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Abstract: Water quality evaluation is an essential measure to analyze water quality. However,
excessive randomness and fuzziness affect the process of evaluation, thus reducing the accuracy of
evaluation. Therefore, this study proposed a cloud model for evaluating the water quality to alleviate
this problem. Analytic hierarchy process and entropy theory were used to calculate the subjective
weight and objective weight, respectively, and then they were coupled as a combination weight
(CW) via game theory. The proposed game theory-based cloud model (GCM) was then applied to
the Qixinggang section of the Beijiang River. The results show that the CW ranks fecal coliform
as the most important factor, followed by total nitrogen and total phosphorus, while biochemical
oxygen demand and fluoride were considered least important. There were 19 months (31.67%) at
grade I, 39 months (65.00%) at grade II, and one month at grade IV and grade V during 2010–2014.
A total of 52 months (86.6%) of GCM were identical to the comprehensive evaluation result (CER).
The obtained water quality grades of GCM are close to the grades of the analytic hierarchy process
weight (AHPW) due to the weight coefficient of AHPW set to 0.7487. Generally, one or two grade
gaps exist among the results of the three groups of weights, suggesting that the index weight is not
particularly sensitive to the cloud model. The evaluated accuracy of water quality can be improved
by modifying the quantitative boundaries. This study could provide a reference for water quality
evaluation, prevention, and improvement of water quality assessment and other applications.
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1. Introduction

With the rapid development of the economy and the continued growth of the global population,
humans are currently exploring and utilizing limited water resources at an unprecedented rate
and scale [1–3]. However, this accelerated human activity has had a negative effect on the water
environment in recent decades, contributing to pollution of rivers, estuaries and oceans, especially in
developing countries [4,5]. Undoubtedly, water quality degradation has been acknowledged as one
of the most severe environmental issues worldwide since it disrupts the ecological balance of water
bodies and threatens regional environmental security [6–8]. Therefore, this issue attracts significant
attention across the world.

Water quality evaluation is one of the basic methods to analyze water quality condition and
has been considered as an essential measure and has since diversified. Nevertheless, two types of
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uncertainty should still be considered in water quality evaluation: the first is randomness, which
is often exhibited in the monitoring and analysis of data related to water quality; the second is
fuzziness, which often reflects the classification standard, evaluation class, and degree of pollution [9].
Most contemporary water quality evaluation methods or models, such as the single factor evaluation
method, the Nemerow pollution index, the fuzzy comprehensive evaluation, and the artificial neural
network method, can be divided into three types according to these two forms of uncertainties: the first
type of model is mainly based on various statistical and stochastic techniques for randomness [10–12];
the second type of model is mainly based on fuzzy membership function, fuzzy logic, and fuzzy
set theory for fuzziness [13,14]; and the last type of model is based on machine learning and
artificial intelligence for unknown patterns that hardly capture key information during the assessment
process [15–17]. The three types of methods or models provide superior tools to evaluate the water
quality and greatly contribute to regional water quality protection.

As mentioned before, since randomness and fuzziness are widely considered in water quality
evaluation, it would be better if a method or model existed that could reduce both randomness and
fuzziness. Fortunately, a new model, i.e., the cloud model was proposed with the purpose of reducing
randomness and fuzziness in system evaluation [18]. This model can quantify both randomness
and fuzziness via three fixed parameters and presents more advantages than a single randomness
or fuzziness model. Due to these advantages, Wang et al. [19] first applied this model to the field of
water quality evaluation and achieved satisfactory results. Nevertheless, water quality evaluation
is a process of multi-criteria decision-making and therefore a key issue remains in the cloud model,
i.e., how to determine appropriate index weights. Reasonable evaluation results mainly depend on
index weight so that the determination of an appropriate index weight becomes a key step in the
evaluation process [20,21].

Currently, subjective weight and objective weight are two common weights while both have their
limitations. The former is strongly affected by expert knowledge as well as many biases, resulting
in high subjectivity [22], while the later does not consider differences among indices, and it ignores
practical situations [23]. Therefore, a combination weight, with the advantages of both subjective
weight and objective weight, should be used to solve the aforementioned problems. Game theory is the
mathematical modeling of strategic interaction among rational and irrational agents that specializes in
solving conflicts among two or more participants [24,25]. In game theory, each participant’s objective is
to maximize the expected value of his own payoff, and the decision made by all participants is rational
for each individual participant [26,27]. Therefore, all participants reach an independent but collective
decision that maximizes all of the participants’ expected utility payoffs, suggesting that the decision
includes either a consensus or a compromise. This factor is known as the Nash Equilibrium [28].
Subjective weight and objective weight, analogously, can be regarded as two participants of the game,
and the combination weight is the result of the ‘weight’ game. The most satisfied combination weight is
considered that have reached the Nash Equilibrium, according to game theory. However, little attention
has been paid to the concept of game theory for determining a comprehensive weight in water quality
evaluation, let alone applying the combination weight to the cloud model of water quality evaluation.

