Case Study: Effects of a Partial-Debris Dam on Riverbank Erosion in the Parlung Tsangpo River, China
Abstract
:1. Introduction
2. New Framework to Analyze Riverbank Erosion
3. Tianmo Watershed and 2010 Debris Flows
4. Field Investigation
5. Back-Analysis of Riverbank Erosion
6. High-Resolution Satellite Images
7. Summary
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gregory, K.J.; Gurnell, A.M.; Hill, C.T. The permanence of debris dams related to river channel processes. Hydrol. Sci. J. 1985, 30, 371–381. [Google Scholar] [CrossRef]
- Yanites, B.J.; Webb, R.H.; Griffiths, P.G.; Magirl, C.S. Debris flow deposition and reworking by the Colorado River in Grand Canyon, Arizona. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Liu, C.; Yao, L. Study on features of river-blocked by debris flow and criterion of disaster at the opposite river bank. J. Sichuan Univ. (Eng. Sci. Ed.) 2012, 44, 93–100. (In Chinese) [Google Scholar]
- Petley, D. Understanding the Seti River Landslide in Nepal. Available online: https://blogs.agu.org/landslideblog/2012/05/23/understanding-the-seti-river-landslide-in-nepal/ (accessed on 18 December 2017).
- Costa, J.E.; Schuster, R.L. The formation and failure of natural dam. Geol. Soc. Am. Bull. 1988, 100, 1054–1068. [Google Scholar] [CrossRef]
- Fan, X.; Tang, C.X.; van Western, C.J.; Alkema, D. Simulating dam-breach flood scenarios of the Tangjiashan landslide dam induced by the Wenchuan Earthquake. Nat. Hazards Earth Syst. Sci. 2012, 12, 3031–3044. [Google Scholar] [CrossRef]
- Abidin, R.Z.; Sulaiman, M.S.; Yusoff, N. Erosion risk assessment: A case study of the Langat River bank in Malaysia. Int. Soil Water Conserv. Res. 2017, 5, 26–35. [Google Scholar] [CrossRef]
- Tsubaki, R.; Kawahara, Y.; Sayama, T. Analysis of hydraulic and geomorphic condition causing railway embankment breach due to inundation flow. J. Hydrosci. Hydraul. Eng. 2012, 30, 87–99. [Google Scholar]
- Yang, C.T. Reclamation: Managing Water in the West Denver, Colorado; Sedimentation and River Hydraulics Group, Technical Service Center, Bureau of Reclamation, U.S. Department of Interior: Washington, DC, USA, 2006.
- Julien, P.Y. Erosion and Sedimentation, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Sulaiman, M.S.; Sinnakaudan, S.K.; Shukor, M.R. Near bed turbulence measurement with acoustic doppler velocimeter (ADV). KSCE J. Civ. Eng. 2013, 17, 1515–1528. [Google Scholar] [CrossRef]
- Robert, A. River Processes: An Introduction to Fluvial Dynamics; Routledge: Abingdon, UK, 2014. [Google Scholar]
- Couper, P.R.; Maddock, I.P. Subaerial river bank erosion processes and their interaction with other bank erosion mechanism on the River Arrow, Warwickshire, UK. Earth Surf. Process. Landf. 2001, 26, 631–646. [Google Scholar] [CrossRef]
- Koos, E.; Linares-Guerrero, E.; Hunt, M.L.; Brennen, C.E. Rheological measurements of large particles in high shear rate flows. Phys. Fluids 2012, 24, 013302. [Google Scholar] [CrossRef]
- Osman, A.M.; Thorne, C.R. Riverbank stability analysis: Theory. J. Hydraul. Eng. 1988, 114, 134–150. [Google Scholar] [CrossRef]
- Thyagaraj, T.; Rao, S.M. Influence of osmotic suction on the soil-water characteristic curves of compacted expansive clay. J. Geotech. Geoenviron. Eng. 2010, 136, 1695–1702. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhu, D.; Shen, Y.; Wang, X. Numerical simulation method of bank collapse based on theory of critical slip field. Rock Soil Mech. 2015, 36, 21–28. (In Chinese) [Google Scholar]
- Fellenius, W. Calculation of stability of earth dams. In Proceedings of the 2nd Congress on Large Dams, Washington, DC, USA, 7–12 September 1936; Volume 4, pp. 445–462. [Google Scholar]
