An Integration Approach for Mapping Field Capacity of China Based on Multi-Source Soil Datasets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.1.1. Study Area
2.1.2. In Situ Field Capacity
2.1.3. FAO Dataset
2.1.4. BNU Dataset
2.1.5. SoilGrids Dataset
2.2. Methods
2.2.1. Establishment of Field Capacity Ensemble Members
PTF1 [41]: | |
PTF2 [42]: | |
PTF3 [43]: | |
PTF4 [44]: | |
PTF5 [45]: | |
PTF6 [46]: | |
PTF7 [21]: |
2.2.2. Integration of Ensemble Members
2.2.3. Spatial Resolution Matchup
2.2.4. Simulation in Desert Regions
2.2.5. Validation Methods of Ensemble Field Capacity
3. Results
3.1. Distribution of Ensemble Field Capacity and Station Validation
FAO_MLR: | |
BNU_MLR: | |
SG_MLR: |
3.2. Validation of Ensemble Field Capacity at the Regional Scale
3.3. Comparison with BNU Field Capacity
4. Discussion
5. Conclusions
- (1)
- The accuracy and applicability of the existing PTFs based on the FAO, BNU, and SG soil datasets were analyzed in China. The results demonstrate the relatively unreliable performance of these PTFs or products. Almost all of them underestimated the field capacity with the average bias between 0.02 to 0.10 m3∙m−3.
- (2)
- An integration approach was proposed for estimating the 250 m gridded field capacity based on the field capacities of 2388 in situ stations and multi-source soil datasets. Three soil datasets were used to determine 24 ensemble members; after the algorithm progress, three best ensemble members were selected and included into the ensemble formula to obtain the ensemble field capacity at 250 m grids in China.
- (3)
- The ensemble field capacity was validated using in situ data and existing field capacity products. The validation result demonstrated that the ensemble field capacity had identical spatial characteristics with that of the in situ data and other products, and it can be used to revise the systematic error in the BNU field capacity and existing PTFs in China. It is a potential field capacity product for future practical applications.
Author Contributions
Funding
Conflicts of Interest
References
- Sanchez, P.A.; Ahamed, S.; Carré, F.; Hartemink, A.E.; Hempel, J.; Huising, J.; Lagacherie, P.; Mcbratney, A.B.; Mckenzie, N.J.; Mendonça-Santos, M.D.L.; et al. Digital Soil Map of the World. Science 2009, 325, 680–681. [Google Scholar] [CrossRef] [PubMed]
- Piedallu, C.; Gégout, J.C.; Bruand, A.; Seynave, I. Mapping soil water holding capacity over large areas to predict potential production of forest stands. Geoderma 2011, 160, 355–366. [Google Scholar] [CrossRef] [Green Version]
- Filho, T.B.O.; Leal, I.F.; Macedo, J.R.D.; Reis, B.C.B. An Algebraic Pedotransfer Function to Calculate Standardized in situ Determined Field Capacity. J. Agric. Sci. 2016, 8, 158. [Google Scholar] [CrossRef]
- Cassel, D.K.; Nielsen, D.R.; Klute, A. Methods of Soil Analysis; American Society of Agronomy: Madison, WI, USA, 1986; pp. 901–926. [Google Scholar]
- Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A. A soil water based index as a suitable agricultural drought indicator. J. Hydrol. 2015, 522, 265–273. [Google Scholar] [CrossRef]
- Markovic, M.; Filipovic, V.; Legovic, T.; Josipovic, M.; Tadic, V. Evaluation of different soil water potential by field capacity threshold in combination with a triggered irrigation module. Soil Water Res. 2015, 10, 164–171. [Google Scholar] [CrossRef]