Therefore, the main objectives of this study are (1) to calculate a combination weight based on
game theory integrating subjective weight and objective weight; (2) to construct an evaluation system
of the cloud model; and (3) to analyze water quality grade in the study areas. This study aims to
provide scientific and practical measures for water quality evaluation, prevention, and improvement
of water quality assessment and other applications in the study areas.

2. Study Site and Data

The study focuses on the Beijiang River, which is the second largest tributary of the Pearl River [29].
The Beijiang River originates from Xinfeng County in Jiangxi province, and flows through Shaoguan
City, Qingyuan City, and Foshan City of Guangdong province. The total length of the Beijiang River
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is 573 km, with a catchment area of 52,068 km2, accounting for 10.3% of the total area of the Pearl
River basin.

The water quality data used in this study were collected from the Qixinggang section (QXG;
111◦04′03′′ E, 23◦41′00′′ N), i.e., the national control section of surface water in the Beijiang River
(Figure 1). The QXG is located in the center of Qingyuan city and it is a key monitoring point of the
entire Beijiang River. The employed values in this study consisted of nine evaluation indices, including
dissolved oxygen (DO), permanganate index (PI), chemical oxygen demand (COD), biochemical
oxygen demand (BOD), ammonium nitrogen (NH4

+-N), total phosphorus (TP), total nitrogen (TN),
fluoride (F), and fecal coliform (Fc), and these data were monitored monthly from January 2010 to
December 2014. The quality of these data satisfied the national standards and professional standards.
Additionally, we used the z-score method [30] to standardize these indices, thus avoiding inconsistency
induced by measurement and calculation.

Water 2018, 10, x FOR PEER REVIEW  3 of 15 

 

Beijiang River is 573 km, with a catchment area of 52,068 km2, accounting for 10.3% of the total area 
of the Pearl River basin. 

The water quality data used in this study were collected from the Qixinggang section (QXG; 
111°04′03″ E, 23°41′00″ N), i.e., the national control section of surface water in the Beijiang River 
(Figure 1). The QXG is located in the center of Qingyuan city and it is a key monitoring point of the 
entire Beijiang River. The employed values in this study consisted of nine evaluation indices, 
including dissolved oxygen (DO), permanganate index (PI), chemical oxygen demand (COD), 
biochemical oxygen demand (BOD), ammonium nitrogen (NH4+-N), total phosphorus (TP), total 
nitrogen (TN), fluoride (F), and fecal coliform (Fc), and these data were monitored monthly from 
January 2010 to December 2014. The quality of these data satisfied the national standards and 
professional standards. Additionally, we used the z-score method [30] to standardize these indices, 
thus avoiding inconsistency induced by measurement and calculation. 

 
Figure 1. Location map of the monitoring section in the study area. 

3. Methodology 

The framework of water quality cloud model evaluation of the game theory-based cloud model 
is illustrated in Figure 2. In this study, we first selected suitable water quality indices and transferred 
these to standardized dimensionless data; we then determined water quality criteria and calculated 
each index’s combination weight according to the game theory concept. The subjective weight and 
objective weight were combined via the analytic hierarchy process (AHP) and entropy theory, 
respectively. Here, we determined the cloud model parameters and input the parameters into the 
normal cloud generator to generate the cloud, and the comprehensive certainty degree was computed 
using the combination weight. Lastly, the water quality grade was determined according to the rank 
of the maximum certainty degree of each evaluation index calculated from the cloud model. This 
research divides the water quality into six grades: grades I, II, III, IV, V, and VI. The main 
implemented software includes R studio and Excel. 

Figure 1. Location map of the monitoring section in the study area.

3. Methodology

The framework of water quality cloud model evaluation of the game theory-based cloud model is
illustrated in Figure 2. In this study, we first selected suitable water quality indices and transferred these
to standardized dimensionless data; we then determined water quality criteria and calculated each
index’s combination weight according to the game theory concept. The subjective weight and objective
weight were combined via the analytic hierarchy process (AHP) and entropy theory, respectively.
Here, we determined the cloud model parameters and input the parameters into the normal cloud
generator to generate the cloud, and the comprehensive certainty degree was computed using the
combination weight. Lastly, the water quality grade was determined according to the rank of the
maximum certainty degree of each evaluation index calculated from the cloud model. This research
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divides the water quality into six grades: grades I, II, III, IV, V, and VI. The main implemented software
includes R studio and Excel.Water 2018, 10, x FOR PEER REVIEW  4 of 15 
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3.1. Cloud Model

3.1.1. Overview of the Model

The cloud model, first proposed by Li et al. [18,31], is a type of transformation model that
synthetically describes the randomness and fuzziness of concepts and can implement the uncertain
transformation between a qualitative concept and its quantitative instantiations.

