
water

Article

Statistical Distribution of TSS Event Loads from
Small Urban Environments

Dominik Leutnant 1,* ID , Dirk Muschalla 2 and Mathias Uhl 1

1 Institute for Infrastructure, Water, Resources, Environment, Muenster University of Applied Sciences,
Correnstr. 25, 48149 Muenster, Germany; uhl@fh-muenster.de

2 Institute of Urban Water Management and Landscape Water Engineering, Graz University of Technology,
Stremayrgasse 10/I, 8010 Graz, Austria; d.muschalla@tugraz.at

* Correspondence: leutnant@fh-muenster.de

Received: 12 April 2018; Accepted: 7 June 2018; Published: 12 June 2018
����������
�������

Abstract: Results from a long-term stormwater quality monitoring program were used to derive
total suspended solids (TSS) event load distributions at four small urban environments (flat roof,
parking lot, residential catchment, high traffic street). Theoretical distribution functions were
fitted to the empirical distribution functions obtained. Parameters of the theoretical distribution
functions were optimized with respect to a likelihood function to get both optimized parameters
and standard errors. Kolmogorov-Smirnov and Anderson-Darling test statistics were applied to
assess the goodness-of-fit between empirical and theoretical distribution. The lognormal distribution
function was found to be most expressive to approximate empirical TSS event load distributions at
all sites. However, the goodness-of-fit of the statistical model strongly depends on the number of
events available. Based on the results of a Monte-Carlo-based resampling strategy, around 40 events
should be considered.

Keywords: stormwater quality; small urban sites; TSS; event loads; probability distributions; lognormal
distribution

1. Introduction

The implementation of robust stormwater management strategies requires to address issues
related to both water quantity and water quality [1]. Cost-effective measures are essential to protect the
receiving ecosystem as much as required while still being resource-efficient. This expects an in-depth
understanding of relevant stormwater processes. While hydrologic rainfall-runoff processes are well
understood, stormwater quality processes are still focused by current research [2,3]. For example,
continuous signals of UV-Vis spectrometers or turbidity sensors are frequently used to study intra-event
pollutant processes and to estimate event loads or event mean concentrations [4–8]. The influence of
environmental, temporal and spatial variables on intra-event dynamics and flushing characteristics
of, e.g., the parameter total suspended solids (TSS) have been studied and analyzed by means of
Mass–Volume–Curves [4,8–10]. Although the studies revealed site-specific tendencies in the proportion
of washed-off load during storm events, the heterogeneous data presented clearly demonstrate the
complex nature of pollutant processes, which is expressed by significant variability of pollutographs [8].

Pollutant generation from urban surfaces is generally due to two processes: the build-up and the
wash-off [11]. Wash-off is known to be mainly driven by rainfall [12–15], surface type and use [16–18]
and pollutant characteristics [13,17]. Recent developments have shown that physically-based wash-off
models are outperforming long-existing conceptual models. For example, the authors in Reference [19]
developed a saltation-type washoff model from laboratory experiments. Being mainly adapted from
soil erosion research, the model detaches particles proportional to rainfall intensity and masses
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available at surface. Reference [20] modelled the wash-off process of a small road near Paris using a
model system coupling the shallow water equations for overland flow and the Hairsine-Rose model
for sediment detachment and transport [21,22]. Results for water quantity and quality indicated a
well agreement with in-situ observations. However, as a significant amount of input data is required
and the simulation is computational expensive, the authors point out that the method proposed is
currently not suitable for large urban catchments.

In contrast to wash-off, buildup is assumed to be highly affected by stochastic inputs [23]
with significant contributions from traffic [24]. As buildup is a key parameter of wash-off, this
consequently impedes a deterministic description of the entire pollutant process and raises the need
for alternative analyses.

