Assessing Water Scarcity Using the Water Poverty Index (WPI) in Golestan Province of Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Poverty Index
- Resources (R): the amount of water available, by considering the seasonal and inter-annual variability of water availability and quality;
- Access (A): how well provisioned the population is, including domestic and agricultural uses;
- Capacity (C): the ability to manage water resources, based on education, health, and access to financing;
- Use (U): the use of water and its contribution to the economy;
- Environment (E): which attempts to capture the environmental impact of water management to ensure the long-term ecological integrity.
2.3. WPI Components and Normalization Approaches
2.3.1. Resources
Availability
Variability
2.3.2. Access (Ai)
2.3.3. Capacity (Ci)
2.3.4. Use (Ui)
2.3.5. Environment (Ei)
2.4. Aggregation
2.5. Sensitivity Analysis
3. Results
3.1. WPI Components
3.1.1. Resources
3.1.2. Access
3.1.3. Capacity
3.1.4. Use
3.1.5. Environment
3.2. WPI Aggregation
3.3. Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Pisani, E. The Management of Water as an Essential and Rare Commodity. Water Int. 1995, 20, 29–31. [Google Scholar] [CrossRef]
- Rijsberman, F.R. Water scarcity: Fact or fiction? Agric. Water Manag. 2006, 80, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Biswas, A.K. Water for sustainable development in the 21st century: A global perspective. Int. J. Water Resour. Dev. 1991, 7, 219–224. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Abu-Zeid, M.A. Water and sustainable development: The vision for world water, life and the environment1. This paper is based on a keynote address made at the International Conference on Water and Sustainable Development, Paris, 19 March 1998. Water Policy 1998, 1, 9–19. [Google Scholar] [CrossRef]
- Kim, J.H.; Keane, T.D.; Bernard, E.A. Fragmented local governance and water resource management outcomes. J. Environ. Manag. 2015, 150, 378–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Döll, P.; Trautmann, T.; Gerten, D.; Schmied, H.M.; Ostberg, S.; Saaed, F.; Schleussner, C.F. Risks for the global freshwater system at 1.5 °C and 2 °C global warming. Environ. Res. Lett. 2018, 13, 44038. [Google Scholar] [CrossRef]
- Gleick, P.H. Water and conflict: Fresh water resources and international security. Int. Secur. 1993, 18, 79–112. [Google Scholar] [CrossRef]
- Lonergan, S.C. Water and conflict: Rhetoric and reality. In Environmental Conflict; Routledge: Abingdon, UK, 2018; pp. 109–124. ISBN 978-0230289185. [Google Scholar]
- Wolf, A.T. waterways. In Environmental Change, Adaptation, and Security; Springer: Dordrecht, The Netherlands, 1999; pp. 251–265. ISBN 978-94-010-5832-2. [Google Scholar]
- De Stefano, L.; Petersen-Perlman, J.D.; Sproles, E.A.; Eynard, J.; Wolf, A.T. Assessment of transboundary river basins for potential hydro-political tensions. Glob. Environ. Chang. 2017, 45, 35–46. [Google Scholar] [CrossRef]
- Feitelson, E.; Tubi, A. A main driver or an intermediate variable? Climate change, water and security in the Middle East. Glob. Environ. Chang. 2017, 44, 39–48. [Google Scholar] [CrossRef]