Given a qualitative concept T defined over a universe of discourse U = {u}, let x ∈ U is a random
instantiation of the concept T and µT(x) ∈ [0, 1] is the certainty degree of x belonging to T, which
corresponds to a random number with a steady tendency. Then, the distribution of x in the universe
U can be defined as a cloud and x can be called a cloud drop. The point here is that the random
instantiation is the instantiation in the sense of probability theory. Thus, ∀x ∈ U, the mapping µT(x)
is a one-to-many mapping in nature, i.e., the certainty degree of x belonging to the concept T is
a probability distribution rather than a fixed number.

3.1.2. Model Parameters

The cloud model can effectively integrate both randomness and fuzziness of concepts and describe
the overall quantitative property of a concept by the four numerical characteristics as follows:

Ex (Expectation) represents the mathematical expectation that the cloud drops belong to a concept in
the universe. It can be regarded as the most representative and typical sample of the qualitative concept.

En (Entropy) represents the uncertainty measurement of a qualitative concept. It is determined by
both randomness and the fuzziness of the concept. In one aspect, as the measurement of randomness,
En reflects the dispersing extent of the cloud drops and in the other aspect, it is also the measurement
of fuzziness, representing the scope of the universe that can be accepted by the concept.

He (Hyper entropy) represents the uncertain degree of entropy En.
N represents the number of the repeat simulations. Note that in Figure 3, the x-axis represents the

values of the water quality index, and the y-axis represents the certainty degree of a water quality grade.
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For the determination of (Ex, En, He), Du et al. [32] suggested Equation (1) for a bilateral boundary
of the form (Bmin, Bmax): 

Ex = (Bmin + Bmax)/2
En = (Bmax − Bmin)/6

He = k
(1)

where Bmin and Bmax are the respective minimum and maximum values that can be accepted qualitatively;
i.e., in water quality evaluation, the minimum and maximum values corresponding to a certain water
quality grade in each criterion to obtain the value of Ex.

Note that k is a constant and can be adjusted according to the practical situation. In the present
study, the algorithm of He was modified as follows: hyper entropy He is the uncertainty degree of
entropy En; however, in Equation (1) He is assumed as a constant irrelevant to En, and it is assumed
that He can be adjusted by a linear relationship with En:

He = k× En (2)

In this way, k intuitively controls the ‘atomization’ degree of the normal cloud model (Figure 3)
and essentially reflects the variation of cognition of different evaluations. Here, k is assumed to be 0.1
to balance the variation and robustness of the assessment [33].

In this case, combined with standard water quality criteria (Table 1), the three perimeters (Ex, En,
and He) of each evaluation index were calculated according to Equations (1) and (2). The modified
equations are applicable for fixed intervals, noting that for grade VI of criterion PI, COD, BOD,
NH4

+-N, P, N, F, Fc, and for grade I of criterion DO, Bmax is missing. To attain the pseudo boundary,
a hypothetical process indicates that Bmax is twice as large as Bmin. For example, for grade II of PI,
Bmin = 2, and Bmax = 4 (see Table 1), the corresponding parameters can be obtained as Ex = 3 and
En = 1/3. For grade VI of COD, Bmin = 40, and Bmax = 2 × Bmin = 80, the corresponding parameters can
be obtained as Ex = 60 and En = 6.67. After attaining all quantitative boundaries of the grades of all
criteria, all parameters are presented in Table 2. N was set to 2000 in this study to balance accuracy,
robustness, and computational expense.
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Table 1. Quantitative boundaries of water quality grades of all criteria [34].

Evaluation Factor Grade I Grade II Grade III Grade IV Grade V Grade VI

DO (mg/L) ≥7.5 ≥6 ≥5 ≥3 ≥2 <2
PI (mg/L) ≤2 ≤4 ≤6 ≤10 ≤15 >15

COD (mg/L) ≤15 ≤15 ≤20 ≤30 ≤40 >40
BOD (mg/L) ≤3 ≤3 ≤4 ≤6 ≤10 >10

NH4
+-N (mg/L) ≤0.15 ≤0.5 ≤1 ≤1.5 ≤2 >2

TP (mg/L) ≤0.02 ≤0.1 ≤0.2 ≤0.3 ≤0.4 >0.4
TN (mg/L) ≤0.2 ≤0.5 ≤1 ≤1.5 ≤2 >2
F (mg/L) ≤1 ≤1 ≤1 ≤1.5 ≤1.5 >1.5

Fc (Number) ≤200 ≤2000 ≤10,000 ≤20,000 ≤40,000 >40,000

Table 2. Cloud model parameters of water quality grades of all criteria.