Reference [25] indicate that aspects of stormwater quality processes are random by nature and
best analyzed by probabilistic concepts. Probabilistic analyses are generally based on records of
random events [26] and commonly used in hydrology (e.g., hydrologic frequency estimates) and
urban hydrology (e.g., storm drainage design). However, the concept itself has rarely been applied
to stormwater quality parameters in particular. For example, the authors in Reference [25] used
lognormal and normal distributions to successfully characterize the concentrations of constituents of
stormwater runoff from one site. However, they point out that the choice of distribution significantly
affects further analyses (e.g., load calculations), which is demonstrated for the parameter TSS and
its removal rate. The stormwater management model MUSIC also includes a probabilistic concept
for stormwater quality by sampling the TSS concentration at each time step from a Lognormal
distribution [27]. Reference [28] employed probability distribution functions to estimate lead and
cadmium concentrations from a large urban catchment in Iran. Both monitoring studies used data
from sampling to generate event mean concentrations (EMC) or event loads of a single catchment only.

It has however not been investigated, whether TSS event loads estimated by continuous stormwater
quality data from small urban catchments can be described with theoretical distribution functions.
Theoretical distribution functions provide continuous data and would allow for exceedance analysis
and estimation of statistical characteristics. This in turn could also be used to estimate annual TSS
loads, which is a key parameter for emission control in several stormwater management guidelines.

The presented work therefore aims to statistically model TSS event loads from small catchments.
For this, empirical cumulative distribution functions are derived from a stormwater quality event
database and used to approximate theoretical distribution functions. Since selecting an appropriate
probability model is of particular importance, four commonly used theoretical distributions are applied
and site-specifically evaluated. Finally, it is analyzed how many events are required to describe the
TSS event loads characteristic with statistical significance.

2. Materials and Methods

2.1. Monitoring Sites and Data

In this paper, the database of TSS event loads published in Reference [4] is used. In their work, the
authors installed compact monitoring stations at the outlet of four common types of urban catchments
and estimated TSS event loads by means of continuous turbidity sensors as a surrogate. The calculation
of TSS event loads using turbidity data is shown in Reference [4]. Data from a flat roof (FR, 50 m2,
65 events), a high traffic street (HT, 2.5 ha, 16 events), a parking lot (PL, 2350 m2, 46 events) and a
residential catchment (RC, 9.4 ha2, 23 events) are available. A summary of descriptive statistics is given
in Table 1. Furthermore, Figure 1 depicts the distribution of site-specific TSS event loads as empirical
cumulative distribution functions and box-plots, respectively.
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Table 1. Descriptive statistics (min, 0.1-, 0.25-, 0.5-, 0.75-, 0.9-percentiles, max, mean, standard deviation)
of site-specific Total Suspended Solids (TSS) event loads (FR: Flat Roof, HT: High Traffic Street,
PL: Parking Lot, RC: Residential Catchment).

Site n
TSS Event Loads (g m−2)

min 0.1-Perc 0.25-Perc 0.5-Perc 0.75-Perc 0.9-Perc Max Mean sd

FR 65 0.001 0.002 0.008 0.024 0.169 0.492 1.942 0.174 0.358
HT 16 0.164 0.313 0.361 0.795 1.357 2.916 4.746 1.255 1.275
PL 46 0.011 0.046 0.086 0.126 0.257 0.633 1.109 0.230 0.255
RC 23 0.014 0.027 0.065 0.093 0.349 0.735 0.935 0.261 0.295
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Figure 1. Empirical cumulative distribution functions and boxplots of site-specific monitored
Total Suspended Solids (TSS) event loads (FR: Flat Roof, HT: High Traffic Street, PL: Parking Lot,
RC: Residential Catchment).

2.2. Theoretical Distribution Functions

Site-specific distributions of empirical TSS event loads are derived and used to approximate
theoretical distribution functions given in Table 2. For this purpose, distribution functions of type
(i) Exponential; (ii) Gamma; (iii) Lognormal and (iv) Weibull are selected, as they closely correspond to
observed distributions. In particular, these functions are only defined for positive values (x > 0) so that
they inherently reflect one of the main characteristics of the empirical data. Additionally, parameters
of the theoretical distribution functions are listed in the table. While the Exponential distribution
has only one parameter, the Gamma, Lognormal and Weibull distributions offer two parameters to
be estimated.

Table 2. Theoretical distribution functions.