- Feitelson, E.; Chenoweth, J. Water poverty: Towards a meaningful indicator. Water Policy 2002, 4, 263–281. [Google Scholar] [CrossRef]
- Brown, A.; Matlock, M.D. A review of water scarcity indices and methodologies. White Pap. 2011, 106, 1–19. [Google Scholar]
- Falkenmark, M. The Massive Water Scarcity Now Threatening Africa: Why Isn’t It Being Addressed? Ambio 1989, 18, 112–118. [Google Scholar] [CrossRef]
- Ohlsson, L.; Appelgren, B. Water and Social Resource Scarcity; FAO (Food and Agricultural Organization) Issue Paper; FAO: Rome, Italy, 1998. [Google Scholar]
- Yang, H.; Reichert, P.; Abbaspour, K.C.; Zehnder, A.J.B. A water resources threshold and its implications for food security. Environ. Sci. Technol. 2003, 37, 3048–3054. [Google Scholar] [CrossRef] [PubMed]
- Raskin, P.; Gleick, P.; Kirshen, P.; Pontius, G.; Strzepek, K. Water Futures: Assessment of Long-Range Patterns and Problems. Comprehensive Assessment of the Freshwater Resources of the World; SEI: Boston, MA, USA, 1997. [Google Scholar]
- Chaves, H.M.L.; Alipaz, S. An integrated indicator based on basin hydrology, environment, life, and policy: The watershed sustainability index. Water Resour. Manag. 2007, 21, 883–895. [Google Scholar] [CrossRef]
- McNulty, S.G.; Sun, G.; Myers, J.A.M.; Cohen, E.C.; Caldwell, P. Robbing Peter to pay Paul: Tradeoffs between ecosystem carbon sequestration and water yield. In Proceedings of the Environmental Water Resources Institute Meeting, Madison, WI, USA, 23–27 August 2010; pp. 103–114. [Google Scholar]
- Asheesh, M. Allocating gaps of shared wáter resources (scarcity index): Case study on Palestine-Israel. In Water Resources in the Middle East; Springer: Heidelberg, Germany, 2007; pp. 241–248. ISBN 978-3-540-69508-0. [Google Scholar]
- Smakthin, V.; Revenga, C.; Doll, P. Taking into Account Environmental Water Requirements; International Water Management Institute (IWMI), Comprehensive Assessment Secretariat: Colombo, Sri Lanka, 2004. [Google Scholar]
- Pfister, S.; Koehler, A.; Hellweg, S. Assessing the Environmental Impacts of Freshwater Consumption in LCA. Environ. Sci. Technol. 2009, 43, 4098–4104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savenije, H.H.G. Water scarcity indicators; the deception of the numbers. Phys. Chem. Earth Part B 2000, 25, 199–204. [Google Scholar] [CrossRef]
- Ye, Q.; Li, Y.; Zhuo, L.; Zhang, W.; Xiong, W.; Wang, C.; Wang, P. Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China. Water Res. 2018, 129, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Chapagain, A.K.; Hoekstra, A.Y. The global component of freshwater demand and supply: An assessment of virtual water flows between nations as a result of trade in agricultural and industrial products. Water Int. 2008, 33, 19–32. [Google Scholar] [CrossRef]
- McCaffrey, S.C. A human right to water: Domestic and international implications. Geo. Int. Envtl. L. Rev. 1992, 5, 1. [Google Scholar]
- Pietrucha-Urbanik, K. Assessing the Costs of Losses Incurred as a Result of Failure BT—Dependability Engineering and Complex Systems; Springer International Publishing: Wrocław, Poland, 2016; pp. 355–362. [Google Scholar]
