Water Use and Rice Productivity for Irrigation Management Alternatives in Tanzania
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Area
2.2. Experimental Design
2.3. Sri Management
2.4. Irrigation and Soil Moisture Measurements
2.5. Plant and Yield Observations
2.6. Data Analysis
3. Results and Discussion
3.1. Plant Growth
3.2. Yield
3.3. Water Use and Productivity
3.3.1. Irrigation and Soil Moisture
3.3.2. Economic Productivity of Water
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rijsberman, F.R. Water scarcity: Fact or fiction? Agric. Water Manag. 2006, 80, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Hanjra, M.A.; Qureshi, M.E. Global water crisis and future food security in an era of climate change. Food Policy 2010, 35, 365–377. [Google Scholar] [CrossRef]
- AQUASTAT. Water Resources Development and Management Service; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010; Available online: http://www.fao.org/nr/water/aquastat/main/index.stm (accessed on 30 June 2016).
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.V. (Ed.) Global Climate Changes and Rice Food Security; FAO: Rome, Italy, 2002; pp. 24–30. [Google Scholar]
- Geerts, S.; Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef] [Green Version]
- Balasubramanian, V.; Sie, M.; Hijmans, R.J.; Otsuka, K. Increasing rice production in sub-Saharan Africa: Challenges and opportunities. Adv. Agron. 2007, 94, 55–133. [Google Scholar]
- FAOSTAT. Statistical Databases; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014. [Google Scholar]
- Africa Rice Center. Africa Rice Trends: Overview of Recent Developments in the Sub-Saharan Africa Rice Sector; Africa Rice Center: Cotonou, Benin, 2007. [Google Scholar]
- Nasrin, S.; Lodin, J.B.; Jirström, M.; Holmquist, B.; Djurfeldt, A.A.; Djurfeldt, G. Drivers of rice production: Evidence from five Sub-Saharan African countries. Agric. Food Secur. 2015, 4, 12. [Google Scholar] [CrossRef]
- United Republic of Tanzania (URT). State of the Environment Report—2006; Division of Environment, Vice President’s Office: Dar es Salaam, Tanzania, 2006; ISBN 9987-8990. [Google Scholar]
- World Bank. United Republic of Tanzania, Water Resources Assistance Stretagy, Improving Water Security for Sutaining Livelihoods and Growth; Report No. 35327-TZ; Water and Urban Unit 1, Africa Region; World Bank: Washington, DC, USA, 2006; Available online: http://documents.worldbank.org/curated/en/378981468117562281/Tanzania-Water-resources-assistance-strategy-improving-water-security-for-sustaining-livelihoods-and-growth (accessesd on 6 July 2017).
- Bouman, B.A.M.; Tuong, T.P. Field water management to save water and increase its productivity in irrigated rice. Agric. Water Manag. 2001, 49, 11–30. [Google Scholar] [CrossRef]
- Guerra, L.C. Producing More Rice with Less Water from Irrigated Systems; International Water Management Institute (IWMI): Colombo, Sri Lanka, 1998; Volume 5. [Google Scholar]
- Tuong, T.P.; Bouman, B.A.M. Rice production in water-scarce environments. Water Prod. Agric. Limits Oppor. Improv. 2003, 1, 13–42. [Google Scholar]
- Bouman, B.A.M.; Peng, S.; Castaneda, A.R.; Visperas, R.M. Yield and water use of irrigated tropical aerobic rice systems. Agric. Water Manag. 2005, 74, 87–105. [Google Scholar] [CrossRef]
- Nie, L.; Peng, S.; Chen, M.; Shah, F.; Huang, J.; Cui, K.; Xiang, J. Aerobic rice for water-saving agriculture. A review. Agron. Sustain. Dev. 2012, 32, 411–418. [Google Scholar] [CrossRef]
- Tabbal, D.F.; Bouman, B.A.M.; Bhuiyan, S.I.; Sibayan, E.B.; Sattar, M.A. On-farm strategies for reducing water input in irrigated rice; case studies in the Philippines. Agric. Water Manag. 2002, 56, 93–112. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, Y.; Wang, Z.; Yang, J.; Zhang, J. An Alternate Wetting and Moderate Soil Drying Regime Improves Root and Shoot Growth in Rice. Crop Sci. 2009, 49, 2246–2260. [Google Scholar] [CrossRef]
- Lampayan, R.M.; Rejesus, R.M.; Singleton, G.R.; Bouman, B.A. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Res. 2015, 170, 95–108. [Google Scholar] [CrossRef]