Name (Abbreviation) Formula Parameter

Exponential (exp) F(x) =
{

0, x ≤ 0
1− e−αx, x > 0 α (rate)

Gamma (gamma) F(x) =

{
0, x ≤ 0

bp

Γ(p) ×
∫ x

0 tp−1e−btdt, x > 0 p (shape), b (rate)

Lognormal (lnorm) F(x) =

{
0, x ≤ 0

1
σ
√

2π
×
∫ x

0
1
t e−

1
2 (

ln t− µ
σ )dt, x > 0

µ (meanlog), σ (sdlog)

Weibull (weibull) F(x) =
{

0, x ≤ 0
1− e−αxβ

, x > 0
α (scale), β (shape)
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2.3. Distribution Fitting and Goodness-Of-Fit Assessment

To fit theoretical distribution functions to an empirical distribution, distribution parameters need
to be optimized. In this study, parameters are estimated by maximum likelihood strategy (exact
standard error model: µ = 0, σ = 1) because this also enables to analyze the standard error of estimated
parameter. The likelihood function in general can be stated as follows (Equation (1)):

L(θ) = f (x1, x2, . . . , xn| θ) =
n

∏
i=1

f (xi|θ). (1)

with xi the ith observation of variable X (i.e., TSS event loads), n is the total number of observations
and f (|θ) the density function of the theoretical distribution function used. Parameters to be optimized
are denoted by θ.

Since computation of likelihoods could result in very small numbers which may cause numerical
precision problems, the logarithm of likelihoods (LL) is taken instead. Mathematically, loglikelihood
values are a function of sample size and cannot alone indicate the goodness-of-fit. Therefore, once
optimal parameters are estimated, the goodness-of-fit is evaluated by Kolmogorov-Smirnov (KS) and
Anderson-Darling (AD) test statistics which are calculated according to Table 3. Fitting of theoretical
distribution functions and numerical goodness-of-fit computations were done using R [29] and the
package fitdistrplus [30].

Table 3. Goodness-of-fit statistics used to evaluate the fitting (Fn denotes the empirical distribution
function, F represents the fitted theoretical distribution function, sup abbreviates supremum which
indicates the least element of x that is greater than or equal to all elements of x (“least upper bound”)).

Statistic (Abbreviation) Formula

Kolmogorov-Smirnov (KS) Dn =
sup

x |Fn(x)− F(x)| (2)

Anderson-Darling (AD) A2 = n
∫ ∞
−∞

(Fn(x)−F(x))2

F(x)(1−F(x)) dF(x) (3)

In general, both tests are used to test whether a sample follows a specific distribution by calculating
the maximum distance between empirical and theoretical distribution function. This means smaller
test statistics indicate a lower numerical distance to the distribution analyzed. The AD test refines
the KS test and gives more weight to the distribution tails. The tests are applied to decide whether
the null hypothesis H0 (“The sample follows a specified distribution”) can be accepted or must be
rejected at a specified significance level. Alternatively, hypothesis HA is defined as “the sample does
not follow a specified distribution”. Critical values for the acceptance decision of the KS test are
calculated according to Equation (4) for sample sizes > 35. For sample sizes below 35, critical values
are obtained from Reference [31].

dα =

√
−0.5 ln

(
α
2
)

√
n

, for n > 35 (4)

with sampling size n and significance level α.

2.4. Monte-Carlo Resampling Strategy to Determine Minimum Sample Size

A Monte-Carlo simulation based resampling strategy without replacement has been conducted to
analyze the effect of different sample sizes on the quality of distribution fitting. Motivated by the idea
to determine a minimum sample size required, the computational steps are as follows:

1. Estimating parameters of lognormal distribution function by maximum likelihood taking all
samples into account.
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2. Sampling k (k ∈ N, 0 < k ≤ n) events from all events n with 1000 repetitions. If less than
1000 repetitions are possible, all possible combinations are taken into account (Equation (3)).

repetitions = MIN

((
n
k

)
, 1000

)
(5)

with population n and sample size k.
3. Computing of KS distance between empirical cumulative distribution function of sample and

theoretical distribution function with estimated parameters for all repetitions.
4. Computing of mean, standard deviations of KS distances for all repetitions.