Grade
DO PI COD

Ex En He Ex En He Ex En He

I 11.25 1.25 0.13 1 0.33 0.03 7.5 2.5 0.3
II 6.75 0.25 0.025 3 0.33 0.03 15 2.5 0.3
III 5.5 0.17 0.017 5 0.33 0.03 17.5 0.83 0.1
IV 4 0.33 0.033 8 0.67 0.067 25 1.67 0.17
V 2.5 0.17 0.017 12.5 0.83 0.083 35 1.67 0.17
VI 1 0.33 0.033 22.5 2.5 0.25 60 6.67 0.7

Grade
BOD NH4

+-N TP

Ex En He Ex En He Ex En He

I 1.5 0.5 0.05 0.075 0.03 0.003 0.01 0.003 0.0003
II 3 0.5 0.05 0.33 0.058 0.006 0.06 0.013 0.001
III 3.5 0.17 0.017 0.75 0.08 0.008 0.15 0.017 0.002
IV 5 0.33 0.033 1.25 0.08 0.008 0.25 0.017 0.002
V 8 0.67 0.067 1.75 0.08 0.008 0.35 0.017 0.002
VI 15 1.67 0.167 3 0.33 0.033 0.6 0.067 0.007

Grade
TN F Fc

Ex En He Ex En He Ex En He

I 0.1 0.03 0.003 0.5 0.17 0.017 100 33 3.3
II 0.35 0.05 0.005 1 0.17 0.017 1100 300 30
III 0.75 0.08 0.008 1 0.17 0.017 6000 1333 133.3
IV 1.25 0.08 0.008 1.25 0.08 0.008 15,000 1667 166.7
V 1.75 0.08 0.008 1.5 0.08 0.008 30,000 3333 333.3
VI 3 0.33 0.033 2.25 0.25 0.025 60,000 6667 670

3.1.3. Formation of the Cloud

Cloud models are executed by cloud generators. Generally, two types of cloud generators exist:
forward and the backward cloud generators. A forward cloud generator is the transformation between
the qualitative knowledge and the quantitative representation and is used to generate the cloud
drops through these given cloud numerical descriptors and it can be denoted with CG. Given these
numerical descriptors of cloud and the specified x = x0, the combination to generator the cloud
drops drop (x, µ(x)) is called the X-condition cloud, which can be denoted by XCG. The backward
generator is a transferring process to derive the qualitative concept, represented by three descriptors
from cloud drops and it can be denoted by CG−1. The three cloud generators are shown in Figure 4.
The combination of the two types of generators can be used interchangeably to derive various types of
clouds to bridge the gap between qualitative concept and quantitative knowledge.



Water 2018, 10, 510 7 of 15

Water 2018, 10, x FOR PEER REVIEW  6 of 15 

 

equations are applicable for fixed intervals, noting that for grade VI of criterion PI, COD, BOD, NH4+-
N, P, N, F, Fc, and for grade I of criterion DO, Bmax is missing. To attain the pseudo boundary, a 
hypothetical process indicates that Bmax is twice as large as Bmin. For example, for grade II of PI, Bmin = 
2, and Bmax = 4 (see Table 1), the corresponding parameters can be obtained as Ex = 3 and En = 1/3. For 
grade VI of COD, Bmin = 40, and Bmax = 2 × Bmin = 80, the corresponding parameters can be obtained as 
Ex = 60 and En = 6.67. After attaining all quantitative boundaries of the grades of all criteria, all 
parameters are presented in Table 2. N was set to 2000 in this study to balance accuracy, robustness, 
and computational expense. 

Table 2. Cloud model parameters of water quality grades of all criteria. 

Grade 
DO PI COD 

Ex En He Ex En He Ex En He 
I 11.25 1.25 0.13 1 0.33 0.03 7.5 2.5 0.3 
II 6.75 0.25 0.025 3 0.33 0.03 15 2.5 0.3 
III 5.5 0.17 0.017 5 0.33 0.03 17.5 0.83 0.1 
IV 4 0.33 0.033 8 0.67 0.067 25 1.67 0.17 
V 2.5 0.17 0.017 12.5 0.83 0.083 35 1.67 0.17 
VI 1 0.33 0.033 22.5 2.5 0.25 60 6.67 0.7 

Grade 
BOD NH4+-N TP 

Ex En He Ex En He Ex En He 
I 1.5 0.5 0.05 0.075 0.03 0.003 0.01 0.003 0.0003 
II 3 0.5 0.05 0.33 0.058 0.006 0.06 0.013 0.001 
III 3.5 0.17 0.017 0.75 0.08 0.008 0.15 0.017 0.002 
IV 5 0.33 0.033 1.25 0.08 0.008 0.25 0.017 0.002 
V 8 0.67 0.067 1.75 0.08 0.008 0.35 0.017 0.002 
VI 15 1.67 0.167 3 0.33 0.033 0.6 0.067 0.007 

