A Multi-Scale Approach for Improved Characterization of Surface Water—Groundwater Interactions: Integrating Thermal Remote Sensing and in-Stream Measurements
Abstract
:1. Introduction
2. Study Area
2.1. Location and Surface Water Resources
2.2. Geology and Hydrogeology
3. Methods
3.1. Measurement of Water Skin Temperatures Using Thermal Camera
3.2. Nested Piezometers
3.3. Differential Discharge Measurements
3.4. Vertical Water Flux Calculations from Streambed Temperature Profiles
3.5. Measurement of Temperature, Electrical Conductivity and Chloride Concentrations
4. Results
4.1. Reach Scale: Water Skin Temperatures Using Thermal Infrared Camera
4.2. Point Scale: Analysis of Vertical Hydraulic Gradient (VHG) Values from Piezometers
4.3. Temporal Variation in Stream Discharge
4.4. VFLUX Results
4.4.1. Streambed Temperatures
4.4.2. Vertical Fluid Flux Values
4.5. Seasonal Variation of Temperature and Electrical Conductivity Values along the Study Reach
4.5.1. Temperature
4.5.2. Electrical Conductivity (EC)
4.6. Chloride Mass Balance
5. Discussion
5.1. Spatio-Temporal Variability of the Exchange Processes
5.2. Strengths and Limitations of the Methods
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tóth, J. A conceptual model of the groundwater regime and the hydrogeologic environment. J. Hydrol. 1970, 10, 164–176. [Google Scholar] [CrossRef]
- Winter, T.C.; Harvey, J.W.; Franke, O.L.; Alley, W.M. Ground Water and Surface Water A Single Resource; Circular 1139; U.S. Geological Survey: Reston, VA, USA, 1998.
- Sophocleous, M. Interactions between groundwater and surface water: The state of the science. Hydrogeol. J. 2002, 10, 52–67. [Google Scholar] [CrossRef]
- Brodie, R.; Sundaram, B.; Tottenham, R.; Hostetler, S.; Ransley, T. An Adaptive Management Framework for Connected Groundwater-Surface Water Resources in Australia; Bureau of Rural Sciences: Canberra, Australia, 2007; p. 179.
- Hancock, P.J.; Boulton, A.J.; Humphreys, W.F. Aquifers and hyporheic zones: Towards an ecological understanding of groundwater. Hydrogeol. J. 2005, 13, 98–111. [Google Scholar] [CrossRef]
- Findlay, S. Importance of surface-subsurface The hyporheic zone exchange in stream ecosystems. Limnol. Oceanogr. 1995, 40, 159–164. [Google Scholar] [CrossRef]
- Woessner, W.W. Stream and fluvial plain ground water interactions: Rescaling hydrogeologic thought. Groundwater 2000, 38, 423–429. [Google Scholar] [CrossRef]
- Humphreys, W.F. Hydrogeology and groundwater ecology: Does each inform the other? Hydrogeol. J. 2009, 17, 5–21. [Google Scholar] [CrossRef]
- Anibas, C.; Verbeiren, B.; Buis, K.; Chormański, J.; de Doncker, L.; Okruszko, T.; Meire, P.; Batelaan, O. A hierarchical approach on groundwater-surface water interaction in wetlands along the upper Biebrza River, Poland. Hydrol. Earth Syst. Sci. 2012, 16, 2329–2346. [Google Scholar] [CrossRef] [Green Version]
- Triska, F.; Duff, J.; Avanzino, R. The role of water exchange between a stream channel and its hyporheic zone in nitrogen cycling at the terrestrial—Aquifer interface. Hydrobiologia 1993, 251, 167–184. [Google Scholar] [CrossRef]
- Constantz, J. Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams. Water Resour. Res. 1998, 34, 1609–1615. [Google Scholar] [CrossRef] [Green Version]
- Winter, T.C.; Rosenberry, D.O. The interaction of ground-water with prairie pothole wetlands in the Cottonwood Lake area, east-central North Dakota, 1979–1990. Wetlands 1995, 15, 193–211. [Google Scholar] [CrossRef]
- Winter, T.C. Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol. J. 1999, 7, 28–45. [Google Scholar] [CrossRef]
- Harvey, J.W.; Bencala, K.E. The Effect of Streambed Topography on Surface-Subsurface Water Exchange in Mountain Catchments. Water Resour. Res. 1993, 29, 89–98. [Google Scholar] [CrossRef]