The results are then interpreted and visually compared to the critical values for the Kolmogorov-Smirnov
test statistic at 90% significance level. The minimum sample size is reached if addition of mean and the
two standard deviations of KS distances from sampling are lower than the critical values.

3. Results

3.1. Distribution Fitting

Results of fitting theoretical distribution functions to the empirical TSS event load distribution
are presented in Table 4. It shows site- and distribution-specific goodness-of-fit values and estimated
parameters.

Table 4. Results of fitting empirical TSS load distribution functions to theoretical distribution functions
(FR: Flat Roof, HT: High Traffic Street, PL: Parking Lot, RC: Residential Catchment, LL: LogLikelihood,
AD: Anderson-Darling statistic A2, KS: Kolmogorov-Smirnov statistic Dn; bold values indicate best-fit).

Site Distr.
Goodness-Of-Fit Parameter Estimates (Standard Error)

LL AD KS Rate Shape Meanlog Sdlog Scale

FR

exp 48.66 29.074 0.442 * 5.747 (0.713) - - - -
gamma 88.29 2.254 0.186 * 1.994 (0.504) 0.347 (0.049) - - -
lnorm 89.9 0.806 0.099 - - −3.69 (0.301) 2.429 (0.213) -

weibull 92.05 1.123 0.131 - 0.484 (0.046) - - 0.077 (0.021)

HT

exp −19.64 0.379 0.153 0.797 (0.199) - - - -
gamma −19.25 0.394 0.136 1.068 (0.412) 1.341 (0.428) - - -
lnorm −18.18 0.192 0.128 - - −0.19 (0.228) 0.912 (0.161) -

weibull −19.46 0.382 0.137 - 1.121 (0.208) - - 1.316 (0.312)

PL

exp 21.69 1.168 0.126 4.356 (0.642) - - - -
gamma 22.03 1.279 0.157 5.093 (1.175) 1.169 (0.218) - - -
lnorm 25.31 0.398 0.116 - - −1.96 (0.146) 0.987 (0.103) -

weibull 21.72 1.203 0.137 - 1.030 (0.111) - - 0.233 (0.035)

RC

exp 7.91 1.011 0.222 3.833 (0.799) - - - -
gamma 8.1 0.681 0.189 3.283 (1.120) 0.857 (0.219) - - -
lnorm 9.07 0.38 0.131 - - −2.03 (0.259) 1.243 (0.183) -

weibull 8.23 0.586 0.174 - 0.882 (0.142) - - 0.244 (0.061)

Note: * Rejecting H0.

All selected theoretical distribution functions were able to approximate the empirical distribution
with statistical significance except for the Exponential and the Gamma distribution at site FR (H0

gets rejected). These two functions are not able to sufficiently reflect the initially steep gradient and
subsequent moderate gradient of the empirical distribution (cf. Figure 1).

Using the Weibull distribution which basically extends the Exponential distribution function
with an additional parameter, clearly improves the fitting. The application of Weibull and Gamma
distribution lead to comparable results which is indicated by similar goodness-of-fit measures. Highest
goodness-of-fit at site HT, PL and RC is obtained with the Lognormal distribution that accordingly
approximates the underlying dataset best. According to the loglikelihood, the Weibull distribution
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is best suited to describe the empirical distribution at site FR. However, the difference to Lognormal
is marginal.

The goodness-of-fit of the Lognormal distribution varies between sites. Figure 2 illustrates the
approximation with Lognormal distribution function for all sites. Sites FR and PL show the best visual
fitting. Goodness-of-fit at sites RC and HT is poorer, which however is also influenced by sharp steps
of the empirical distribution functions due to low sample size.
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Figure 2. Approximation of empirical TSS event load distribution function with lognormal distribution
function at all sites.

Comparing the fitted parameters also indicates that distributions of site PL and RC are comparable
which is also visually confirmed by their empirical distribution functions (cf. Figure 1).