Grade 
TN F Fc 

Ex En He Ex En He Ex En He 
I 0.1 0.03 0.003 0.5 0.17 0.017 100 33 3.3 
II 0.35 0.05 0.005 1 0.17 0.017 1100 300 30 
III 0.75 0.08 0.008 1 0.17 0.017 6000 1333 133.3 
IV 1.25 0.08 0.008 1.25 0.08 0.008 15,000 1667 166.7 
V 1.75 0.08 0.008 1.5 0.08 0.008 30,000 3333 333.3 
VI 3 0.33 0.033 2.25 0.25 0.025 60,000 6667 670 

3.1.3. Formation of the Cloud 

Cloud models are executed by cloud generators. Generally, two types of cloud generators exist: 
forward and the backward cloud generators. A forward cloud generator is the transformation 
between the qualitative knowledge and the quantitative representation and is used to generate the 
cloud drops through these given cloud numerical descriptors and it can be denoted with CG. Given 
these numerical descriptors of cloud and the specified x = x0, the combination to generator the cloud 
drops drop (x, (ݔ)ߤ) is called the X-condition cloud, which can be denoted by XCG. The backward 
generator is a transferring process to derive the qualitative concept, represented by three descriptors 
from cloud drops and it can be denoted by CG−1. The three cloud generators are shown in Figure 4. 
The combination of the two types of generators can be used interchangeably to derive various types 
of clouds to bridge the gap between qualitative concept and quantitative knowledge. 

drops (x, u)CG
Ex

En

He

CG-1Drops (x, u)
Ex

En

He

drops (x0, u)XCG
Ex

En

He  
Figure 4. Process of forward cloud generators, backward cloud generators, and X-condition cloud 
generators. 
Figure 4. Process of forward cloud generators, backward cloud generators, and X-condition cloud generators.

The normal cloud model has been shown to be universally applicable and has been applied in the
field of water science [19]. It is also an important type of cloud model based on normal distribution
and Gauss membership function. This type of model is used in this study, and the algorithm steps of
the forward normal cloud generator are as follows:

Input: Three parameters Ex, En, He, and the number of cloud drops N.
Output: N cloud drops and their certainty degree.
Steps:

(1) Generate a normally distributed random number E′ni
with expectation En and variance He

2;

(2) Generate a normally distributed random number xi with expectation Ex and variance E′ni
;

(3) Calculate yi = e
−(x−Ex)2

2(En′i )
2

, where xi represents a cloud drop in the universe and yi is the certainty
degree of xi belongs to the concept Ã; and

(4) Repeat steps 1–3 until N cloud drops are generated.

3.2. Combination Weight Based on Game Theory

Combination weight, integrating subjective weight and objective weight through a certain
algorithm is more reasonable for the evaluation process [35]. The game theory calculation steps
of the combination weight with two or more participants are as follows:

Step 1. Because the weight results obtained by different weighting methods can vary widely and
even contradict each other, it is necessary to verify the consistency of each weight before combining
them. If the weights do not pass the consistency check, then adjustments have to be made to meet
the requirements. Since this paper only uses two weight calculation methods, the following distance
equation can be used for testing:

d
(

w(1)w(2)
)
=

[
1
2

m

∑
i=1

(w(1)
i − w(2)

i )
2
] 1

2

(3)

where m represents the number of index vectors that are included in each set of weights and
d
(

w(1)w(2)
)

represents the degree of consistency between the two groups. The smaller the d
(

w(1)w(2)
)

,

the higher the consistency. When d
(

w(1)w(2)
)

is below 0.2, the consistency test is passed, and the next
coupling can be carried out after a consistency check.

Step 2. Obtain n weights according to n types of weighting methods, and then construct a basic
weight vector set U = {u1, u2, · · · , un}. A possible weight set is combined by n vectors with the form
of arbitrary linear combination as:

U =
n

∑
k=1

αkuT
k (ak > 0) (4)

where u represents a possible weight vector in set U and αk represents the weight coefficient.
Step 3. Determine the most satisfied weight vector u∗ of the possible weight vector sets according

to the concept of game theory, suggesting that a compromise is reached among n weights. Such a
compromise can be regarded as optimization of the weight coefficient αk, which is a linear combination.
The optimization aim is to minimize the deviation between u and uk using the following equation:
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min

∥∥∥∥∥ n

∑
j=1

αj × uT
j − uT

i

∥∥∥∥∥
2

(i = 1, 2, · · · , n) (5)

According to the differentiation property of the matrix, the condition of the optimal first order
derivative in Equation (5) is:

n

∑
j=1

αj × ui × uT
j = ui × · · · uT

i (i = 1, 2, · · · , n) (6)

The corresponding system of linear equations is:
u1·uT

1 u1·uT
2

u2·uT
1 u2·uT

2

· · · u1·uT
n

· · · u2·uT
n

...
...

un·uT
1 un·uT

2

...
...

