Quantitative Evaluation Method for Landscape Color of Water with Suspended Sediment
Abstract
:1. Introduction
2. Method
2.1. Experimental Device for Water Landscape Color Measurement
2.2. Data Collection
2.3. Establishment of Color Spectral Model for Water Landscape
2.3.1. CIE Chromaticity Calculation
2.3.2. Response Relationship between Reflectivity and Influence Factors of Water Body
3. Main Influencing Factors of Water Landscape Color and Establishment of Evaluation Methods
3.1. Influence of Sediment Concentration on Landscape Color of Water Body
3.1.1. Variation of the Reflectance of Suspended Sediment in Different Concentrations
3.1.2. Reflectivity Response Relationship of Suspended Sediment to Trichromatic Wavelength
3.1.3. The Response Relation between the Wavelength of Chromatic Tri Primary Color and the Reflectivity
3.2. Experimental Verification of Landscape Color Prediction of Sediment Water
3.3. Establishment of Evaluation Method for Influence of Sediment on Water Landscape Color
3.4. Landscape Color Evaluation of a Natural Water Body in a High Mountain Lake
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Smith, S.V.; Renwick, W.H.; Bartley, J.D.; Buddemeier, R.W. Distribution and significance of small, artificial water bodies across the United States landscape. Sci. Total Environ. 2002, 299, 21–36. [Google Scholar] [CrossRef]
- Zhao, S.; Fang, J.; Ji, W.; Tang, Z. Lake restoration from impoldering: impact of land conversion on riparian landscape in Honghu Lake area, Central Yangtze. Agric. Ecosyst. Environ. 2003, 95, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.L. Approach on the quality standard for reuse of reclaimed water in scenic waters. China Water Wastewater 2001, 17, 31–35. [Google Scholar]
- Richardson, C.J.; Flanagan, N.E.; Ho, M.; Pahl, J.W. Integrated stream and wetland restoration: A watershed approach to improved water quality on the landscape. Ecol. Eng. 2011, 37, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Huang, Y.; Pan, Y.; Wang, J.; Wu, Q.Y. Application for a Method of Evaluating the Apparent Quality of Urban Scenic Water. Environ. Sci. Technol. 2017, 2, 186–189. [Google Scholar]
- Na, S.; Yang, H.; Li, X.Y. Identification of pollutant with different apparent characteristics and types of pollution in urban water. Water Resour. Prot. 2015. [Google Scholar]
- Wang, F.; LI, H.; Ai, N.; Lin, X.; Jing, D. Fractals and selforganizations of motion of water flow and sediment as well as fluvial PROCESSES. Explor. Nat. 1999, 3, 55–61. [Google Scholar]
- Cai, S.T. Sedimentation motion of sand particles in water (II) the effect of time factor. Acta Phys. Sin. 1956, 5, 409–418. [Google Scholar]
- Water Quality—Examination and Determination of Colour; ISO 7887-1985; International Organization for Standardization: Geneva, Switzerland, 1985; pp. 1–7.