- Bouman, B.A.M.; Feng, L.; Tuong, T.P.; Lu, G.; Wang, H.; Feng, Y. Exploring options to grow rice using less water in northern China using a modelling approach: II. Quantifying yield, water balance components, and water productivity. Agric. Water Manag. 2007, 88, 23–33. [Google Scholar] [CrossRef]
- Stoop, W.A.; Uphoff, N.; Kassam, A. A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar: Opportunities for improving farming systems for resource-poor farmers. Agric. Syst. 2002, 71, 249–274. [Google Scholar] [CrossRef]
- Kassam, A.; Stoop, W.; Uphoff, N. Review of SRI modifications in rice crop and water management and research issues for making further improvements in agricultural and water productivity. Paddy Water Environ. 2011, 9, 163–180. [Google Scholar] [CrossRef]
- Mati, B.M.; Wanjogu, R.; Odongo, B.; Home, P.G. Introduction of the system of rice intensification in Kenya: Experiences from mwea irrigation scheme. Paddy Water Environ. 2011, 9, 145–154. [Google Scholar] [CrossRef]
- Thakur, A.K.; Uphoff, N.T.; Stoop, W.A. Scientific underpinnings of the system of rice intensification (SRI): What is known so far? In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2016; Volume 135, pp. 147–179. [Google Scholar]
- Uphoff, N. Agroecological implications of the system of rice intensification (SRI) in Madagascar. Environ. Dev. Sustain. 1999, 1, 297–313. [Google Scholar] [CrossRef]
- Zhao, L.; Wu, L.; Li, Y.; Lu, X.; Zhu, D.; Uphoff, N. Influence of the system of rice intensification on rice yield and nitrogen and water use efficiency with different N application rates. Exp. Agric. 2009, 45, 275–286. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, D05109. [Google Scholar]
- Schaap, M.G.; Leij, F.J.; Van Genuchten, M.T. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 2001, 251, 163–176. [Google Scholar] [CrossRef]
- Cobos, D.R.; Chambers, C. Calibrating ECH2O Soil Moisture Sensors; Application Note; Decagon Devices: Pullman, WA, USA, 2010. [Google Scholar]
- Leib, B.G.; Jabro, J.D.; Matthews, G.R. Field evaluation and performance comparison of soil moisture sensors. Soil Sci. 2003, 168, 396–408. [Google Scholar] [CrossRef]
- Dukes, M.D.; Simonne, E.H.; Davis, W.E.; Studstill, D.W.; Hochmuth, R. Effect of sensor-based high frequency irrigation on bell pepper yield and water use. In Proceedings of the 2nd International Conference on Irrigation and Drainage, Phoenix, AZ, USA, 12–15 May 2003; pp. 12–15. [Google Scholar]
- Zotarelli, L.; Dukes, M.D.; Scholberg, J.M.S.; Femminella, K.; Munoz-Carpena, R. Irrigation scheduling for green bell peppers using capacitance soil moisture sensors. J. Irrig. Drain. Eng. 2010, 137, 73–81. [Google Scholar] [CrossRef]
- Yin, X.; Schapendonk, A.H.; Kropff, M.J.; van Oijen, M.; Bindraban, P.S. A generic equation for nitrogen-limited leaf area index and its application in crop growth models for predicting leaf senescence. Ann. Bot. 2000, 85, 579–585. [Google Scholar] [CrossRef]
- SAS Institute. SAS/IML 9.3 User’s Guide; SAS Institute: Cary, NC, USA, 2011. [Google Scholar]
- Somerville, P.N. On the conservatism of the Tukey-Kramer multiple comparison procedure. Stat. Probab. Lett. 1993, 16, 343–345. [Google Scholar] [CrossRef]
- Gleick, P.H.; Christian-Smith, J.; Cooley, H. Water-use efficiency and productivity: Rethinking the basin approach. Water Int. 2011, 36, 784–798. [Google Scholar] [CrossRef]
- Wilson, R.T.; Lewis, I. The Rice Value Chain in Tanzania, a Report from the Southern Highlands Food Systems Programme; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; pp. 1–15. [Google Scholar]
- Chaudhary, D.K. Effect of water regimes and NPK levels on mid duration rice. (Oryza sativa L). Master’s Thesis, Rajendra Agricultural University, Pusa, Bihar, 2003. [Google Scholar]
- Parihar, S.S. Effect of crop-establishment method, tillage, irrigation and nitrogen on production potential of rice (Oryza sativa)-wheat (Triticum aestivum) cropping system. Indian J. Agron. 2004, 49, 1–5. [Google Scholar]
- Panda, S.C.; Rath, B.S.; Tripathy, R.K.; Dash, B. Effect of water management practices on yield and nutrient uptake in the dry season rice. Oryza 1997, 34, 51–53. [Google Scholar]