- Pietrucha-Urbanik, K.; Żelazko, A. Approaches to Assess Water Distribution Failure. Period. Polytech. Civ. Eng. 2017, 61. [Google Scholar] [CrossRef]
- Lawrence, P.R.; Meigh, J.; Sullivan, C. The water poverty index: An international comparison. Nat. Resour. Forum 2003, 27, 189–199. [Google Scholar] [CrossRef]
- Ohlsson, L.; Turton, A.R. The Turning of a Screw: Social Resource Scarcity as a Bottle-Neck in Adaptation to Water Scarcity; School of Oriental and African Studies Water Study Group, University of London: London, UK, 1999. [Google Scholar]
- Gallopín, G.C. Linkages between vulnerability, resilience, and adaptive capacity. Glob. Environ. Chang. 2006, 16, 293–303. [Google Scholar] [CrossRef]
- Oh Isson, L. Water conflicts and social resource scarcity. Phys. Chem. Earth Part B 2000, 25, 213–220. [Google Scholar] [CrossRef]
- Salameh, E. Redefining the water poverty index. Water Int. 2000, 25, 469–473. [Google Scholar] [CrossRef]
- Sullivan, C.A.; Meigh, J.R.; Simon, S.; Lawrence, P.; Calow, R.C.; Mckenzie, A.A.; Acreman, M.C.; Moore, R.V. The Development of a Water Poverty Index: A Feasibility Study; Centre for Ecology and Hydrology/Department for International Development: Wallingford, UK, 2000. [Google Scholar]
- Garriga, R.G.; Foguet, A.P. Improved method to calculate a water poverty index at local scale. J. Environ. Eng. 2010, 136, 1287–1298. [Google Scholar] [CrossRef]
- Pérez-Foguet, A.; Giné Garriga, R. Analyzing Water Poverty in Basins. Water Resour. Manag. 2011, 25, 3595. [Google Scholar] [CrossRef]
- Molle, F.; Mollinga, P. Water poverty indicators: Conceptual problems and policy issues. Water Policy 2003, 5, 529–544. [Google Scholar] [CrossRef]
- Sullivan, C.A.; Meigh, J. Integration of the biophysical and social sciences using an indicator approach: Addressing water problems at different scales. Water Resour. Manag. 2007, 21, 111–128. [Google Scholar] [CrossRef]
- Shirdeli, A. Evaluation of the water resources sustainability in Iran and Ghareghom watershed by international indices in 1404 vision. Water Manag. Arid Lands 2014, 1, 53–61. [Google Scholar]
- Golestan Province Governorship. Territorial Planning of Golestan Provine, Iran; Golestan Province Governorship Publication: Gorgan, Iran, 2016. [Google Scholar]
- Jafari Shalamzari, M.; Sheikh, V.B.; Sadoddin, A.; Abedi Sarvestani, A. Public Perception and Acceptability toward Domestic Rainwater Harvesting in Golestan, Limits to Up-Scaling. Ecopersia 2016, 4, 1437–1454. [Google Scholar] [CrossRef]
- Zehtabian, G.; Khosravi, H.; Ghodsi, M. High Demand in a Land of Water Scarcity: Iran BT–Water and Sustainability in Arid Regions: Bridging the Gap between Physical and Social Sciences; Springer: Dordrecht, The Netherlands, 2010; pp. 75–86. ISBN 978-90-481-2776-4. [Google Scholar]
- Madani, K. Water management in Iran: What is causing the looming crisis? J. Environ. Stud. Sci. 2014, 4, 315–328. [Google Scholar] [CrossRef]
- Ardakanian, R. Overview of water management in Iran. In Water Conservation, Reuse, and Recycling, Proceeding of an Iranian American Workshop; The National Academies Press: Washington, DC, USA, 2005; pp. 153–172. [Google Scholar]