- State Environmental Protection Administration. Determination of Water Color. GB/T 11903-1989; China Standard Publishing House: Beijing, China, 1989; pp. 1–3. [Google Scholar]
- Yu, P.; Shen, W.; Huang, J.; Xu, B. Determination of water colority by spectrophotometry in visible spectrum. Opt. Tech. 2011, 37, 551–555. [Google Scholar]
- Zhao, T.C. Light radiation properties of suspended sediments in the waters. Mar. Sci. Bull. 1983, 4, 42–53. [Google Scholar]
- Liu, L.M.; Zhu, J.D. Preliminary Study on Trend of Ocean Color Sensor Development. Remote Sens. Inf. 2011, 28, 111–119. [Google Scholar]
- Xu, X.R. Remote Sensing Physics; Peking University Press: Beijing, China, 2006. [Google Scholar]
- Xi, C.W.; Ying, Z.Q.; Zhong, Y.Y. Principal Component Analysis for Ocean Color Remote Sensing in South China Sea. J. Remote Sens. 1999, 2, 19–32. [Google Scholar]
- Wang, S.Y.; Liu, C.; Yang, S.Z. Multi-source RS data based analysis on regional eco-landscape change before and after construction of Xixiayuan Reservoir. Water Resour. Hydropower Eng. 2011, 11, 22–25. [Google Scholar]
- Ma, R.H.; Tang, J.W. Remote sensing parameters acquisition and algorithm analysis of lake color. Adv. Water Sci. 2006, 17, 720–726. [Google Scholar]
- Liew, S.C.; Lu, X.X.; Chen, P.; Zhou, Y. Remote Sensing Estimation of Suspended Sediment Concentrations in Highly Turbid Inland River Waters: An Example from the Lower Jinsha Tributary, Yunnan, China. J. Mt. Res. 2003, 21, 378–379. [Google Scholar]
- Yan, H.; Yao, Z.; Huang, H.; Jiang, D.; Dong, X.; Duan, R.; Zhang, Y. Water quality and light absorption attributes of glacial lakes in Mount Qomolangma region. J. Geogr. Sci. 2013, 23, 860–870. [Google Scholar] [CrossRef]
- Gong, C.L.; Yin, Q.; Kuang, D.B. Correlations between Water Quality Indexes and Reflectance Spectra of Huangpujiang River. J. Remote Sens. 2006, 10, 910–916. [Google Scholar]
- Chen, Z.; Hu, C.; Muller-Karger, F. Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery. Remote Sens. Environ. 2007, 109, 207–220. [Google Scholar] [CrossRef]
- Doxaran, D.; Cherukuru, N.; Lavender, S.J. Apparent and inherent optical properties of turbid estuarine waters: Measurements, empirical quantification relationships, and modeling. Appl. Opt. 2006, 45, 2310–2324. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.Q.; Duan, Z.Y.; Lv, X. Research of Cotton Canopy Characteristic Information by Hyperspectral Remote Sensing Data. In Proceedings of the 2013 8th International Conference on Computer Science & Education, Colombo, Sri Lanka, 26–28 April 2013. [Google Scholar]
- Kallio, K.; Kutser, T.; Hannonen, T.; Koponen, S.; Pulliainen, J.; Vepsäläinen, J.; Pyhälahti, T. Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons. Sci. Total Environ. 2001, 268, 59–77. [Google Scholar] [CrossRef]
- Koponen, S.; Pulliainen, J.; Servomaa, H.; Zhang, Y.; Hallikainen, M.; Kallio, K.; Vepsäläinen, J.; Pyhälahti, T.; Hannonen, T. Analysis on the feasibility of multi-source remote sensing observations for chl-a monitoring in Finnish lakes. Sci. Total Environ. 2001, 268, 95–106. [Google Scholar] [CrossRef]
- Sun, D.Y.; Li, Y.M.; Wang, Q.; Le, C.F.; Huang, C.C.; Shi, K.; Wang, L.Z. Study on remote sensing estimation of suspended matter concentrations based on in situ hyperspectral data in lake tai waters. J. Infrared Millim. Waves 2009, 28, 124–128. [Google Scholar] [CrossRef]