Table 5 shows results of fitting the Lognormal distribution to TSS event load distributions
grouped by year. Sites FR and PL are considered only as they provide sufficient samples per group.
The goodness-of-fit is given for each individual group and compared to the original sample from all
years. Additionally, the goodness-of-fit is shown in Figure 3.

Table 5. Results of fitting empirical TSS load distribution functions grouped by year to lognormal
distribution function (FR: Flat Roof, PL: Parking Lot, LL: LogLikelihood, AD: Anderson-Darling statistic
A2, KS: Kolmogorov-Smirnov statistic Dn).

Site Year n Distr.
Goodness-Of-Fit Parameter Estimates (Standard Error)

LL AD KS Meanlog Sdlog

FR

all years 65 lnorm 89.9 0.806 0.099 −3.69 (0.301) 2.429 (0.213)
2015 25 lnorm 24.54 0.64 0.138 −2.99 (0.359) 1.80 (0.254)
2014 17 lnorm 41.63 0.288 0.142 −5.04 (0.786) 3.24 (0.556)
2013 23 lnorm 32.52 0.365 0.12 −3.45 (0.388) 1.86 (0.274)

PL
all years 46 lnorm 25.31 0.398 0.116 −1.96 (0.146) 0.987 (0.103)

2014 30 lnorm 23.76 0.616 0.167 −2.08 (0.161) 0.88 (0.114)
2013 16 lnorm 2.93 0.243 0.105 −1.72 (0.281) 1.12 (0.199)
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The results show that also subsamples can be well approximated by Lognormal distribution.
According to the KS statistic, for both sites the year 2013 has been fitted best. Only the AD statistic
of the year 2014 for site FR indicates a slightly better fit which is caused by a relative low maximum
load in this year (2013: 1.94 gm−2, 2014: 0.8 gm−2, 2015: 1.34 gm−2). The optimized parameters of the
Lognormal distribution for both sites highlight the individuality of each year as they strongly vary.
This is also confirmed by the spread of goodness-of-fit values.
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3.2. Minimum Sample Size

The results obtained from the Monte-Carlo-based sampling are shown in Figure 4. It shows
the mean (colored solid line) and regions of one and two standard deviations (grey shaded areas) of
Kolmogorov-Smirnov’s statistic as function of sample size for site FR and PL. Furthermore, critical
values for the 90% significance level are illustrated (black solid line).

It can be seen that the mean of the calculated goodness-of-fit values improves with increasing
sample size and approximates to the value obtained when all samples are taken into account (FR: 0.099,
PL: 0.12). The standard deviation decreases with increasing sampling size by implication. With respect
to critical values for 90% confidence level, accepting the null hypothesis H0 (“The data follow the
Lognormal distribution”) generally requires Kolmogorov-Smirnov’s Dn to be approximately below the
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µ + 2σ threshold, which is satisfied for minimum sample sizes of about 40 at site FR and of roughly
30 at site PL. It can be legitimately assumed that simulated KS statistics follow a normal distribution
which according to the empirical rule (The empirical rule states that for a normal distribution 99.7%
of the data fall within three standard deviations, 95% are within two standard deviations and 68%
fall within one standard deviation [31]) consequently implies that more than approximately 95% of
samples lead to KS statistics lower than 0.188 at site FR and 0.211 at site PL. Narrowing the uncertainty
range to the upper limit of µ + σ threshold results in KS statistics of 0.159 at site FR and 0.176 at site PL
(approx. more than 68% of samples are within this range).
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Figure 4. Mean and regions of one and two standard deviations of Kolmogorov-Smirnov’s statistic as
function of sample size from Monte-Carlo-based sampling for sites Flat Roof (FR) and Parking Lot (PL).
Critical values for 90% confidence are indicated as black solid line.