- Morgenstern, N.R.; Price, V.E. The analysis of the stability of general slip surfaces. Géotechnique 1965, 15, 79–93. [Google Scholar] [CrossRef]
- Bishop, A.W. The use of the slip circle in the stability analysis of earth slopes. Géotechnique 1971, 5, 7–17. [Google Scholar] [CrossRef]
- Wang, G.; Liu, F.; Fu, X.; Li, T. Simulation of dam breach development for emergency treatment of the Tangjiashan Quake Lake in China. Sci. China Ser. E-Technol. Sci. 2009, 51, 82–94. [Google Scholar] [CrossRef]
- Ge, Y.; Cui, P.; Su, F.; Zhang, J.; Chen, X. Case history of the disastrous debris flows of Tianmo Watershed in Bomi County, Tibet, China: Some mitigation suggestions. J. Mt. Sci. 2014, 11, 1253–1265. [Google Scholar] [CrossRef]
- Meyer-Peter, E.; Muller, R. Formulas for bed-load transport. In Proceedings of the IAHSR 2nd Meeting, Stockholm, Sweden, 7–9 June 1948. [Google Scholar]
- Wang, Z.; Huang, J.; Su, D. River channel scour and scour rate of clear water flow. J. Sediment Res. 1998, 42, 3–13. (In Chinese) [Google Scholar]
- GEO-SLOPE International. Stability Modeling with SLOPE/W; GEO-SLOPE International Ltd.: Calgary, AB, Canada, 2012; pp. 1–238. [Google Scholar]
- Fu, C.; Fletcher, J.O. The relationship between Tibet-tropical ocean thermal contrast and internannual variability of Indian monsoon rainfall. J. Clim. Appl. Meteorol. 1985, 24, 841–847. [Google Scholar] [CrossRef]
- Cui, Y.; Guo, C.; Zhou, X. Experimental study on the moving characteristics of fine grains in wide grading unconsolidated soil under heavy rainfall. J. Mt. Sci. 2017, 14, 417–431. [Google Scholar] [CrossRef]
- Deng, M.F.; Chen, N.S.; Liu, M. Meteorological factors driving glacial till variation and the associated periglacial debris flow in Tianmo Valley, south-eastern Tibetan Plateau. Nat. Hazards Earth Syst. Sci. 2017, 17, 345–356. [Google Scholar] [CrossRef]
- Liu, J.; Yang, B.; Huang, K.; Sonechkin, D.M. Annual regional precipitation variations from a 700-year tree-ring record in South Tibet, Western China. Clim. Res. 2012, 53, 25–41. [Google Scholar] [CrossRef]
- Lu, R.; Tang, B.; Zhu, P. Debris Flow and Environment in Tibet; Chengdu Science and Technology University Press: Chengdu, China, 1999. (In Chinese) [Google Scholar]
- Grant, G.E.; Schmidt, J.C.; Lewis, S.L. A geological framework for interpreting downstream effects of dams on rivers. In A Peculiar River; O’Connor, J.E., Grant, G.E., Eds.; Water Science and Application, American Geophysical Union: Washington, DC, USA, 2007; Volume 7, pp. 203–219. [Google Scholar]
- Kummu, M.; Varis, O. Sediment-related impacts due to upstream reservoir trapping, the Lower Mekong River. Geomophology 2007, 85, 275–293. [Google Scholar] [CrossRef]
- Iverson, R.M. The physics of debris flows. Rev. Geophys. 1997, 35, 245–296. [Google Scholar] [CrossRef]
- Pierson, T.C. Dating young geomorphic surfaces using age of colonizing Douglas fir in southwestern Washington and northwestern Oregon, USA. Earth Surf. Process. Landf. 2007, 32, 811–831. [Google Scholar] [CrossRef]
- Du, Z.; Wang, J.; Ping, G. Detection of distribution dimension of the earth-rock aggregate based on digital image process. J. Sichuan Univ. Sci. Eng. (Nat. Sci. Ed.) 2012, 25, 37–40. (In Chinese) [Google Scholar]
- Zhang, Z.F.; Chen, X.P. Research progress on stability analysis of embankment under effects of river scouring. Adv. Sci. Technol. Water Resour. 2009, 29, 84–89. [Google Scholar]
