Hitchcock, D. The impact of dredging works in coastal waters: A review of the sensitivity to disturbance and subsequent recovery of biological resources on the sea bed. In Oceanography and Marine Biology: An Annual Review; CRC Press: Boca Raton, FA, USA, 1998; Volume 36, pp. 127–178. [Google Scholar]
- Islam, M.S.; Tanaka, M. Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: A review and synthesis. Mar. Pollut. Bull. 2004, 48, 624–649. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Savenije, H.H.; Yang, Q.; Ou, S.; Lei, Y. Influence of river discharge and dredging on tidal wave propagation: Modaomen Estuary case. J. Hydraul. Eng. 2012, 138, 885–896. [Google Scholar] [CrossRef]
- Van Maren, D.; Van Kessel, T.; Cronin, K.; Sittoni, L. The impact of channel deepening and dredging on estuarine sediment concentration. Cont. Shelf Res. 2015, 95, 1–14. [Google Scholar] [CrossRef]
- Goodwin, C.R. Tidal-Flow, Circulation, and Flushing Changes Caused by Dredge and Fill in Tampa Bay, Florida; U.S. Government Printing Office: Washington, DC, USA, 1987.
- Zhu, J.; Weisberg, R.H.; Zheng, L.; Han, S. Influences of channel deepening and widening on the tidal and nontidal circulations of Tampa Bay. Estuar. Coasts 2015, 38, 132–150. [Google Scholar] [CrossRef]
- Mason, E.; Molemaker, J.; Shchepetkin, A.F.; Colas, F.; McWilliams, J.C.; Sangrà, P. Procedures for offline grid nesting in regional ocean models. Ocean Model. 2010, 35, 1–15. [Google Scholar] [CrossRef]
- Danilov, S. Ocean modeling on unstructured meshes. Ocean Model. 2013, 69, 195–210. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.J.; Ye, F.; Stanev, E.V.; Grashorn, S. Seamless cross-scale modeling with SCHISM. Ocean Model. 2016, 102, 64–81. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Ateljevich, E.; Yu, H.C.; Wu, C.H.; Jason, C. A new vertical coordinate system for a 3D unstructured-grid model. Ocean Model. 2015, 85, 16–31. [Google Scholar] [CrossRef]
- Ye, F.; Zhang, Y.J.; Friedrichs, M.A.; Wang, H.V.; Irby, I.D.; Shen, J.; Wang, Z. A 3D, cross-scale, baroclinic model with implicit vertical transport for the Upper Chesapeake Bay and its tributaries. Ocean Model. 2016, 107, 82–96. [Google Scholar] [CrossRef]
- Valle-Levinson, A.; Lwiza, K.M. Bathymetric influences on the lower Chesapeake Bay hydrography. J. Mar. Syst. 1997, 12, 221–236. [Google Scholar] [CrossRef]
- Ye, F.; Zhang, Y.J.; Wang, H.V.; Friedrichs, M.A.; Irby, I.D.; Valle-Levinson, A.; Wang, Z.; Huang, H.; Shen, J.; Du, J. A 3D unstructured-grid model for the Chesapeake Bay: Importance of bathymetry. Ocean Model. 2017. under review. [Google Scholar]
- Schubel, J.; Pritchard, D. Responses of upper Chesapeake Bay to variations in discharge of the Susquehanna River. Estuar. Coasts 1986, 9, 236–249. [Google Scholar] [CrossRef]
- Goodrich, D.M.; Boicourt, W.C.; Hamilton, P.; Pritchard, D.W. Wind-induced destratification in Chesapeake Bay. J. Phys. Oceanogr. 1987, 17, 2232–2240. [Google Scholar] [CrossRef]
- Ezer, T.; Atkinson, L.P.; Corlett, W.B.; Blanco, J.L. Gulf Stream’s induced sea level rise and variability along the US mid-Atlantic coast. J. Geophys. Res. Ocean. 2013, 118, 685–697. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Wong, P.P.; Burkett, V.; Codignotto, J.; Hay, J.; McLean, R.; Ragoonaden, S.; Woodroffe, C.D.; Abuodha, P.; Arblaster, J.; et al. Coastal Systems and Low-Lying Areas; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Hanson, J.; Wadman, H.; Blanton, B.; Robert, H. FEMA Region III Storm Surge Study, Coastal Storm Surge Analysis: Modeling and System Validation; ERDC/CHL TR-11-1; US Army Engineer Research and Development Center: Vicksburg, MS, USA, 2013; Volume 262. [Google Scholar]
- Shenk, G.W.; Linker, L.C. Development and application of the 2010 Chesapeake Bay watershed total maximum daily load model. J. Am. Water Resour. Assoc. 2013, 49, 1042–1056. [Google Scholar] [CrossRef]
- Umlauf, L.; Burchard, H. A generic length-scale equation for geophysical turbulence models. J. Mar. Res. 2003, 61, 235–265. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Wang, H.; Huang, H.; Wang, Z.; Ye, F.; Sisson, M. Impact of small-scale structures on estuarine circulation. Ocean Dyn. 2017. submitted. [Google Scholar]
- Wang, Y.; Shen, J.; Sisson, M. A modeling study of influence of sea-level rise and channel deepening on dissolved oxygen levels in the James River, Virginia. Environ. Fluid Mech. 2017. submitted. [Google Scholar]
- MacCready, P.; Geyer, W.R. Advances in estuarine physics. Ann. Rev. Mar. Sci. 2009, 2, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Hansen, D.V. Gravitational circulation in straits and estuaries. J. Mar. Res. 1965, 23, 104–122. [Google Scholar]
- Geyer, W.R.; MacCready, P. The estuarine circulation. Ann. Rev. Fluid Mech. 2014, 46, 175–197. [Google Scholar] [CrossRef]
- Shen, J.; Boon, J.; Kuo, A. A modeling study of a tidal intrusion front and its impact on larval dispersion in the James River estuary, Virginia. Estuar. Coasts 1999, 22, 681–692. [Google Scholar] [CrossRef]
Surface | Bottom | |
---|---|---|
Lower Bay | 0.15 | 0.14 |
James River | 0.23 | 0.26 |
Elizabeth River | 0.86 | 0.86 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, F.; Zhang, Y.J.; Wang, H.V.; Huang, H.; Wang, Z.; Liu, Z.; Li, X. Cross-Scale Baroclinic Simulation of the Effect of Channel Dredging in an Estuarine Setting. Water 2018, 10, 163. https://doi.org/10.3390/w10020163
Ye F, Zhang YJ, Wang HV, Huang H, Wang Z, Liu Z, Li X. Cross-Scale Baroclinic Simulation of the Effect of Channel Dredging in an Estuarine Setting. Water. 2018; 10(2):163. https://doi.org/10.3390/w10020163
Chicago/Turabian StyleYe, Fei, Yinglong J. Zhang, Harry V. Wang, Hai Huang, Zhengui Wang, Zhuo Liu, and Xiaonan Li. 2018. "Cross-Scale Baroclinic Simulation of the Effect of Channel Dredging in an Estuarine Setting" Water 10, no. 2: 163. https://doi.org/10.3390/w10020163
APA StyleYe, F., Zhang, Y. J., Wang, H. V., Huang, H., Wang, Z., Liu, Z., & Li, X. (2018). Cross-Scale Baroclinic Simulation of the Effect of Channel Dredging in an Estuarine Setting. Water, 10(2), 163. https://doi.org/10.3390/w10020163