- Cong, Z.T.; Lü, H.F.; Guang-Heng, N.I. A simplified dynamic method for field capacity estimation and its parameter analysis. Water Sci. Eng. 2014, 7, 351–362. [Google Scholar]
- Arslan, H.; Tasan, M.; Yildirim, D.; Koksal, E.S.; Cemek, B. Predicting field capacity, wilting point, and the other physical properties of soils using hyperspectral reflectance spectroscopy: Two different statistical approaches. Environ. Monit. Assess. 2014, 186, 5077–5088. [Google Scholar] [CrossRef] [PubMed]
- Twarakavi, N.K.C.; Sakai, M.; Šimůnek, J. An objective analysis of the dynamic nature of field capacity. Water Resour. Res. 2009, 45, 82–90. [Google Scholar] [CrossRef]
- Patil, N.G.; Singh, S.K. Pedotransfer Functions for Estimating Soil Hydraulic Properties: A Review. Pedosphere 2016, 26, 417–430. [Google Scholar] [CrossRef]
- Wösten, J.H.M.; Pachepsky, Y.A.; Rawls, W.J. Pedotransfer functions: Bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol. 2001, 251, 123–150. [Google Scholar] [CrossRef]
- Zhao, C.; Shao, M.A.; Jia, X.; Nasir, M.; Zhang, C. Using pedotransfer functions to estimate soil hydraulic conductivity in the Loess Plateau of China. Catena 2016, 143, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Yi, X.; Li, G.; Yin, Y. Comparison of three methods to develop pedotransfer functions for the saturated water content and field water capacity in permafrost region. Cold Reg. Sci. Technol. 2013, 88, 10–16. [Google Scholar] [CrossRef]
- Ghorbani, M.A.; Shamshirband, S.; Haghi, D.Z.; Azani, A.; Bonakdari, H.; Ebtehaj, I. Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point. Soil Tillage Res. 2017, 172, 32–38. [Google Scholar] [CrossRef]
- Haghverdi, A.; Cornelis, W.M.; Ghahraman, B. A pseudo-continuous neural network approach for developing water retention pedotransfer functions with limited data. J. Hydrol. 2012, 442–443, 46–54. [Google Scholar] [CrossRef]
- Aitkenhead, M.J.; Coull, M.C. Mapping soil carbon stocks across Scotland using a neural network model. Geoderma 2016, 262, 187–198. [Google Scholar] [CrossRef]
- Reynolds, C.A.; Jackson, T.J.; Rawls, W.J. Estimating soil water-holding capacities by linking the Food and Agriculture Organization Soil Map of the World with global pedon databases and continuous pedotransfer functions. Water Resour. Res. 2000, 36, 3653–3662. [Google Scholar] [CrossRef]
- Dai, Y.; Shangguan, W.; Duan, Q.; Liu, B.; Fu, S.; Niu, G. Development of a China Dataset of Soil Hydraulic Parameters Using Pedotransfer Functions for Land Surface Modeling. J. Hydrometeorol. 2013, 14, 869–887. [Google Scholar] [CrossRef]
- Sun, H.; Yang, J. Modified Numerical Approach to Estimate Field Capacity. J. Hydrol. Eng. 2013, 18, 431–438. [Google Scholar] [CrossRef]
- Saxton, K.E.; Rawls, W.J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef]
- Saxton, K.E.; Rawls, W.J.; Romberger, J.S.; Papendick, R.I. Estimating generalized soil-water characteristics from texture. Soil Sci. Soc. Am. J. 1986, 50, 1031–1036. [Google Scholar] [CrossRef]
- Li, Y.; Chen, D.; White, R.E.; Zhu, A.; Zhang, J. Estimating soil hydraulic properties of Fengqiu County soils in the North China Plain using pedo-transfer functions. Geoderma 2007, 138, 261–271. [Google Scholar] [CrossRef]
- Tóth, B.; Weynants, M.; Nemes, A.; Makó, A.; Bilas, G.; Tóth, G. New generation of hydraulic pedotransfer functions for Europe. Eur. J. Soil Sci. 2015, 66, 226–238. [Google Scholar] [CrossRef] [PubMed]
