Assessing Aquatic Ecological Health for Lake Poyang, China: Part I Index Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Metric Selection
2.3. Weight Estimation
2.4. Reference Condition Definition
2.5. Metric Standardization and Categorization
3. Results and Discussion
3.1. LP-EHI
3.2. Index Testing and Validation
3.3. Determination of Reference Condition
3.4. Indicator Selection for LP-EHI
3.5. Comparison with Previous Ecosystem Health Indices
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
LP-EHI | ecosystem health index for Lake Poyang |
BII | biological integrity indices |
SI | saprobe |
FBI | family-level biotic index |
EII | ecological integrity index |
SAI | shoreline alteration index |
TP | total phosphorus |
TN | total nitrogen |
EC | electrical conductivity |
TLI | trophic level indices |
OCPs | organochloride pesticides |
AHP | analytic hierarchy process |
HC | historical condition |
LDC | least disturbed condition |
BAC | best attainable condition |
References
- Cheng, X.Y.; Li, S.J. An analysis on the evolvement processes of lake eutrophication and their characteristics of the typical lakes in the middle and lower reaches of Yangtze River. Chin. Sci. Bull. 2006, 51, 1603–1613. [Google Scholar] [CrossRef]
- Frissell, C.A.; Bayles, D. Ecosystem management and the conservation of aquatic biodiversity and ecological integrity. Water Resour. Bull. 1996, 32, 229–240. [Google Scholar] [CrossRef]
- Langhans, S.D.; Reichert, P.; Schuwirth, N. The method matters: A guide for indicator aggregation in ecological assessments. Ecol. Indic. 2014, 45, 494–507. [Google Scholar] [CrossRef]
- Flotemersch, J.E.; Leibowitz, S.G.; Hill, R.A.; Stoddard, J.L.; Thoms, M.C.; Tharme, R.E. A Watershed Integrity Definition and Assessment Approach to Support Strategic Management of Watersheds. River Res. Appl. 2016, 32, 1654–1671. [Google Scholar] [CrossRef]
- Kay, J.J.; Henry, A.R. Uncertainty, complexity, and ecological integrity: Insights from an ecosystem approach. In Implementing Ecological Integrity: Restoring Regional and Global Environmental and Human Health; NATO Science Series, Environmental Security; Crabbé, P., Holland, A., Ryszkowski, L., Westra, L., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 121–156. [Google Scholar]
- Richter, B.D.; Mathews, R.; Harrison, D.L.; Wigington, R. Ecologically sustainable water management: Managing river flows for ecological integrity. Ecol. Appl. 2003, 13, 206–224. [Google Scholar] [CrossRef]
- Huang, Q.; Gao, J.F.; Cai, Y.J.; Yin, H.B.; Gao, Y.N.; Zhao, J.H.; Liu, L.Z.; Huang, J.C. Development and application of benthic macroinvertebrate-based multimetric indices for the assessment of streams and rivers in the Taihu Basin, China. Ecol. Indic. 2015, 48, 649–659. [Google Scholar] [CrossRef]
- Huang, Q.; Gao, J.F.; Zhang, Y.H.; Yan, R.H.; Wang, Y.; Cai, Y.J. Aquatic ecological integrity assessment of four large lakes in the middle-to-lower reaches of the Yangtze River, China. Acta Ecol. Sin. 2016, 36, 118–126. [Google Scholar] [CrossRef]
- Xu, F.L.; Tao, S.; Dawson, R.W.; Li, P.G.; Cao, J. Lake ecosystem health assessment: Indicators and methods. Wat. Res. 2001, 35, 3157–3167. [Google Scholar] [CrossRef]
- Liao, J.Q.; Cao, X.F.; Wang, J.; Huang, Y. Basin-scale aquatic ecosystem health assessment with composite indices of chemistry and aquatic biota: A case study of Dianchi Lake. Acta Sci. Circumst. 2014, 34, 1845–1852. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Yang, G.S.; Li, B.; Cai, Y.J.; Chen, Y.W. Using eutrophication and ecological indicators to assess ecosystem condition in Poyang Lake a Yangtze connected lake. Aquat. Ecosyst. Health Manag. 2016, 19, 29–39. [Google Scholar] [CrossRef]