- Sullivan, C. Calculating a water poverty index. World Dev. 2002, 30, 1195–1210. [Google Scholar] [CrossRef]
- Faraj Zadeh, M.; Servati, M.R.; Taheri, V. Analysis and zonation of geomorpholocal hazards in Golestan Province. Quaterly J. Nat. Geogr. 2011, 4, 45–62. [Google Scholar]
- Sullivan, C.A.; Meigh, J.R.; Giacomello, A.M. The Water Poverty Index: Development and application at the community scale. Nat. Resour. Forum 2003, 27, 189–199. [Google Scholar] [CrossRef]
- Choramin, M.; Safaei, A.; Khajavi, S.; Hamid, H.; Abozari, S. Analyzing and studding chemical water quality parameters and its changes on the base of Schuler, Wilcox and Piper diagrams (project: Bahamanshir River). WALIA J. 2015, 31, 22–27. [Google Scholar]
- Manandhar, S.; Pandey, V.P.; Kazama, F. Application of water poverty index (WPI) in Nepalese context: A case study of Kali Gandaki River Basin (KGRB). Water Resour. Manag. 2012, 26, 89–107. [Google Scholar] [CrossRef]
- Babel, M.S.; Wahid, S.M. Freshwater under Threat South Asia: Vulnerability Assessment of Freshwater Resources to Environmental Change: Ganges-Brahmaputra-Meghna River Basin, Helmand River Basin, Indus River Basin; UNEP (United Nations Environment Programme): Nairobi, Kenya, 2009; ISBN 9280729497. [Google Scholar]
- Van Ty, T.; Sunada, K.; Ichikawa, Y.; Oishi, S. Evaluation of the state of water resources using Modified Water Poverty Index: A case study in the Srepok River basin, Vietnam–Cambodia. Int. J. River Basin Manag. 2010, 8, 305–317. [Google Scholar] [CrossRef]
- Komnenic, V.; Ahlers, R.; Van Der Zaag, P. Assessing the usefulness of the water poverty index by applying it to a special case: Can one be water poor with high levels of access? Phys. Chem. Earth Parts A/B/C 2009, 34, 219–224. [Google Scholar] [CrossRef]
- Sullivan, C.; Meigh, J.; Lawrence, P. Application of the Water Poverty Index at different scales: A cautionary tale. Water Int. 2006, 31, 412–426. [Google Scholar] [CrossRef]
- Al-Jasser, A.O. Chlorine decay in drinking-water transmission and distribution systems: Pipe service age effect. Water Res. 2007, 41, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Esrey, S.A.; Habicht, J.-P. Maternal literacy modifies the effect of toilets and piped water on infant survival in Malaysia. Am. J. Epidemiol. 1988, 127, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Hamouda, M.A.; El-Din, M.M.N.; Moursy, F.I. Vulnerability assessment of water resources systems in the Eastern Nile Basin. Water Resour. Manag. 2009, 23, 2697–2725. [Google Scholar] [CrossRef]
- Hanjra, M.A.; Ferede, T.; Gutta, D.G. Pathways to breaking the poverty trap in Ethiopia: Investments in agricultural water, education, and markets. Agric. Water Manag. 2009, 96, 1596–1604. [Google Scholar] [CrossRef]
- Renwick, M.E.; Archibald, S.O. Demand side management policies for residential water use: Who bears the conservation burden? Land Econ. 1998, 343–359. [Google Scholar] [CrossRef]
- Abad, J.R.S.; Khosravi, H.; Alamdarlou, E.H. Assessment the effects of land use changes on soil physicochemical properties in Jafarabad of Golestan province, Iran. Bull. Environ. Pharmacol. Life Sci. 2014, 3, 296–300. [Google Scholar]