- CIE. Commission Internationale de l’Eclairage Proceedings, 1931; Cambridge University Press: Cambridge, UK, 1932. [Google Scholar]
- Yang, Z.G. Eyes and Color; Print World: Hong Kong, China, 2004; pp. 6–7. [Google Scholar]
- Yu, Y.; Pu, X.; Li, R.; Jiang, H.; Li, Y. A study on organoleptic chromaticity-based quantitative assessment method for landscape quality of sandy water. J. China Inst. Water Resour. Hydropower Res. 2015, 13, 414–420. [Google Scholar]
Depth of Water | Concentration of Suspended Sediment | |||||
---|---|---|---|---|---|---|
0 mg/L | 10 mg/L | 50 mg/L | 100 mg/L | 500 mg/L | 1000 mg/L | |
20 cm | 472.36 | 569.75 | 569.75 | 569.75 | 580.09 | 580.09 |
40 cm | 472.36 | 559.44 | 559.44 | 559.44 | 574.92 | 647.65 |
80 cm | 472.36 | 549.13 | 549.13 | 549.13 | 580.09 | 647.65 |
Chromatic Tricolor | Depth of Water cm | Reflectivity Curve Equation | R2 |
---|---|---|---|
Red light | 20 | p(λ) = 0.02564ln(c + 1) + 0.04472 | 0.7973 |
40 | p(λ) = 0.02623ln(c + 1) + 0.04123 | 0.8376 | |
80 | p(λ) = 0.02714ln(c + 1) + 0.03634 | 0.8098 | |
Green light | 20 | p(λ) = 0.01484ln(c + 1) + 0.07842 | 0.8841 |
40 | p(λ) = 0.01564ln(c + 1) + 0.09030 | 0.8516 | |
80 | p(λ) = 0.01714ln(c + 1) + 0.10863 | 0.7736 | |
Blue light | 20 | p(λ) = 0.00873ln(c + 1) + 0.08584 | 0.9569 |
40 | p(λ) = 0.00923ln(c + 1) + 0.09321 | 0.9672 | |
80 | p(λ) = 0.01002ln(c + 1) + 0.10421 | 0.9221 |
Color Trichromatic Reflectivity | Sediment Concentration mg/L | ||
---|---|---|---|
30 mg/L | 400 mg/L | 800 mg/L | |
Red color light | 0.1314 | 0.1971 | 0.2149 |
Green color light | 0.1389 | 0.1755 | 0.1854 |
Blue color light | 0.0939 | 0.1154 | 0.1211 |
Chromaticity Coordinates | Sediment Concentration mg/L | ||
---|---|---|---|
30 mg/L | 400 mg/L | 800 mg/L | |
x | 0.315 | 0.338 | 0.353 |
y | 0.363 | 0.377 | 0.385 |
Chromaticity Coordinates | Sediment Concentration mg/L | ||||||
---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | 50 | 60 | |
x | 0.161 | 0.179 | 0.208 | 0.231 | 0.270 | 0.339 | 0.350 |
y | 0.146 | 0.179 | 0.251 | 0.297 | 0.355 | 0.407 | 0.409 |
Chromaticity Coordinates | Sediment Concentration mg/L | ||||||
70 | 80 | 90 | 100 | 110 | 120 | 130 | |
x | 0.368 | 0.374 | 0.384 | 0.387 | 0.390 | 0.395 | 0.398 |
y | 0.411 | 0.410 | 0.409 | 0.403 | 0.401 | 0.400 | 0.398 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, M.; Li, R.; Tu, W.; Liao, J.; Pu, X. Quantitative Evaluation Method for Landscape Color of Water with Suspended Sediment. Water 2018, 10, 1042. https://doi.org/10.3390/w10081042
Ye M, Li R, Tu W, Liao J, Pu X. Quantitative Evaluation Method for Landscape Color of Water with Suspended Sediment. Water. 2018; 10(8):1042. https://doi.org/10.3390/w10081042
Chicago/Turabian StyleYe, Mao, Ran Li, Weimin Tu, Jialing Liao, and Xunchi Pu. 2018. "Quantitative Evaluation Method for Landscape Color of Water with Suspended Sediment" Water 10, no. 8: 1042. https://doi.org/10.3390/w10081042
APA StyleYe, M., Li, R., Tu, W., Liao, J., & Pu, X. (2018). Quantitative Evaluation Method for Landscape Color of Water with Suspended Sediment. Water, 10(8), 1042. https://doi.org/10.3390/w10081042