- Wösten, J.H.M.; Lilly, A.; Nemes, A.; Bas, C.L. Development and use of a database of hydraulic properties of European soils. Geoderma 1999, 90, 169–185. [Google Scholar] [CrossRef]
- Toth, Z. Ensemble forecasting at NMC: The generation of perturbations. Am. Meteorol. Soc. 1993, 74, 2317–2330. [Google Scholar] [CrossRef]
- Toth, Z.; Kalnay, E. Ensemble Forecasting at NCEP and the Breeding Method. Mon. Weather Rev. 1997, 125, 3297–3319. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Liu, G.; Pan, J.; Feng, X. Distribution of available soil water capacity in China. J. Geogr. Sci. 2005, 15, 3–12. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, Z. Climate of China; Shanghai Scientific and Technical Publishers: Shanghai, China, 1992; pp. 301–304. [Google Scholar]
- Wang, S.; Mo, X.; Liu, S.; Lin, Z.; Hu, S. Validation and trend analysis of ECV soil moisture data on cropland in North China Plain during 1981–2010. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 110–121. [Google Scholar] [CrossRef] [Green Version]
- Hengl, T.; Mendes, D.J.J.; Heuvelink, G.B.; Ruiperez, G.M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauermarschallinger, B. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e169748. [Google Scholar] [CrossRef] [PubMed]
- Wrb, I.W.G. World Reference Base for Soil Resources. A Framework for International Classification, Correlation and Communication; World Soil Resources Reports; Food and Agriculture Organization: Rome, Italy, 2006. [Google Scholar]
- Batjes, N.H. Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma 2016, 269, 61–68. [Google Scholar] [CrossRef]
- Nachtergaele, F.O.; Velthuizen, H.; Verelst, L.; Batjes, N.H.; Dijkshoorn, K.; Engelen, V.; Fischer, G.; Jones, A.; Montanarella, L. Harmonized World Soil Database, version 1.2; FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2012. [Google Scholar]
- Shangguan, W.; Dai, Y.; Liu, B.; Ye, A.; Yuan, H. A soil particle-size distribution dataset for regional land and climate modelling in China. Geoderma 2012, 171–172, 85–91. [Google Scholar] [CrossRef]
- Shangguan, W.; Dai, Y.; Liu, B.; Zhu, A.; Duan, Q.; Wu, L.; Ji, D.; Ye, A.; Yuan, H.; Zhang, Q.; et al. A China data set of soil properties for land surface modeling. J. Adv. Model. Earth Syst. 2013, 5, 212–224. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.; Jia, L. Monitoring of Evapotranspiration in a Semi-Arid Inland River Basin by Combining Microwave and Optical Remote Sensing Observations. Remote Sens. 2015, 7, 3056–3087. [Google Scholar] [CrossRef] [Green Version]
- Hengl, T.; de Jesus, J.M.; Macmillan, R.A.; Batjes, N.H.; Heuvelink, G.B.; Ribeiro, E.; Samuelrosa, A.; Kempen, B.; Leenaars, J.G.; Walsh, M.G.; et al. SoilGrids1km—Global Soil Information Based on Automated Mapping. PLoS ONE 2014, 9, e105992. [Google Scholar] [CrossRef] [PubMed]
- Leenaars, J.G.B.; Claessens, L.; Heuvelink, G.B.M.; Hengl, T.; González, M.R.; Bussel, L.G.J.V.; Guilpart, N.; Yang, H.; Cassman, K.G. Mapping rootable depth and root zone plant-available water holding capacity of the soil of sub-Saharan Africa. Geoderma 2018, 324, 18–36. [Google Scholar] [CrossRef]
- Mantel, S.; Caspari, T.; Kempen, B.; Schad, P.; Eberhardt, E.; Ruiperez Gonzalez, M. Evaluation of automated global mapping of Reference Soil Groups of WRB2015. In Proceedings of the 19th EGU General Assembly, Vienna, Austria, 23–28 April 2017; p. 16641. [Google Scholar]
- Global Soil Data Task. Available online: http://daac.ornl.gov/ (accessed on 6 April 2000).