- Akbari, M.; Ownegh, M.; Asgari, H.R.; Sadoddin, A.; Khosravi, H. Desertification risk assessment and management program. Glob. J. Environ. Sci. Manag. 2016, 2, 365. [Google Scholar] [CrossRef]
- Akbari, M.; Ownegh, M.; Asgari, H.; Sadoddin, A.; Khosravi, H. Design and Development of Early Warning System for Desertification and Land Degradation. Environ. Resour. Res. 2016, 4, 111–130. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Zhou, D.Q. Weighting and aggregation in composite indicator construction: A multiplicative optimization approach. Soc. Indic. Res. 2010, 96, 169–181. [Google Scholar] [CrossRef]
WPI Component | Indicator Used | Year | Scale | Source |
---|---|---|---|---|
Resources (Ri) | -Per-capita annual water resources (R1) -Precipitation Coefficient of Variation (CV) (R2) | 2001–2014 1987–2017 | Catchment/District | Regional Water Company of Golestan Province WorldClim |
Access (Ai) | -Access to clean water as percent of the population having piped water supply (A1) -Access to sanitation as a percent of the population with improved sanitation services (A2) | 2016 | District | Golestan Province Territorial Planning |
Capacity (Ci) | -Literacy Rate (C1) -% of the population with access to health centers (C2) -% of the population with access to electricity (C3) -% of households receiving a pension, remittances, or wages (C4) | 2016 | District | Golestan Province Territorial Planning, National Population, and Housing Census Statistics Yearbook of the Ministry of Cooperatives, Labor, and Social Welfare |
Use (Ui) | -Domestic water consumption rate (U1) -Livestock water use, based on livestock holdings and standard water needs (U2) -Agricultural water use expressed as the proportion of irrigated land to the total cultivated area (U3) -Industrial water use (U4) | 2014 | District | Rural and Urban Water and Wastewater Authority Agricultural Jihad Organization |
Environment (Ei) | -Risk of desertification (E1) -Risk of erosion (E2) -Risk of flooding (E3) | 2015 | District | Faraj Zadeh et al. [48] |
Alternative | Relative Weight | MWPI | ||||
---|---|---|---|---|---|---|
R | A | C | U | E | ||
1 | 1 | 2 | 2 | 2 | 1 | 30.4 |
2 | 1 | 2 | 2 | 3 | 1 | 27.5 |
3 | 1 | 2 | 2 | 1 | 1 | 27.3 |
4 | 1 | 2 | 2 | 1 | 2 | 29.2 |
Districts | Precipitation Coefficient of Variation (%) |
---|---|
Aliabad | 60.1 |
Aq Qala | 49.2 |
Azadshahr | 66.4 |
Bandar Gaz | 42.9 |
Bandar Turkmen | 44.2 |
Galikesh | 67.4 |
Gomishan | 44.1 |
Gonbade Kavus | 61.2 |
Gorgan | 56.3 |
Kalaleh | 66.6 |
Kordkouy | 53.7 |
Maraveh Tappeh | 64.6 |
Minoudasht | 66.8 |
Ramian | 63.2 |
Districts | Total Population | %Population with Access to Main Water Supply (A1) | %Population with Access to Improved Sanitation Services (A2) |
---|---|---|---|
Aliabad | 140,709 | 99.0 | - |
Aq Qala | 132,733 | 99.5 | - |
Azadshahr | 96,803 | 99.6 | - |
Bandar Gaz | 46,130 | 100.0 | 16.2 |
Bandar Turkmen | 79,978 | 99.6 | 5.7 |
Galikesh | 63,173 | 93.4 | - |
Gomishan | 68,773 | 98.9 | - |
Gonbade Kavus | 348,744 | 99.6 | - |
Gorgan | 480,541 | 99.3 | 7.4 |
Kalaleh | 117,319 | 97.9 | - |
Kordkouy | 71,270 | 100.0 | 8.5 |
Maraveh Tappeh | 60,953 | 96.8 | - |
Minoudasht | 75,483 | 94.5 | - |