- Shu, A.; Li, F.; Liu, H.; Duan, G.; Zhou, X. Characteristics of particle size distributions for the collapsed riverbank along the desert reach of the upper Yellow River. Int. J. Sediment Res. 2016, 31, 291–298. [Google Scholar] [CrossRef]
- Parker, C.; Simon, A.; Throne, C.R. The effects of variability in bank material properties on riverbank stability: Goodwin Creek, Mississippi. Geomorphology 2008, 101, 533–543. [Google Scholar] [CrossRef]
- Sinai, G.; Zaslavsky, D.; Golany, P. The effect of soil surface curvature on moisture and yield, Beer-Sheva observation. Soil Sci. 1981, 132, 367–375. [Google Scholar] [CrossRef]
- Thompson, J.C.; Moore, R.D. Relations between topography and water table depth in a shallow forest soil. Hydrol. Process. 1996, 10, 1513–1525. [Google Scholar] [CrossRef]
- Schwarz, M.; Preti, F.; Giadrossich, F.; Lehmann, P.; Or, D. Quantifying the role of vegetation in slope stability: A case study in Tuscany (Italy). Ecol. Eng. 2010, 36, 285–291. [Google Scholar] [CrossRef]
- Bryan, R.B. Soil erodibility and processes of water erosion on hillslope. Geomorphology 2000, 32, 385–415. [Google Scholar] [CrossRef]
- Scottish Environment Protection Agency. Engineering in the Water Environment Good Practice Guide Bank Protection: Rivers and Lochs. Available online: https://www.sepa.org.uk (accessed on 5 December 2017).
- Longoni, L.; Papini, M.; Brambilla, D.; Barazzetti, L.; Roncoroni, F.; Scaioni, M.; Ivanov, V.I. Monitoring riverbank erosion in mountain catchments using terrestrial laser scanning. Remote Sens. 2016, 8, 241. [Google Scholar] [CrossRef] [Green Version]
- Thoma, D.P.; Gupta, S.C.; Bauer, M.E.; Kirchoff, C. Airborne laser scanning for riverbank erosion assessment. Remote Sens. Environ. 2005, 95, 493–501. [Google Scholar] [CrossRef]
- O’Neal, M.A.; Pizzuto, J.E. The rates and spatial patterns of annual riverbank erosion revealed through terrestrial laser-scanner surveys of the South River, Virginia. Earth Surf. Process. Landf. 2011, 36, 695–701. [Google Scholar] [CrossRef]
- Schenato, L.; Aneesh, R.; Palmieri, L.; Galtarossa, A.; Pasuto, A. Fiber optic sensor for hydrostatic pressure and temperature measurement in riverbanks monitoring. Opt. Laser Technol. 2016, 82, 57–62. [Google Scholar] [CrossRef]
- Tantianuparp, P.; Shi, X.; Zhang, L.; Balz, T.; Liao, M. Characterization of landslide deformations in three gorges area using multiple InSAR data stacks. Remote Sens. 2013, 5, 2704–2719. [Google Scholar] [CrossRef]
- Ng, C.C.W.; Mu, Q.Y.; Zhou, C. Effects of soil structure on the shear behaviour of an unsaturated loess at different suctions and temperatures. Can. Geotech. J. 2016, 54, 270–279. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, C.E.; Cui, Y.; Au, K.Y.K.; Liu, H.; Wang, J.; Liu, D.; Wang, H. Case Study: Effects of a Partial-Debris Dam on Riverbank Erosion in the Parlung Tsangpo River, China. Water 2018, 10, 250. https://doi.org/10.3390/w10030250
Choi CE, Cui Y, Au KYK, Liu H, Wang J, Liu D, Wang H. Case Study: Effects of a Partial-Debris Dam on Riverbank Erosion in the Parlung Tsangpo River, China. Water. 2018; 10(3):250. https://doi.org/10.3390/w10030250
Chicago/Turabian StyleChoi, Clarence Edward, Yifei Cui, Kelvin Yuk Kit Au, Haiming Liu, Jiao Wang, Dingzhu Liu, and Hao Wang. 2018. "Case Study: Effects of a Partial-Debris Dam on Riverbank Erosion in the Parlung Tsangpo River, China" Water 10, no. 3: 250. https://doi.org/10.3390/w10030250
APA StyleChoi, C. E., Cui, Y., Au, K. Y. K., Liu, H., Wang, J., Liu, D., & Wang, H. (2018). Case Study: Effects of a Partial-Debris Dam on Riverbank Erosion in the Parlung Tsangpo River, China. Water, 10(3), 250. https://doi.org/10.3390/w10030250