- Peterson, E.W.; Sickbert, T.B. Stream water bypass through a meander neck, laterally extending the hyporheic zone. Hydrogeol. J. 2006, 14, 1443–1451. [Google Scholar] [CrossRef]
- Bencala, K.E.; Gooseff, M.N.; Kimball, B.A. Rethinking hyporheic flow and transient storage to advance understanding of stream-catchment connections. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Morrice, J.A.; Valett, H.M.; Dahm, C.N.; Campana, M.E. Alluvial Characteristics, Groundwater–Surface Water Exchange and Hydrological Retention in Headwater Streams. Hydrol. Process. 1997, 11, 253–267. [Google Scholar] [CrossRef]
- Wroblicky, G.; Campana, M.; Valett, H.; Dahm, C. Seasonal variation in surface-subsurface water exchange and lateral hyporheic area of two stream-aquifer systems. Water Resour. Res. 1998, 34, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Fleckenstein, J.H.; Niswonger, R.G.; Fogg, G.E. River-aquifer interactions, geologic heterogeneity, and low-flow management. Groundwater 2006, 44, 837–852. [Google Scholar] [CrossRef] [PubMed]
- Kalbus, E.; Reinstorf, F.; Schirmer, M. Measuring methods for groundwater, surface water and their interactions: A review. Hydrol. Earth Syst. Sci. Discuss. 2006, 3, 1809–1850. [Google Scholar] [CrossRef]
- Kikuchi, C.P.; Ferré, T.P.A.; Welker, J.M. Spatially telescoping measurements for improved characterization of ground water–surface water interactions. J. Hydrol. 2012, 446–447, 1–12. [Google Scholar] [CrossRef]
- Mouhri, A.; Flipo, N.; Rejiba, F.; de Fouquet, C.; Bodet, L.; Kurtulus, B.; Tallec, G.; Durand, V.; Jost, A.; Ansart, P.; et al. Designing a multi-scale sampling system of stream-aquifer interfaces in a sedimentary basin. J. Hydrol. 2013, 504, 194–206. [Google Scholar] [CrossRef]
- Lee, D.R.; Hynes, H.B. Identification of groundwater discharge zones in a reach of Hillman Creek in southern Ontario. Water Pollut. Res. 1997, 13, 121–133. [Google Scholar]
- Andersen, M.S.; Baron, L.; Gudbjerg, J.; Chapellier, D.; Jakobsen, R.; Gregersen, J.; Postma, D. Nitrate-rich groundwater discharging into a coastal marine environment. J. Hydrol. 2007, 336, 98–114. [Google Scholar] [CrossRef]
- Cey, E.E.; Rudolph, D.L.; Gary, P.W.; Aravena, R. Quantifying groundwater discharge to a small perennial stream in southern Ontario, Canada. J. Hydrol. 1998, 210, 21–37. [Google Scholar] [CrossRef]
- Murdoch, L.C.; Kelly, S.E. Factors affecting the performance of conventional seepage meters. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef] [Green Version]
- Shinn, E.; Reich, C.; Hickey, T. Seepage Meters and Bernoulli’s Revenge. Estuaries 2002, 25, 126–132. [Google Scholar] [CrossRef]
- Andersen, M.S.; Acworth, R.I. Stream-aquifer interactions in the Maules Creek catchment, Namoi Valley, New South Wales, Australia. Hydrogeol. J. 2009, 17, 2005–2021. [Google Scholar] [CrossRef]
- Hyun, Y.; Kim, H.; Lee, S.-S.; Lee, K.-K. Characterizing streambed water fluxes using temperature and head data on multiple spatial scales in Munsan stream, South Korea. J. Hydrol. 2011, 402, 377–387. [Google Scholar] [CrossRef]
- Rosenberry, D.O.; Pitlick, J. Local-scale variability of seepage and hydraulic conductivity in a shallow gravel-bed river. J. Hydrol. 2009, 23, 3306–3318. [Google Scholar] [CrossRef]
- Rojay, B. Structural Evolution of Çeltikçi-Gümele Area during Post-Miocene; Middle East Technical University: Ankara, Turkey, 2013. [Google Scholar]
- Yazıcıgil, H.; Çamur, Z.; Yılmaz, K.K.; Sayıt, A.P.; Kahraman, C. Development of Grounwater Flow Model for the Celtikci Coal Basin, Design of Dewatering and Assessment of Potential Impacts on Groundwater Resourcesndirilmesi; Middle East Technical University: Ankara, Turkey, 2015. [Google Scholar]
- Constantz, J.E.; Niswonger, R.G.; Stewart, A.E. Analysis of temperature gradients to determine stream exchanges with ground water. In Field Techniques for Estimating Water Fluxes between Surface Water and Ground Water; Geological Survey (U.S.): Reston, VA, USA, 2007; pp. 115–128. [Google Scholar]