· · · un·uT
n




α1

α2
...

αn

 =


u1·uT

1
u2·uT

2
...

un·uT
n

 (7)

Step 4. Calculate the weight coefficient (α1, α2, · · · , αn) according to Equation (7), and then
normalize it with the following equation:

α∗k =
αk

∑n
k=1 αk

(8)

Lastly, the combination weight will be obtained as:

u∗ =
n

∑
k=1

α∗k ·u
T
k (9)

In this case, the subjective weight was calculated via AHP [36–39]. Five experts were invited to
participate in the judgment and then, the average of their judgment value was used. The judgment
matrix was established with the consistency ratio (CR = 0.0268) which meets the condition CR < 0.1.
The consistency ratio must be computed to check for discordances between the pairwise comparisons
and the reliability of the obtained weights [40]. Then, the subjective weight based on AHP (AHPW) was
finally determined. The objective weight was calculated via information entropy theory (EW) [41–44]
using a program written in R language. The subjective weight (AHPW) and objective weight (EW)
passed the consistency test of Equation (3), with the d

(
w(1)w(2)

)
= 0.167 (<0.2).

4. Results and Discussion

4.1. Analysis of Index Weight

As described above, this study only uses two weight calculation methods to calculate the
comprehensive weight, meaning n = 2 in Equations (4)–(9). At the same time, according to the
calculation of Equations (7) and (8), the weight coefficients used to calculate the subjective and
objective weights of the comprehensive weights are α1 = 0.7487 and α2 = 0.2513, respectively. The final
calculated results of subjective, objective, and comprehensive weights are shown in Table 3. We can
see that the AHPW ranks Fc, TN, and TP as three most important indices among nine factors, while F
is ranked as the least important factor. For the objective weight, the EW regards NH4

+-N and TP as the
most important indexes, and BOD and Fc as the least important indexes. Similar to AHPW, the CW
ranks Fc as the most important, followed by TN and TP, while the BOD and F are considered as the least
important. Since the intentions are generally affected by experts’ various opinions, these subjective
interpretations in many cases mainly depend on their experience and level of understanding, which
may cause errors or even unreasonable results. The EW is based on the internal law of index data and
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reflects the useful information of the index. However, it does not consider the differences of practical
situations of each index, causing dissatisfied results that deviated from the decision makers’ subjective
cognition. After investigating the actual pollution situation in the study area, it was learned that the
monitoring section was located downtown, surrounded by residents’ living quarters. There were
no large factories and enterprises in the upstream area. Therefore, the major sources of pollution in
the study area are domestic sewage and agricultural fertilizers. Although Fc should be larger in our
subjective cognition because it is the most intuitive embodiment of organic pollutants, the value of
0.089 in EW appears very far from actual conditions. Therefore, both AHPW and EW have rationality
and non-rationality. The AHPW can flexibly reflect the intentions of decision makers but does not
consider the data internal law, and EW can show the internal law and useful information but ignores
practical situations. Therefore, the combination weight (CW), with the advantages of both subjective
weight and objective weight, should be a reasonable method to solve the aforementioned problems.

Table 3. Index weights obtained by the three methods.

Index DO PI COD BOD NH4
+-N TP TN F Fc

AHPW 0.081 0.098 0.070 0.067 0.078 0.133 0.161 0.031 0.281
EW 0.116 0.100 0.089 0.078 0.159 0.140 0.108 0.121 0.089
CW 0.090 0.099 0.075 0.070 0.098 0.135 0.148 0.054 0.233

4.2. Analysis of Water Quality and Comparison with Other Methods

The water quality was classified by six grades in this study, i.e., lower grade means better water
quality. The validity of the proposed game theory-based cloud model (GCM) approach was assessed
via comparison with two other methods: the comprehensive evaluation result (CER) and the single
factor index method (SFI). In this study, the CERs were officially provided by the local department
of environmental protection and these are considered as a reference standard. It is a synthesized
result of experts’ comprehensive analysis of the water quality results calculated by the pollution
index method, single factor evaluation method, fuzzy mathematical evaluation method, gray system
evaluation method, and artificial neural network evaluation method. The SFI uses the surface water
environmental quality standard [34] corresponding to the worst water quality indicator to determine
the final water quality grade [45]. Results of the three methods are shown in Figure 5.
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CER

GCM

SFI

Figure 5. Comparison of water quality grades using various assessment methods. CER: comprehensive
evaluation result; GCM: game theory-based cloud model; SFI: single factor index method.
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Figure 5 shows that during 2010–2014, there were 19 months (31.67%) at grade I, 39 months
(65.00%) at grade II, and one month each at grade IV and V. Generally, most of the results between
GCM and CER are in accordance with each other; in particular, a total of 52 months (86.6%) were in
exactly the same grade. Large differences were found in three months (February 2010, August 2014
and September 2014) and five months presented a small difference. Figure 5 also shows that the results
of SFI were quite different from the CERs and the GCMs. Generally, the SFI results are conservative so
that the water quality features poor grades.

