Comparison of the Roles of Optimizing Root Distribution and the Water Uptake Function in Simulating Water and Heat Fluxes within a Maize Agroecosystem
Abstract
:1. Introduction
- (1)
- To investigate the effects of the root distribution parameter, i.e., d50 and d95 calculated with root biomass and root length density on simulating water and heat fluxes between an underlying maize farmland surface and the atmosphere;
- (2)
- To compare improvements in performance of CoLM using optimized root distribution parameters and RWU schemes proposed by Zheng and Wang and their combined action;
- (3)
- To investigate the applicability of the revised CoLM with optimized RWU schemes to a maize farmland ecosystem.
2. Data and Methods
2.1. Site Description
2.2. Meteorological Conditions
2.3. LAI and VCF
2.4. Root Data
2.5. Validation Data
2.6. Model Description
2.6.1. Default RWU Parameterization Scheme for the Model
2.6.2. Optimization Method of RWU Function
2.6.3. Model Simulation Schemes
2.7. Statistical Analysis
3. Results
3.1. Effects of Optimized RWU Schemes on SWC at Different Depths
3.2. Effects of Optimized Root Distribution and RWU Function on Latent and Sensible Heat Flux Simulation
4. Discussion
5. Conclusions
- (1)
- Compared with RB, RLD was used to calculate more actual root distribution parameters which more effectively reflected soil water availability, and which increased model performance in simulating water and heat fluxes between the atmosphere and underlying surface of a maize agroecosystem.
- (2)
- The optimized root distribution parameters and the RWU function both improved simulation accuracies of SWC and sensible and latent heat fluxes in the years of little rainfall. Moreover, the combined roles of two optimization schemes in improving CoLM performance were significant during periods of continuous non-precipitation when maize has high demand for water to satisfy growth, but would be limited within a threshold of SWC and be inoperative outside this threshold.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dickinson, R.E.; Shaikh, M.; Bryant, R.; Graumlich, L. Interactive canopies for a climate model. J. Clim. 1998, 11, 2823–2836. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Laio, F.; D’Odorico, P.; Ridolfi, L. An analytical model to relate the vertical root distribution to climate and soil properties. Geophys. Res. Lett. 2006, 33, L18401. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, G.L. Modeling the dynamic root water uptake and its hydrological impact at the reserva Jaru site in Amazonia. J. Geophys. Res. 2007, 112, G04012. [Google Scholar] [CrossRef]
- Maayar, M.; Oliver, S. Crop model validation and sensitivity to climate change scenarios. Clim. Res. 2009, 39, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.B.; Canadell, J.; Ehleringer, J.R.; Mooney, H.A.; Sala, O.E.; Schulze, E.D. A global analysis of root distributions for terrestrial biomes. Oecologia 1996, 108, 389–411. [Google Scholar] [CrossRef] [PubMed]
- Bonan, G.B. A Land Surface Model (LSM Version 1.0) for Ecological, Hydrological, and Atmospheric Studies: Technical Description and User’s Guide; NCAR Technical Note, NCAR/TN-417+STR; National Center for Atmospheric Research: Boulder, CO, USA, 1996; p. 150. [Google Scholar]
- Snyder, P.K.; Delire, C.; Foley, J.A. Evaluating the influence of different vegetation biomes on the global climate. Clim. Dyn. 2004, 23, 279–302. [Google Scholar] [CrossRef]
- Levis, S.; Bonan, G.B.; Vertenstein, M.; Oleson, K. The Community Land Models Dynamic Global Vegetation Model (CLM-DGVM): Technical Description and User’s Guide; NCAR Technical Note, NCAR/TN-459+IA; National Center for Atmospheric Research: Boulder, CO, USA, 2004. [Google Scholar]
- Baker, I.T.; Prihodko, L.; Denning, A.S.; Goulden, M.; Miller, S.; Da Rocha, H.R. Seasonal drought stress in the Amazon: Reconciling models and observations. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.B. Global vegetation root distribution for land modeling. Bull. Am. Meteorol. Soc. 2001, 2, 525–530. [Google Scholar] [CrossRef]
- Schenk, H.J.; Jackson, R.B. The global biogeography of roots. Ecol. Monogr. 2002, 72, 311–328. [Google Scholar] [CrossRef]
- Ji, D.Y.; Dai, Y.J. The Common Land Model (CoLM) Technical Guide; College of Global Change and Earth System Science, Beijing Normal University: Beijing, China, 2010; 60p, Available online: http://globalchange.bnu.edu.cn/download/doc/CoLM/CoLM_Technical_Guide.pdf (accessed on 13 August 2018).