- Hu, Z.X.; Hu, W.P.; Gu, X.H.; Chen, Y.W.; Ji, J. Assessment of ecosystem health in Lake Taihu. J. Lake Sci. 2005, 17, 256–262. (In Chinese) [Google Scholar]
- Guan, B.H.; An, S.Q.; Gu, B.H. Assessment of ecosystem health during the past 40 years for Lake Taihu in the Yangtze River Delta, China. Limnology 2010, 12, 47–53. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, B.H.; Liu, L.S.; Wang, L.J. Development and evaluation of the Lake Multi-biotic Integrity Index for Dongting Lake, China. J. Limnol. 2015, 74, 594–605. [Google Scholar] [CrossRef]
- Carlson, R.E. A trophic state index for lakes. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Niemi, G.J.; Mcdonald, M.E. Application of Ecological Indicators. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 89–111. [Google Scholar] [CrossRef]
- Min, Q. Study on the relationship between shape, water regime and innings of Poyang Lake. Adv. Water Sci. 2000, 11, 76–81. [Google Scholar]
- Han, X.X.; Chen, X.L.; Feng, L. Four decades of winter wetland changes in Poyang Lake based on Landsat observations between 1973 and 2013. Remote Sens. Environ. 2014, 156, 426–437. [Google Scholar] [CrossRef]
- Lai, X.J.; Liang, Q.H.; Jiang, J.H.; Huang, Q. Impoundment Effects of the Three-Gorges-Dam on Flow Regimes in Two China’s Largest Freshwater Lakes. Water Resour. Manag. 2014, 28, 5111–5124. [Google Scholar] [CrossRef]
- Min, Q.; Zhan, L.S. Characteristics of low-water level changes in Lake Poyang during 1952–2011. J. Lake Sci. 2012, 24, 675–678. (In Chinese) [Google Scholar]
- Mei, X.F.; Dai, Z.J.; Fagherazzi, S.; Chen, J.Y. Dramatic variations in emergent wetland area in China’s largest freshwater lake, Poyang Lake. Adv. Water Resour. 2016, 96, 1–10. [Google Scholar] [CrossRef]
- Feng, L.; Han, X.X.; Hu, C.M.; Chen, X.L. Four decades of wetland changes of the largest freshwater lake in China: Possible linkage to the Three Gorges Dam? Remote Sens. Environ. 2016, 176, 43–55. [Google Scholar] [CrossRef]
- Qi, L.Y.; Huang, J.C.; Huang, Q.; Gao, J.F.; Wang, S.G.; Guo, Y.Y. Assessing aquatic ecological health for Lake Poyang, China: Part II Index application. Water 2018, 10, 909. [Google Scholar] [CrossRef]
- Li, C.H.; Cui, W.; Pang, A.P.; Zheng, X.K. Progress on theories and methods of watershed eco-health assessment. Process Geogr. 2008, 27, 9–17. [Google Scholar]
- Hu, Z.P.; Ge, G.; Liu, C.L. Cause analysis and early warning for wetland vegetation degradation in Poyang Lake. Res. Environ. Yangtze Basin 2015, 23, 381–386. (In Chinese) [Google Scholar]
- Hu, Z.P.; Ge, G.; Liu, C.L. Response of wintering migratory birds to hydrological processes in Poyang Lake. J. Nat. Res. 2014, 29, 1770–1778. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Yu, X.B.; Xu, J.; Li, W.H.; Fan, N. Temporal variation of energy sources in a floodplain lake fish community. J. Freshw. Ecol. 2012, 27, 295–303. [Google Scholar] [CrossRef] [Green Version]
- International Joint Commission (IJC). Assessment of Progress Made towards Restoring and Maintaining Great Lakes Water Quality Since 1987; IJC: Washington, DC, USA, 2013. [Google Scholar]
- Li, X.H.; Zhang, Q. Variation of floods characteristics and their responses to climate and human activities in Poyang Lake, China. Chin. Geogr. Sci. 2014, 25, 13–25. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, D.; Cai, Y.; Wang, X.; Zhang, L.; Chen, Y. Water quality assessment based on the water quality index method in Lake Poyang: The largest freshwater lake in China. Sci. Rep. 2017, 7, 17999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, S.; Schultze, M.; Rahn, K.; Boehrer, B. A practical approach to lake water density from electrical conductivity and temperature. Hydrol. Earth Syst. Sci. 2016, 20, 2975–2986. [Google Scholar] [CrossRef] [Green Version]