According to Figure 5, there are eight different results between GCM and CER. Such differences
exist likely because the CER results were evaluated by more than 20 indexes, while the GCM results
only used nine indexes in this study; additionally, some randomness or fuzziness in some of the
indicators might not have been detected among the methods of CERs. We took these eight months as
an example to display the advantage of GCM. According to Table 4, the certainty degree provides more
detailed information than the simple final grade by pointing out the certainty degree that belonged
to a specific water quality grade. For instance, in February 2010 and August 2014 these grades were
both grade V, while the certainty degree of grade V in August 2014 was 0.1397, which was above
that of February 2010 (0.1209). Considering the local test and water supply conditions, the water
quality in August 2014 was environmentally poorer than that in February 2010. We can see that the
game theory-based cloud model approach not only indicates the water quality grade but also further
indicates the severity of water quality at the same grade. In addition, from the certainty degree value
in Table 4, we can see that in February 2010, the certainty degree of grade V was 0.1209, which is only
0.0078 higher than grade I; in August 2014, the certainty degree of grade V was 0.1397, only 0.001
higher than I; in September 2014, the certainty degree of grade IV was 0.1363, only 0.0004 higher than
I. It is clear that the GCM could detect such small differences and then tend toward a worse grade.
For example, both the results of GCM and SFI detected the water quality in February 2010 as grade
V while CER detected it as grade I. We believe that the method of CER could not detect the small
difference due to the randomness and fuzziness in the dataset, resulting in such a large difference.
Additionally, the results of SFI were worse than the results of GCM, which was determined by the
method itself. Generally, the game theory-based cloud model could not only detect a more reasonable
water quality result by reducing the randomness and fuzziness using the certainty degree but also
provide more detailed information on the water quality grades.

Table 4. Water quality assessed via cloud model-based assessment approach.

Time
Final Certainty Degrees Final Water

Quality GradeGrade I Grade II Grade III Grade IV Grade V Grade VI

February 2010 0.1131 0.1172 0.0011 0.0068 0.1209 0.0008 V
January 2011 0.2149 0.2152 0.0016 0.0304 0.0638 0.0003 II

February 2012 0.1957 0.2574 0.0063 0.0000 0.0131 0.0145 II
July 2012 0.1453 0.2692 0.0202 0.1079 0.0001 0.0000 II
June 2013 0.0913 0.2110 0.0055 0.0248 0.0730 0.0004 II

August 2014 0.1387 0.1299 0.0126 0.0019 0.1397 0.0014 V
September 2014 0.1359 0.1355 0.0082 0.1363 0.0031 0.0012 IV
December 2014 0.1591 0.2042 0.0144 0.0000 0.0001 0.0513 II

4.3. Analysis of Weight Impacts Water Quality Grade

To verify whether the comprehensive weight has more advantages than the single weight,
we input different weights (Table 3) into the cloud model to evaluate the water quality. As shown in
Table 5, the similarity between AHPW and CW was 91.7% (55/60), and the similarity between EW
and CW was 83.3% (50/60), while the similarity between AHPW and EW was only 76.7% (46/60).
The high similarity between AHPW and CW mainly occurred because the weight coefficient of AHPW
was set to α1 = 0.7487, which means the AHPW is closer to the CW.
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Table 5. Comparison of water quality grades based on game theory-based cloud model using various weights.

Time Series
2010 2011 2012 2013 2014

Weight Methods Weight Methods Weight Methods Weight Methods Weight Methods

AHPW EW CW AHPW EW CW AHPW EW CW AHPW EW CW AHPW EW CW

January II II II II II II I I I I I I II II II
February V V V I I I II II II I II I II III II

March I I I I III I II IV II I I I II II II
April I II I I I I I I I II II II II II II
May II I I II II II II II II II II II II II II
June I I I III II II II II II II II II II II II
July II III II II II II II II II II III II I I I

August I I I II II II IV II II I I I V V V
September II II II I III I II II II II II II III III IV

October I I I II I I II I II II II II II II II
November II II II II II II II II II I I I I I I
December I I I II II II II II II II II II II II II