- Gani, A.; Rahman, A.; Rustam, D.; Hengsdijk, H. Water management experiments in Indonesia. In Proceedings of the International Symposium on Water Wise Rice Production, IARI, New Delhi, India, 2–3 November 2003; pp. 29–37. [Google Scholar]
- Thakur, A.K.; Rath, S.; Patil, D.U.; Kumar, A. Effects on rice plant morphology and physiology of water and associated management practices of the system of rice intensification and their implications for crop performance. Paddy Water Environ. 2011, 9, 13–24. [Google Scholar] [CrossRef]
- Uphoff, N. Higher yields with fewer external inputs? The system of rice intensification and potential contributions to agricultural sustainability. Int. J. Agric. Sustain. 2003, 1, 38–50. [Google Scholar] [CrossRef]
- Takai, T.; Matsuura, S.; Nishio, T.; Ohsumi, A.; Shiraiwa, T.; Horie, T. Rice yield potential is closely related to crop growth rate during late reproductive period. Field Crops Res. 2006, 96, 328–335. [Google Scholar] [CrossRef]
- Vijayakumar, M.; Ramesh, S.; Chandrasekaran, B.; Thiyagarajan, T.M. Effect of system of rice intensification (SRI) practices on yield attributes yield and water productivity of rice (Oryza sativa L.). Res. J. Agric. Biol. Sci. 2006, 2, 236–242. [Google Scholar]
- Krishna, A.; Biradarpatil, N.K.; Channappagoudar, B.B. Influence of system of rice intensification (SRI) cultivation on seed yield and quality. Agric. Sci. 2008, 21, 369–372. [Google Scholar]
- Kombe, E. The System of Rice Intensification (SRI) as a Strategy for Adapting to the Effects of Climate Change and Variability: A Case Study of Mkindo Irrigation Scheme in Morogoro, Tanzania. Unpublished Master’s Thesis, Department of Agricultural Engineering and Land Planning, Sokoine University of Agriculture, Morogoro, Tanzania, 2012. [Google Scholar]
- Mwakalila, S. Water resource use in the Great Ruaha Basin of Tanzania. Phys. Chem. Earth Parts A/B/C 2005, 30, 903–912. [Google Scholar] [CrossRef]
- Makoye, K. Farmers to Lose Water Access as Tanzania’s Hydropower Runs Dry; Reuters: London, UK, 2015; Available online: http://www.reuters.com/article/tanzania-water-hydropower/farmers-to-lose-water-access-as-tanzanias-hydropower-runs-dry-idUSL8N0ZC0X320150626 (accessed on 19 June 2018).
Event | Period (DAT *) | Dry Season | Wet Season |
---|---|---|---|
Field Preparations | - | 15 September 2012 | 8 February 2013 |
Nursery | - | 24 September 2012 | 18 February 2013 |
Transplanting | - | 6 October 2012 | 1 March 2013 |
Tillering | 0–46 | 21 November 2012 | 16 April 2013 |
Panicle initiation | 47–59 | 3 December 2012 | 29 April 2013 |
Flowering | 60–72 | 15 December 2012 | 13 May 2013 |
Grain filling | 73–90 | 1 January 2013 | 27 May 2013 |
Harvesting | 111 (Wet season) 113 (Dry season) | 26 January 2013 | 19 June 2013 |
Treatments * | Plant Height (m) | Number of Tillers | ||
---|---|---|---|---|
Dry Season | Wet Season | Dry Season | Wet Season | |
CF | 0.49 a | 0.52 a | 40 a | 28 a |
SRI | 0.44 a | 0.48 a | 42 a | 31 a |
80% SRI | 0.40 b | 0.47 b | 56b | 38 b |
50% SRI | 0.30 c | 0.40 c | 29 c | 25 c |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Materu, S.T.; Shukla, S.; Sishodia, R.P.; Tarimo, A.; Tumbo, S.D. Water Use and Rice Productivity for Irrigation Management Alternatives in Tanzania. Water 2018, 10, 1018. https://doi.org/10.3390/w10081018
Materu ST, Shukla S, Sishodia RP, Tarimo A, Tumbo SD. Water Use and Rice Productivity for Irrigation Management Alternatives in Tanzania. Water. 2018; 10(8):1018. https://doi.org/10.3390/w10081018
Chicago/Turabian StyleMateru, Stanslaus Terengia, Sanjay Shukla, Rajendra P. Sishodia, Andrew Tarimo, and Siza D. Tumbo. 2018. "Water Use and Rice Productivity for Irrigation Management Alternatives in Tanzania" Water 10, no. 8: 1018. https://doi.org/10.3390/w10081018
APA StyleMateru, S. T., Shukla, S., Sishodia, R. P., Tarimo, A., & Tumbo, S. D. (2018). Water Use and Rice Productivity for Irrigation Management Alternatives in Tanzania. Water, 10(8), 1018. https://doi.org/10.3390/w10081018