- Hatch, C.E.; Fisher, A.T.; Revenaugh, J.S.; Constantz, J.; Ruehl, C. Quantifying surface water-groundwater interactions using time series analysis of streambed thermal records: Method development. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef] [Green Version]
- Anibas, C.; Schneidewind, U.; Vandersteen, G.; Joris, I.; Seuntjens, P.; Batelaan, O. From streambed temperature measurements to spatial-temporal flux quantification: Using the LPML method to study groundwater-surface water interaction. Hydrol. Process. 2015. [Google Scholar] [CrossRef]
- Vandersteen, G.; Schneidewind, U.; Anibas, C.; Schmidt, C.; Seuntjens, P.; Batelaan, O. Determining groundwater-surface water exchange from temperature-time series: Combining a local polynomial method with a maximum likelihood estimator. Water Resour. Res. 2015, 51, 922–939. [Google Scholar] [CrossRef] [Green Version]
- Briggs, M.A.; Lautz, L.K.; Buckley, S.F.; Lane, J.W. Practical limitations on the use of diurnal temperature signals to quantify groundwater upwelling. J. Hydrol. 2014, 519, 1739–1751. [Google Scholar] [CrossRef]
- Unland, N.P.; Cartwright, I.; Andersen, M.S.; Rau, G.C.; Reed, J.; Gilfedder, B.S.; Atkinson, A.P.; Hofmann, H. Investigating the spatio-temporal variability in groundwater and surface water interactions: A multi-technique approach. Hydrol. Earth Syst. Sci. 2013, 17, 3437–3453. [Google Scholar] [CrossRef]
- Binley, A.; Ullah, S.; Heathwaite, A.L.; Heppell, C.; Byrne, P.; Lansdown, K.; Trimmer, M.; Zhang, H. Revealing the spatial variability of water fluxes at the groundwater-surface water interface. Water Resour. Res. 2013, 49, 3978–3992. [Google Scholar] [CrossRef] [Green Version]
- Southern, M.D.; Binley, A. Temporal responses of groundwater-surface water exchange to successive stormevents. Water Resour. Res. 2015, 51, 1112–1126. [Google Scholar] [CrossRef]
Streambed Temperature | |||||
---|---|---|---|---|---|
Site | Measurement Period | Depth (cm) | Max (°C) | Min (°C) | Difference (°C) |
S3-P | 16–25 March 2015 | 5 | 9.83 | 5.26 | 4.58 |
20 | 7.98 | 7.23 | 0.75 | ||
12 July–2 August 2015 | 5 | 27.65 | 19.71 | 7.94 | |
15 | 25.88 | 21.25 | 4.63 | ||
S4-P | 16–25 March 2015 | 5 | 13.70 | 12.32 | 1.38 |
20 | 14.56 | 13.37 | 1.19 | ||
12 July–2 August 2015 | 5 | 15.62 | 14.86 | 0.75 | |
15 | 15.47 | 14.53 | 0.94 | ||
5–13 September 2015 | 5 | 17.12 | 16.81 | 0.31 | |
15 | 16.97 | 16.72 | 0.25 | ||
S16-D | 16 March–27 April 2015 | 5 | 16.81 | 7.08 | 9.72 |
20 | 17.68 | 8.15 | 9.53 | ||
12 July–2 August 2015 | 5 | 18.40 | 18.08 | 0.31 | |
15 | 18.38 | 18.07 | 0.31 | ||
5–13 September 2015 | 5 | 18.46 | 18.40 | 0.06 | |
15 | 18.38 | 18.32 | 0.06 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varli, D.; Yilmaz, K.K. A Multi-Scale Approach for Improved Characterization of Surface Water—Groundwater Interactions: Integrating Thermal Remote Sensing and in-Stream Measurements. Water 2018, 10, 854. https://doi.org/10.3390/w10070854
Varli D, Yilmaz KK. A Multi-Scale Approach for Improved Characterization of Surface Water—Groundwater Interactions: Integrating Thermal Remote Sensing and in-Stream Measurements. Water. 2018; 10(7):854. https://doi.org/10.3390/w10070854
Chicago/Turabian StyleVarli, Dilge, and Koray K. Yilmaz. 2018. "A Multi-Scale Approach for Improved Characterization of Surface Water—Groundwater Interactions: Integrating Thermal Remote Sensing and in-Stream Measurements" Water 10, no. 7: 854. https://doi.org/10.3390/w10070854
APA StyleVarli, D., & Yilmaz, K. K. (2018). A Multi-Scale Approach for Improved Characterization of Surface Water—Groundwater Interactions: Integrating Thermal Remote Sensing and in-Stream Measurements. Water, 10(7), 854. https://doi.org/10.3390/w10070854