4. Discussion

4.1. Distribution Fitting

The results of the distribution fitting suggest, that theoretical distributions are general applicable
to replicate empirical TSS event loads from small urban sites. Among the functions analyzed, the
Exponential function has the least flexibility because it only provides one parameter to be fitted.
This explains the poor approximation results. A statistical significant description of TSS event load
distributions therefore requires at least a two-parameter distribution. The Lognormal distribution has
shown to be best suited for sites investigated in this study. However, the goodness-of-fit has been found
to be site-specific. On the one hand, this might be caused by site-specific varying sample sizes, which
lead to more pronounced steps in the empirical distribution function. On the other hand, this also could
reflect a site-specific behavior, which is expressed by the shape of distribution function. For example,
the monitored small roof catchment has significantly more events with low loads. This characteristic is
less pronounced for the other catchments. Consequently, this highlights the sensitivity of sampling
characteristics which is induced by the utilized database and corresponding study sites. In the present
study the database available does not cover all events of an entire year mainly due to measurement
issues and predefined rainfall-runoff criteria for event selection [4]. However, rainfall-runoff events
are affected by numerous environmental variables and generally occur randomly in time, space and
intensity. Therefore, although the event database grouped by year undoubtedly is incomplete, the
approach reflects natural variability in which the number of events per year and their characteristics
change. As a consequence, fitting of a theoretical distribution function should therefore prioritize
sample size over sampling period (cf. Section 4.2). Sample sizes for HT (n = 16) and RC (n = 23) are
assumed to be insufficient to robustly fit a theoretical distribution.

Since TSS event loads from small sites follow a Lognormal distribution, this should be taken
into account by stormwater quality modelling approaches. The results show that catchment size
and land usage affect the parameterization of distribution function. However, the transferability of
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parameterized distribution functions could not be verified yet due to lack of data. Comparing the
parameterized lognormal distributions with data from similar catchments would be of high relevance
and would greatly contribute to further analysis of the stochasticity of stormwater quality.

4.2. Minimum Sample Size

Generally, the dataset confirms that the more samples are taken into account, the more precise
the estimates get which as a matter of fact is the basic assumption for any statistical significance test.
In order to determine the sample size which leads to accepting the null hypothesis H0 with high
probability, it is suggested to choose at least the minimum of 40 samples because of (i) the chance of
having a sample which can be statistically represented by the Lognormal distribution is high (>95%)
and (ii) the mean of KS statistic in this case only slightly differs from the optimal value taking all
samples into account (0.131 > 0.099 at site FR and 0.122 > 0.12 at site PL). However, the choice of criteria
remains subjective and might be adapted as further data becomes available.

Of course, using more data to approximate the Lognormal distribution may probably lead to
more appropriate fitting results, but this requires to provide more samples which in turn needs
more measurement data. The criteria proposed therefore represent a compromise solution between
measurement duration and quality of approximation.

5. Conclusions

Empirical TSS event load distributions of four small common types of urban catchments (Flat Roof
(FR), Parking Lot (PL), Residential Catchment (RC), High Traffic Street (RC)) are successfully described
by theoretical distribution functions. The goodness-of-fit was evaluated and effects of sampling sizes
were investigated. From the analysis, it was found that:

• The Lognormal distribution function is most expressive to approximate empirical TSS event load
distributions at all experimental sites.

• Successfully derived and fitted distribution functions provide a closed characterization of TSS
event load distributions allowing to intra- and extrapolate of probabilistic event characteristics
not observed.

• A robust fitting should prioritize sample size over sampling period.
• Roughly 40 events are required to reasonably fit the Lognormal distribution. Using more samples

potentially improves the goodness-of-fit but subsequently requires to extend the duration of
cost-intensive monitoring campaigns.

When applying the concept of probabilistic description of TSS event loads based on theoretical
distribution function, the results of this study may also support the evaluation of stormwater quality
runoff monitoring campaigns with respect to their duration-to-information ratio. Data from an ongoing
monitoring campaign may be used to update the parameters of the theoretical distribution function
which in turn can be analyzed in terms of their relative change. If changes are not significant, the
duration of monitoring might be shortened. However, the minimum sample size should be taken into
account. In addition, the fitted distribution functions provide an excellent basis to calibrate urban
stormwater quality models by focusing on probabilistic TSS event load characteristics. This in turn
improves a more realistic pollutant load estimation and enhances stormwater emission control.
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