Ramian | 86,210 | 98.4 | - |
Districts | Literacy Rate (%) (C1) | Number of Health Centers (C2) | Access to Electricity (%) (C3) | Households Receiving Funds (%) (C4) |
---|---|---|---|---|
Aliabad | 88.0 | 22 | 72.0 | 16.1 |
Aq Qala | 84.7 | 13 | 73.0 | 11.0 |
Azadshahr | 87.8 | 11 | 70.6 | 15.5 |
Bandar Gaz | 91.6 | 7 | 81.1 | 16.9 |
Bandar Turkmen | 86.0 | 7 | 70.8 | 11.0 |
Galikesh | 87.5 | 8 | 69.3 | 15.7 |
Gomishan | 84.8 | 7 | 58.1 | 9.3 |
Gonbade Kavus | 86.5 | 33 | 96.7 | 11.6 |
Gorgan | 90.6 | 57 | 92.7 | 9.4 |
Kalaleh | 85.8 | 14 | 69.7 | 14.4 |
Kordkouy | 91.4 | 10 | 92.7 | 22.8 |
Maraveh Tappeh | 83.5 | 6 | 46.7 | 13.8 |
Minoudasht | 88.4 | 7 | 74.2 | 19.1 |
Ramian | 87.2 | 10 | 66.1 | 19.4 |
Districts | Water Use (× 103 m3) | Agricultural Water Use (U3) | ||
---|---|---|---|---|
Domestic (U1) | Livestock (U2) | Industrial (U4) | ||
Aliabad | 3289.0 | 657.1 | 145.0 | 2.2 |
Aq Qala | 3792.6 | 1186.4 | 217.0 | 0.5 |
Azadshahr | 1603.9 | 694.8 | 112.0 | 0.8 |
Bandar Gaz | 1505.2 | 385.7 | 39.0 | 0.6 |
Bandar Turkmen | 876.6 | 259.7 | 473.0 | 0.3 |
Galikesh | 1669.3 | 304.8 | 19.0 | 0.7 |
Gomishan | 2115.4 | 949.0 | 160.0 | 0.0 |
Gonbade Kavus | 5163.2 | 3537.1 | 167.0 | 0.4 |
Gorgan | 6321.2 | 1611.9 | 2688.0 | 3.5 |
Kalaleh | 2595.0 | 1203.9 | 24.0 | 2.2 |
Kordkouy | 2194.1 | 311.1 | 189.0 | 0.7 |
Maraveh Tappeh | 1146.2 | 2030.0 | 28.0 | 0.1 |
Minoudasht | 1875.5 | 828.9 | 266.0 | 0.2 |
Ramian | 2387.0 | 551.8 | 14.0 | 2.3 |
District | Risk of Desertification (E1) | Risk of Erosion (E2) | Risk of Flooding (E3) |
---|---|---|---|
Aliabad | 1.0 | 2.3 | 4.3 |
Aq Qala | 3.5 | 1.1 | 2.0 |
Azadshahr | 1.0 | 2.8 | 4.1 |
Bandar Gaz | 1.0 | 1.6 | 1.1 |
Bandar Turkmen | 1.0 | 1.0 | 1.4 |
Galikesh | 1.0 | 2.8 | 1.0 |
Gomishan | 4.1 | 1.0 | 1.0 |
Gonbade Kavus | 3.6 | 2.4 | 4.5 |
Gorgan | 1.0 | 2.4 | 2.3 |
Kalaleh | 2.3 | 2.8 | 3.2 |
Kordkouy | 1.0 | 2.1 | 2.3 |
Maraveh Tappeh | 3.0 | 3.3 | 4.4 |
Minoudasht | 1.0 | 2.9 | 1.0 |
Ramian | 1.0 | 2.4 | 1.0 |
WPI Components | Resources | Access | Capacity | Use | Environment |
---|---|---|---|---|---|
Access | 0.04 (0.89) | ||||
Capacity | −0.42 (0.13) | 0.10 (0.72) | |||
Use | −0.06 (0.82) | 0.01 (0.96) | 0.075 (0.00) | ||
Environment | −0.07 (0.79) | 0.46 (0.09) | −0.04 (0.88) | −0.29 (0.31) | |
WPI | 0.34 (0.22) | 0.48 (0.07) | 0.55 (0.03) | 0.67 (0.00) | 0.29 (0.31) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jafari Shalamzari, M.; Zhang, W. Assessing Water Scarcity Using the Water Poverty Index (WPI) in Golestan Province of Iran. Water 2018, 10, 1079. https://doi.org/10.3390/w10081079
Jafari Shalamzari M, Zhang W. Assessing Water Scarcity Using the Water Poverty Index (WPI) in Golestan Province of Iran. Water. 2018; 10(8):1079. https://doi.org/10.3390/w10081079
Chicago/Turabian StyleJafari Shalamzari, Masoud, and Wanchang Zhang. 2018. "Assessing Water Scarcity Using the Water Poverty Index (WPI) in Golestan Province of Iran" Water 10, no. 8: 1079. https://doi.org/10.3390/w10081079
APA StyleJafari Shalamzari, M., & Zhang, W. (2018). Assessing Water Scarcity Using the Water Poverty Index (WPI) in Golestan Province of Iran. Water, 10(8), 1079. https://doi.org/10.3390/w10081079