- Zhi, H.; Zhao, Z.; Zhang, L. The fate of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in water from Poyang Lake, the largest freshwater lake in China. Chemosphere 2015, 119, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, C.; Oxynos, K.; Schmitzer, J.; Kettrup, A. Hexachlorocyclohexane (HCH) Residues in Ya-Er Lake Area, China. Int. J. Environ. Anal. Chem. 2006, 57, 53–61. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, Y.H.; Ding, M.J.; Xie, Z.L. Level, source identification, and risk analysis of heavy metal in surface sediments from river-lake ecosystems in the Poyang Lake, China. Environ. Sci. Pollut. Res. 2017, 24, 21902–21916. [Google Scholar] [CrossRef] [PubMed]
- Boersma, M. The nutritional quality of P-limited algae for Daphnia. Limnol. Oceanogr. 2000, 45, 1157–1161. [Google Scholar] [CrossRef] [Green Version]
- Minutoli, R.; Granata, A.; Guglielmo, L. Potential use of ecotoxicological biomarkers in Serratella ignita (Ephemeroptera) larvae for Alcantara river (Sicily, Italy) water quality assessment. J. Limnol. 2013, 72, 394–399. [Google Scholar] [CrossRef]
- Wang, B.X.; Yang, L.F. A study on tolerance values of the benthic macroinvertebrate taxa in eastern China. Acta Ecol. Sin. 2004, 24, 2768–2775. (In Chinese) [Google Scholar]
- Onaindia, M.; De Bikuna, B.G.; Benito, I. Aquatic plants in relation to environmental factors in northern Spain. J. Environ. Manag. 1996, 42, 123–137. [Google Scholar] [CrossRef]
- Hurley, L.M. Submerged Aquatic Vegetation. In Habitat Requirements for Chesapeake Bay Living Resources, 2nd ed.; Funderbunk, S.L., Jordan, S.J., Mihursky, J.A., Riley, D., Eds.; Chesapeake Research Consortium, Inc.: Solomons, MD, USA, 1991; pp. 1–19. [Google Scholar]
- Orth, R.J.; Moore, K.A. Chesapeake bay: An unprecedented decline in submerged aquatic vegetation. Science 1983, 222, 51–53. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.L.; Wu, Z.Q.; Li, J.H. Fish fauna, biogeography and conservation of freshwater fish in Poyang Lake Basin, China. Environ. Biol. Fishes 2011, 96, 1229–1243. [Google Scholar] [CrossRef]
- Duan, X.B.; Liu, S.P.; Huang, M.G.; Qiu, S.L.; Li, Z.H.; Wang, K.; Chen, D.Q. Changes in abundance of larvae of the four domestic Chinese carps in the middle reach of the Yangtze River, China, before and after closing of the Three Gorges Dam. Environ. Biol. Fishes 2009, 86, 13–22. [Google Scholar] [CrossRef]
- Shao, M.Q.; Guo, H.; Jiang, J.H. Population sizes and group characteristics of Siberian Crane (Leuco-geranus leucogeranus) and Hooded Crane (Grus monacha) in Poyang Lake Wetland. Zool. Res. 2014, 35, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Cui, P.; Xu, H.G.; Lu, X.G.; Lei, J.C.; Wu, Y.; Shao, M.Q.; Ding, H.; Wu, J.; Cao, M.C. Assessing the suitabihlity of abitat for wintering Siberian cranes (Leucogeranus leucogeranus) at different water levels in Poyang Lake area, China. Pol. J. Ecol. 2016, 64, 84–97. [Google Scholar] [CrossRef]
- Leeuw, J.D.; Shankman, D.; Wu, G.F.; De Boer, W.F.; Burnham, J.; He, Q.; Yesou, H.; Xiao, J. Strategic assessment of the magnitude and impacts of sand mining in Poyang Lake, China. Reg. Environ. Chang. 2009, 10, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.L.; Xu, L.G.; Wan, R.R.; Chen, Y.W. Seasonal variations of soil microbial biomass within two typical wetland areas along the vegetation gradient of Poyang Lake, China. Catena 2016, 137, 483–493. [Google Scholar] [CrossRef]