Generally, the different results mainly manifest since there were only one or two grade gaps
between the results based on the three weights, suggesting that the index weight is not particularly
sensitive to the cloud model. Even so, some differences still exist among the three groups of results.
For example, in September 2014, the result of the CW was at grade IV, while the results of AHPW and
EW were both at grade III. By analyzing the raw data of water quality monitoring, the measured values
of COD and Fc were 19.8 mg/L and 9972 per liter, respectively, during this month (Figure 6), while the
criteria of COD and Fc at grade III were ≤20 mg/L and ≤10,000 per liter. The measured value was
very close to the threshold values; in this case, the evaluation results of EW and AHPW were all at
grade III. However, combining Figure 5 and Table 4 and considering the raw dataset of other indexes,
the fuzziness of the evaluation criteria, and the randomness of the monitoring results, we see that the
water quality grade would be more reasonable if it were at grade IV. As another example, the water
quality grade in March 2012 was at grade IV when using the EW. According to Figure 5 and the raw
values, we found that grade II would be more reasonable. Accordingly, we can see that a combination
weight based on game theory specializes in overcoming these problems of one-sidedness of single
weight. At the same time, the measured content of COD, TN, and FC showed an increasing trend from
Figure 6. It is possible that the annual increase in the number of inhabitants of Qingyuan has led to the
increasing of domestic sewage emissions, resulting in the worsening of water pollution.
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4.4. Analysis of Cloud Drop Distribution

According to the parameters (Ex, En, and He) of the cloud model identified in Table 2, the forward
cloud generators were adopted to generate the qualitative conceptual cloud model of each index,
as shown in Figure 7. In summary, the clouds of different indexes at various grades could be
differentiated, especially in Figure 7a,b,e–g,i, without much interruption or overlap. The cloud
of grade II and grade III in Figure 7c,d overlapped partially, and the cloud of grade II and grade III in
Figure 7h overlapped completely.Water 2018, 10, x FOR PEER REVIEW  12 of 15 
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Figure 7. Forward clouds of different indexes at various water quality grades. (a) DO; (b) PI; (c) COD;
(d) BOD; (e) NH4

+-N; (f) TP; (g) TN; (h) F; and (i) Fc. The dark olive-green, red, blue, gray, pink, and
yellow scatter cloud represent grades I, II, III, IV, V, and VI, respectively.

The distribution of clouds is directly related to the parameters (Ex, En, and He) which have specific
physical meanings (Ex: the center of the cloud, En: the width of the cloud, He: the concentration of the
cloud (or the dispersion degree of clouds)). The cloud overlap is mainly influenced by Ex. According
to Table 1, the quantitative boundaries of COD are grade I (≤15), grade II (≤15), and grade III (≤15),
the quantitative boundaries of BOD are grade I (≤3), grade II (≤3) and grade III (≤4), respectively.
Apparently, the criteria of COD and BOD in grade I and grade II were identical, thus the Ex values of
grade I and grade II calculated according to Equations (1) and (2) were very close, which is reason why
the clouds in Figure 7c,d overlap, similar to Figure 7h.

To further explore the overlap problem in Figure 7c,d,h, we modified the quantitative boundaries
of COD, BOD, and F. After repeated trial, we discovered that when the modified quantitative
boundaries of COD were set to grade I (≤10), the BOD set to grade I (≤1.5), and the F set to grade I
(≤0.2) and Grade II (≤0.5), the overlap problems can be greatly improved (Figure 8). We integrated the
modified parameters into the original model for further evaluation and found that approximately 90%
(54/60) of the grades were identical to the CER, which improved the results by 3.4% compared to the
original results. The above analysis shows that the results of accuracy can be improved by modifying
the quantitative boundaries, which may provide a reference for accuracy improvement.
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5. Summary and Conclusions

In this study, we first combined the subjective weight (AHPW) and the objective weight (EW)
via game theory to calculate a combination weight; then, we constructed an evaluation system of the
cloud model based on the combination weight; finally, we applied this theory-based cloud model to
evaluate the water quality in the Qixinggang section of the Beijiang River. The results show that the
CW ranks Fc as the most important indexes, followed by TN and TP, while BOD and F were considered
the least important indexes. The CW presents significant advantages to improve the deficiencies of
both subjective and objective weights. During 2010–2014, there were 19 months (31.67%) at grade I,
39 months (65.00%) at grade II, and one month each at grade IV and grade V. A total of 52 months
(86.6%) of GCM were identical to those of the CER, which implies the rationality of the proposed
model in this study. The water quality grades of GCM were close to the grades of AHPW due to the
weight coefficient of AHPW being set to 0.7487. There were generally one or two grade gaps among
the results of the three weights, suggesting that the index weight is not particularly sensitive to the
cloud model. The evaluated accuracy of water quality can be improved by modifying the quantitative
boundaries. Generally, the results of this study could provide a reference for water quality evaluation,
prevention, and improvement of water quality assessment and other applications.
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