- Cai, F.; Ming, H.Q.; Zhu, X.Y.; Mi, N.; Zhao, X.L.; Xie, Y.B.; Zhang, Y.S. Comparison on simulation methods of maize root distribution. Chin. J. Ecol. 2015, 34, 582–588. [Google Scholar]
- Cai, F.; Ming, H.Q.; Mi, N.; Zhang, S.J.; Xie, Y.B.; Zhang, Y.S. Study of the effects of the root distribution on land-atmosphere water and heat flux exchanges based on CoLM: Corn field as a case. Acta Meteorol. Sin. 2015, 73, 566–576. [Google Scholar]
- Jing, C.Q.; Li, L.H.; Chen, X.; Luo, G.P. Comparison of root water uptake functions to simulate surface energy fluxes within a deep-rooted desert shrub ecosystem. Hydrol. Process. 2013, 28, 5436–5449. [Google Scholar] [CrossRef]
- Chen, P.S.; Cai, F.; Ji, R.P.; Xie, Y.B.; Shi, K.Q.; Yang, Y.; Zhang, H. Effects of drought stresses during different key growth periods on root growth of spring maize in Northeast China. Agric. Res. Arid Areas 2018, 35, 156–163. [Google Scholar]
- Lai, C.T.; Katul, G. The dynamic role of root-water uptake in coupling potential and actual transpiration. Adv. Water Resour. 2000, 23, 427–439. [Google Scholar] [CrossRef]
- Li, K.Y.; De Jong, R.; Coe, M.T.; Ramankutty, N. Root-water-uptake based upon a new water stress reduction and an asymptotic root distribution function. Earth Interact. 2006, 10. [Google Scholar] [CrossRef]
- Saleska, S.R.; Miller, S.D.; Matross, D.M.; Goulden, M.L.; Wofsy, S.C.; Da Rocha, H.R.; de Camargo, P.B.; Crill, P.; Daube, B.C.; de Freitas, H.C. Carbon in amazon forests: Unexpected seasonal fluxes and disturbance induced losses. Science 2003, 302, 1554–1557. [Google Scholar] [CrossRef] [PubMed]
- Li, L.H.; Wang, Y.P.; Yu, Q.; Pak, B.; Eamus, D.; Yan, J. Improving the responses of the Australian community land surface model (CABLE) to seasonal drought. J. Geophys. Res. 2012, 117, G04002. [Google Scholar] [CrossRef]
- Molz, F.J. Models of water transport in the soil-plant system: A review. Water Resour. Res. 1981, 17, 1245–1260. [Google Scholar] [CrossRef]
- Chandra, S.P.O.; Rai, A.K. Nonlinear root-water uptake model. J. Irrig. Drain. Eng. 1996, 122, 198–202. [Google Scholar]
- Skaggs, T.H.; Van Genuchten, M.T.; Shouse, P.J.; Poss, J.A. Macroscopic approaches to root water uptake as a function of water and salinity stress. Agric. Water Manag. 2006, 86, 140–149. [Google Scholar] [CrossRef]
- Li, L.H.; van der Tol, C.; Chen, X.; Jing, C.; Su, B.; Luo, G.; Tian, X. Representing the root water uptake process in the Common Land Model for better simulating the energy and water vapour fluxes in a Central Asian desert ecosystem. J. Hydrol. 2013, 502, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Cai, F.; Ming, H.Q.; Mi, N.; Xie, Y.B.; Zhang, Y.S. Comparison of Effects of Root Water Uptake Functions on Surface Water and Heat Fluxes Simulations within Corn Farmland Ecosystem over Northeast China. J. Irrig. Drain. Eng. 2017, 143, 04017074. [Google Scholar] [CrossRef]
- Wang, Y.P.; Law, R.M.; Pak, B. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 2010, 7, 2261–2282. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.; Lee, S.O.; Kwon, H. Understanding of the Common land model performance for water and energy fluxes in a farmland during the growing season in Korea. Hydrol. Process. 2010, 24, 1063–1071. [Google Scholar] [CrossRef]
- Li, L.H.; Vuichard, N.; Viovy, N.; Ciais, P.; Wang, T.; Ceschia, E.; Jans, W.; Wattenbach, M.; Béziat, P.; Gruenwald, T.; et al. Importance of crop varieties and management practices: Evaluation of a process-based model for simulating CO2 and H2O fluxes at five European maize (Zea mays L.) sites. Biogeosciences 2011, 8, 1721–1736. [Google Scholar] [CrossRef]
- Cai, F.; Zhou, G.S.; Ming, H.Q.; Li, R.P.; Zhang, G.; He, Q.J.; Duan, J.Q. A simulative study of effects of dynamic parameterization of surface albedo on land-atmosphere flux exchanges: A case study of rainfed maize field in northeast China. Acta Meteorol. Sin. 2012, 70, 1149–1164. [Google Scholar]