- Tam, M.C.Y.; Tummala, V.M.R. An application of the AHP in vendor selection of a telecommunications system. Omega 2001, 29, 171–182. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision-making with the AHP: Why is the principal eigenvector necessary. Eur. J. Oper. Res. 2003, 145, 85–91. [Google Scholar] [CrossRef]
- Wei, C.C.; Chien, C.F.; Wang, M.J.J. An AHP-based approach to ERP system selection. Int. J. Prod. Econ. 2005, 96, 47–62. [Google Scholar] [CrossRef]
- Zhang, Q.; Werner, A.D. Hysteretic relationships in inundation dynamics for a large lake–floodplain system. J. Hydrol. 2015, 527, 160–171. [Google Scholar] [CrossRef]
- Stoddard, J.L.; Larsen, D.P.; Hawkin, C.P.; Johnson, R.K.; Norris, R.H. Setting expectations for the ecological condition of stream: The concept of reference condition. Ecol. Appl. 2006, 16, 1267–1276. [Google Scholar] [CrossRef]
- Stoddard, J.L.; Herlihy, A.T.; Peck, D.V.; Hughes, R.M.; Whittier, T.R.; Tarquinio, E. A process for creating multimetric indices for large-scale aquatic surveys. J. N. Am. Benthol. Soc. 2008, 27, 878–891. [Google Scholar] [CrossRef]
- Hering, D.; Feld, C.K.; Moog, O.; Ofenböck, T. Cook book for the development of a Multimetric Index for biological condition of aquatic ecosystems: Experiences from the European AQEM and STAR projects and related initiatives. Hydrobiologia 2006, 566, 311–324. [Google Scholar] [CrossRef]
- Barbour, M.T.; Gerritsen, J.; Griffith, G.E. A framework for biological criteria for Florida streams using benthic macroinvertebrates. J. N. Am. Benthol. Soc. 1996, 15, 185–211. [Google Scholar] [CrossRef]
- Wu, N.C.; Cai, Q.H.; Fohrer, N. Development and evaluation of a diatom-based index of biotic integrity (D-IBI) for rivers impacted by run-of-river dams. Ecol. Indic. 2012, 18, 108–117. [Google Scholar] [CrossRef] [Green Version]
- De Leo, G.A.; Levin, S. The multifaceted aspects of ecosystem integrity. Conserv. Ecol. 1997, 1, 3. [Google Scholar] [CrossRef]
- Yang, Z.P.; Wang, L.Q.; Liang, T.; Huang, M.X. Nitrogen distribution and ammonia release from the overlying water and sediments of Poyang Lake, China. Environ. Earth Sci. 2015, 74, 771–778. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.H.; Dong, X.H.; Chen, Y.W.; Yang, X.D. Hydrological alterations as the major driver on environmental change in a floodplain Lake Poyang (China): Evidence from monitoring and sediment records. J. Gt. Lakes Res. 2018, 44, 377–387. [Google Scholar] [CrossRef]
- Xu, F.L.; Zhao, Z.Y.; Zhan, W.; Zhao, S.S.; Dawson, R.W.; Tao, S. An ecosystem health index methodology (EHIM) for lake ecosystem health assessment. Ecol. Model. 2005, 188, 327–339. [Google Scholar] [CrossRef]
- Xu, F.L.; Li, Y.L.; Wang, Y.; He, W.; Kong, X.Z.; Qin, N.; Liu, W.X.; Wu, W.J.; Jorgensen, S.E. Key issues for the development and application of the species sensitivity distribution (SSD) model for ecological risk assessment. Ecol. Indic. 2015, 54, 227–237. [Google Scholar] [CrossRef]
- Xu, F.L.; Dawson, R.W.; Tao, S.; Cao, J.; Li, B.G. Amethod for lake ecosystem health assessment: An Ecological ModelingMethod (EMM) and its application. Hydrobiologia 2001, 443, 159–175. [Google Scholar] [CrossRef]
Station | Highest Water Level (m) | Date for Highest Water Level | Lowest Water Level (m) | Date for Lowest Water Level | Average Water Level (m) |
---|---|---|---|---|---|
Hukou | 18.58 | 26 July | 7.29 | 11 February | 12.60 |
Xingzi | 18.57 | 26 July | 7.32 | 31 January | 12.72 |
Duchang | 18.58 | 26 July | 7.60 | 1 February | 12.94 |
Tangyin | 18.58 | 27 July | 11.04 | 3 February | 14.12 |
Kangshan | 18.53 | 26 July | 12.17 | 5 February | 14.78 |
Target Level A | Sub-Target Level B | Element Level C | Assessment Indicator Level D | Relative Health Status 1 | Method for Indicator Values 2 | Data Source 3 | |