- Bruand, A.; Baize, D.; Hardy, M. Prediction of water retention properties of clayey soils: Validity of relationships using a single soil characteristic. Soil Use Manag. 1994, 10, 99–103. [Google Scholar] [CrossRef]
- Canarache, A. Technological soil maps, a possible product of soil survey for direct use in agriculture. Soil Technol. 1993, 6, 3–15. [Google Scholar]
- Gupta, S.C.; Larson, W.E. Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density. Water Resour. Res. 1979, 15, 1633–1635. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.G.M.; Reeve, M.J.; Thomasson, A.J.; Wright, V.F. Water Retention, Porosity and Density of Field Soils; Soil Survey Technical: Harpenden, UK, 1977; p. 75. [Google Scholar]
- Petersen, G.W.; Cunningham, R.L.; Matelski, R.P. Moisture Characteristics of Pennsylvania Soils: I. Moisture Retention as Related to Texture. Soil Sci. Soc. Am. J. 1968, 32, 271–275. [Google Scholar] [CrossRef]
- Tomasella, J.; Hodnett, M.G. Estimating soil water retention characteristics from limited data in Brazilian Amazonia. Soil Sci. 1998, 163, 190–202. [Google Scholar]
- Xu, C.Y. From GCMs to river flow: A review of downscaling methods and hydrologic modelling approaches. Prog. Phys. Geogr. 1999, 23, 229–249. [Google Scholar] [CrossRef]
- Hansen, M.; Defries, R.; Townshend, J.R.G.; Sohlberg, R. UMD Global Land Cover Classification, 1 Kilometer, 1.0; University of Maryland: College Park, MD, USA, 1998. [Google Scholar]
- Chen, X.; Ye, J.; Lu, G.; Qin, F. Study on field capacity distribution about soil of China. Water Resour. Hydropower Eng. 2004, 35, 113–119. [Google Scholar]
- Wei, H.; Shao, M.; Wang, Q.; Reichardt, K. Time stability of soil water storage measured by neutron probe and the effects of calibration procedures in a small watershed. Catena 2009, 79, 72–82. [Google Scholar]
- Wang, Y. Distribution and Influence Factors of Dried Soil Layers across the Loess Plateau. Ph.D. Thesis, Chinese Academy of Sciences, Shaanxi, China, 2010. [Google Scholar]
- Yang, S.; Wu, B.; Yan, N. Estimation of Soil Field Capacity in North China Plain and Northeast China Based on AMSR-E Data. Chin. J. Soil Sci. 2012, 43, 301–305. [Google Scholar]
- Zhang, K. Analysis of soil water holding capacity in Shaanxi province. Shaanxi Water Conserv. 2014, 2, 19–21. [Google Scholar]
- Wang, B.; Huang, J.; Gong, X. Grid Soil Moisture Constants Estimation based on HWSD over Basin. Hydrology 2015, 35, 8–11. [Google Scholar]
- Duan, Q.; Gupta, H.V.; Sorooshian, S.; Rousseau, A.N.; Turcotte, R. Use of a Priori Parameter Estimates in the Derivation of Spatially Consistent Parameter Sets of Rainfall-Runoff Models; American Geophysical Union: Washington, DC, USA, 2013; pp. 239–254. [Google Scholar]
- Khlosi, M.; Alhamdoosh, M.; Douaik, A.; Gabriels, D.; Cornelis, W.M. Enhanced pedotransfer functions with support vector machines to predict water retention of calcareous soil. Eur. J. Soil Sci. 2016, 67, 276–284. [Google Scholar] [CrossRef]
Soil Dataset | Resolution | Depths (cm) | Soil Properties |
---|---|---|---|
FAO (2000) | 10 km × 10 km | 0–30, 30–100 | Sand, clay, silt, SOM, BD, pH, FC |
SG (2017) | 250 m × 250 m | 0–5, 5–15, 15–30, 30–60, 60–100, 100–200 | Sand, clay, silt, SOM, BD, CF, pH, CEC |