---|---|---|---|---|---|---|---|
Good | Bad | ||||||
LP-EHI A1 | Natural properties B1 | Physical integrity C1 | Water level D1 | ↑↓ | ↑↓ | a, b | I |
Tributary connectivity D2 | ↑ | ↓ | a, b | VI | |||
Lake area D3 | ↑ | ↓ | a, b | III | |||
Runoff D4 | ↑↓ | ↑↓ | a, b | I | |||
Coastal habitat D5 | ↑ | ↓ | a, b | IV | |||
Chemical integrity C2 | Water quality D6 | ↓ | ↑ | a | I | ||
Nutrition D7 | ↓ | ↑ | a, b | I | |||
Toxicity D8 | ↓ | ↑ | a | VI | |||
Biological integrity C3 | Phytoplankton D9 | ↓ | ↑ | a, b | II | ||
Zooplankton D10 | ↑↓ | ↑↓ | a, b | II | |||
Benthic macroinvertebrate D11 | ↓ | ↑ | a, b | II | |||
Wetland plants D12 | ↑ | ↓ | a | VI | |||
Fish D13 | ↑↓ | ↑↓ | a, b | VI | |||
Bird D14 | ↑ | ↓ | a | III | |||
Social service B2 | Human health C4 | Drinking water D15 | ↑ | ↓ | a, b | V | |
Pathogenic potential D16 | ↓ | ↑ | a, b | VI | |||
Regulation C5 | Flood storage capacity D17 | ↑ | ↓ | a, b | I | ||
Human activity C6 | Sand mining D18 | ↓ | ↑ | a | V | ||
Response C7 | Dish-shaped sub-lake areas under management D19 | ↑ | ↓ | a, b | III |
Used in LP-EHI | The Great Lakes in North American | Large Lakes in China | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Lake Superior | Lake Michigan | Lake Huron | Lake Erie | Lake Ontario | Lake Poyang | Lake Dongting | Lake Taihu | Lake Chaohu | Lake Hongze | |
Water level | Y 1 | Y | Y | Y | Y | Y | N | N | N | N |
Tributary | Y | Y | Y | Y | Y | Y | Y | Y | Y | N |
Lake area | Y | Y | Y | Y | Y | Y | Y | Y | Y | N |
Runoff | N | N | N | N | N | N | Y | N | N | N |
Coastal habitat | Y | Y | Y | Y | Y | N | N | N | N | N |
Water quality | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
Nutrition | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
Toxicity | Y | Y | Y | Y | Y | N | N | N | N | N |
Phytoplankton | Y | Y | Y | Y | Y | Y | Y | Y | Y | N |
Zooplankton | Y | Y | Y | Y | Y | N | N | N | Y | N |
Benthic macroinvertebrate | Y | Y | Y | Y | Y | Y | Y | Y | Y | N |
Wetland plants | Y | Y | Y | Y | Y | N | Y | N | Y | N |
Fish | Y | Y | Y | Y | Y | Y | Y | Y | Y | N |
Birds | Y | Y | Y | Y | Y | N | N | N | N | N |
Drinking water | Y | Y | Y | Y | Y | N | N | N | N | N |
Pathogenic potential | Y | Y | Y | Y | Y | N | Y | N | N | N |
Flood storage capacity | N | N | N | N | N | N | N | N | N | N |
Sand mining | N | N | N | N | N | N | N | N | N | N |
Sub-lake | N | N | N | N | N | N | N | N | N | N |
IQ | Description |
---|---|
3 | No overlap of interquartile ranges. |
2 | Some overlap of interquartile ranges but both medians are outside the interquartile range overlap. |
1 | Moderate overlap of interquartile ranges but at least one median is outside the interquartile range overlap. |
0 | (a) Extensive overlap of interquartile range or (b) both medians within the overlap. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, L.; Huang, J.; Huang, Q.; Gao, J.; Wang, S.; Guo, Y. Assessing Aquatic Ecological Health for Lake Poyang, China: Part I Index Development. Water 2018, 10, 943. https://doi.org/10.3390/w10070943
Qi L, Huang J, Huang Q, Gao J, Wang S, Guo Y. Assessing Aquatic Ecological Health for Lake Poyang, China: Part I Index Development. Water. 2018; 10(7):943. https://doi.org/10.3390/w10070943
Chicago/Turabian StyleQi, Lingyan, Jiacong Huang, Qi Huang, Junfeng Gao, Shigang Wang, and Yuyin Guo. 2018. "Assessing Aquatic Ecological Health for Lake Poyang, China: Part I Index Development" Water 10, no. 7: 943. https://doi.org/10.3390/w10070943
APA StyleQi, L., Huang, J., Huang, Q., Gao, J., Wang, S., & Guo, Y. (2018). Assessing Aquatic Ecological Health for Lake Poyang, China: Part I Index Development. Water, 10(7), 943. https://doi.org/10.3390/w10070943