BNU (2013) | 1 km × 1 km | 0–4.5, 4.5–9.1, 9.1–16.6, 16.6–28.9, 28.9–49.3, 49.3–82.9, 82.9–138.3 | Sand, clay, silt, SOM, BD, FC, TN, TP, etc. |
HWSD (2014) | 1 km × 1 km | 0–30, 30–100 | Sand, clay, silt, SOM, BD, BS, etc. |
GSDT [40] (2000) | 10 km × 10 km | 0–30, 30–100 | Sand, clay, silt, SWC, etc. |
Datasets | Indicators | PTF1 | PTF2 | PTF3 | PTF4 | PTF5 | PTF6 | PTF7 | MLR |
---|---|---|---|---|---|---|---|---|---|
FAO | σ | 0.038 | 0.015 | 0.051 | 0.039 | 0.036 | 0.041 | 0.046 | 0.018 |
Mean | 0.273 | 0.323 | 0.344 | 0.300 | 0.330 | 0.302 | 0.306 | 0.357 | |
CV | 0.138 | 0.045 | 0.148 | 0.131 | 0.110 | 0.137 | 0.151 | 0.052 | |
R | 0.219 | 0.211 | 0.178 | 0.199 | 0.219 | 0.126 | 0.198 | 0.236 | |
RMSE | 0.113 | 0.082 | 0.085 | 0.096 | 0.081 | 0.098 | 0.095 | 0.075 | |
BNU | σ | 0.047 | 0.032 | 0.066 | 0.049 | 0.051 | 0.069 | 0.057 | 0.020 |
Mean | 0.221 | 0.277 | 0.343 | 0.277 | 0.274 | 0.304 | 0.273 | 0.354 | |
CV | 0.214 | 0.116 | 0.193 | 0.176 | 0.186 | 0.227 | 0.208 | 0.055 | |
R | 0.201 | 0.210 | 0.159 | 0.183 | 0.196 | 0.155 | 0.192 | 0.258 | |
RMSE | 0.157 | 0.110 | 0.094 | 0.114 | 0.116 | 0.108 | 0.119 | 0.074 | |
SG | σ | 0.024 | 0.015 | 0.032 | 0.022 | 0.027 | 0.031 | 0.024 | 0.025 |
Mean | 0.239 | 0.297 | 0.386 | 0.290 | 0.297 | 0.323 | 0.295 | 0.356 | |
CV | 0.102 | 0.052 | 0.082 | 0.077 | 0.090 | 0.095 | 0.081 | 0.069 | |
R | 0.279 | 0.256 | 0.255 | 0.309 | 0.278 | 0.290 | 0.321 | 0.320 | |
RMSE | 0.137 | 0.094 | 0.081 | 0.098 | 0.094 | 0.081 | 0.094 | 0.073 |
Researcher | Region | Field Capacity Mapping Method | Field Capacity Distribution Trend | Validation with Ensemble Field Capacity |
---|---|---|---|---|
Wang [51] | Loess Plateau | Geostatistical method | Reduces from southeast to northwest | Consistent with Spatial trend and quantity |
Yang et al. [52] | North and northeast China | AMSR-E-based model | Highest in north Henan | Consistent with spatial trend, different in quantity |
Zhang [53] | Shaanxi | Qualitative and quantitative analysis | Fluctuating change from south to north | Consistent with spatial trend and quantity |
Wang et al. [54] | Middle Heilongjiang | PTFs based on HWSD | Decreases from west to east | Overall similar, different in part of the area |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Lu, G.; Wu, Z.; He, H.; Zhou, J.; Liu, Z. An Integration Approach for Mapping Field Capacity of China Based on Multi-Source Soil Datasets. Water 2018, 10, 728. https://doi.org/10.3390/w10060728
Wu X, Lu G, Wu Z, He H, Zhou J, Liu Z. An Integration Approach for Mapping Field Capacity of China Based on Multi-Source Soil Datasets. Water. 2018; 10(6):728. https://doi.org/10.3390/w10060728
Chicago/Turabian StyleWu, Xiaotao, Guihua Lu, Zhiyong Wu, Hai He, Jianhong Zhou, and Zhenchen Liu. 2018. "An Integration Approach for Mapping Field Capacity of China Based on Multi-Source Soil Datasets" Water 10, no. 6: 728. https://doi.org/10.3390/w10060728
APA StyleWu, X., Lu, G., Wu, Z., He, H., Zhou, J., & Liu, Z. (2018). An Integration Approach for Mapping Field Capacity of China Based on Multi-Source Soil Datasets. Water, 10(6), 728. https://doi.org/10.3390/w10060728