- Cai, F.; Ming, H.Q.; Ji, R.P.; Feng, R.; Mi, N.; Zhao, X.L.; Zhang, Y.S. Effects of maize canopy radiative transfer parameters optimization on simulating land-atmosphere flux exchanges. Adv. Earth Sci. 2014, 29, 598–607. [Google Scholar]
- Guan, J.H. Study on Characteristies of Root System Growth and Relationship between Root and Upland Parts of Maize; Inner Mongolia Agricultural University: Inner Mongolia, China, 2007. [Google Scholar]
- Liao, R.W.; Liu, J.M.; An, S.Q.; Niu, J.L.; Liang, H.; Ren, S.X.; Le, Z.Y.; Cao, Y.J.; Li, W.J. Monitor of corn root growth in soil based on minirhizotron technique. Trans. CSAE 2010, 26, 156–161. [Google Scholar]
- Falge, E.; Baldocchi, D.D.; Olson, R. Gap-filling strategies for long-term energy flux datasets. Agric. For. Meteorol. 2001, 107, 71–77. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. IPCC (2013) Climate Change. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Wu, Y.J.; Du, T.S.; Li, F.S.; Li, S.E.; Ding, R.S.; Tong, L. Quantification of maize water uptake from different layers and rootzones under alternate furrow irrigation using stable oxygen isotope. Agric. Water Manag. 2016, 168, 35–44. [Google Scholar] [CrossRef]
- Xu, H.; Li, Y.; Xu, G.Q.; Zou, T. Ecophysiological response and morphological adjustment of two Central Asian desert shrubs towards variation in summer precipitation. Plant Cell Environ. 2007, 30, 399–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, R.S.; Dawson, T.E.; Burgess, S.S.O.; Nepstad, D.C. Hydraulic redistribution in three Amazonian trees. Oecologia 2005, 145, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Oliveira, R.S.; Dawson, T.E.; Fung, L. Root functioning modifies seasonal climate. Proc. Natl. Acad. Sci. USA 2005, 102, 17576–17581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Symbol | Description | Value | Unit |
---|---|---|---|
Volumetric of soil water content (SWC) | m3 m−3 | ||
z | Soil depth | 0–3.43 | m |
Water extraction | m3 m−3 s−1 | ||
T | Actual transpiration | mm s−1 | |
Wt | The accumulates root resistance factor | 0–1 | |
D | soil moisture diffusivity | mm2 s−1 | |
K | hydraulic conductivity | mm s−1 | |
potential transpiration | mm s−1 | ||
Soil water availability within layer i | 0–1 | - | |
Root fraction within soil layer i | 0–1 | ||
Soil water availability | 0–1 | ||
Soil water availability factor in the wettest layer of the root zone | 0–1 | ||
c | A dimensionless shape-parameter | ||
i | Soil layer | 1–10 | |
d50 | The depth above which 50% of all roots were located | 0.157 | m |
d95 | The depth above which 95% of all roots were located | 0.808 | m |
Soil water potential at wilting point within soil layer i | −1.5 × 105 | mm | |
Saturated soil water potential | mm | ||
Soil water potential | mm | ||
Redefined Wt | 0–1 | ||
Wc | A threshold used in RWUFZ | ||
Wx | A threshold used in RWUFZ | ||
k | A tunable parameter used in RWUFZ | 4 | |
A variable to determine the water uptake allocation | 0–1 |
Time | Statistics | M0 | M1 | M2 | M3 | M0 | M1 | M2 | M3 |
---|---|---|---|---|---|---|---|---|---|
H | LE | ||||||||
2007 | R | 0.63 | 0.66 | 0.64 | 0.66 | 0.77 | 0.79 | 0.80 | 0.80 |
RMSE | 57.6 | 52.1 | 50.9 | 49.6 | 82.0 | 79.4 | 78.8 | 79.0 | |
NS | 0.02 | 0.20 | 0.24 | 0.27 | 0.46 | 0.51 | 0.52 | 0.52 | |
2008 | R | 0.76 | 0.75 | 0.74 | 0.74 | 0.76 | 0.77 | 0.77 | 0.77 |
RMSE | 47.3 | 47.3 | 46.8 | 47.3 | 82.1 | 81.1 | 81.7 | 81.7 | |
NS | 0.43 | 0.40 | 0.40 | 0.38 | 0.48 | 0.49 | 0.48 | 0.48 | |
2009 | R | 0.50 | 0.50 | 0.50 | 0.52 | 0.25 | 0.32 | 0.38 | 0.40 |
RMSE | 87.0 | 77.5 | 68.4 | 64.8 | 145.5 | 138.0 | 138.0 | 136.6 | |
NS | −1.78 | −1.12 | −0.45 | −0.43 | −0.52 | −0.45 | −0.45 | −0.45 | |
2007–2009 | R | 0.58 | 0.60 | 0.61 | 0.62 | 0.59 | 0.62 | 0.64 | 0.64 |
RMSE | 69.3 | 62.9 | 57.6 | 55.7 | 84.7 | 82.7 | 82.7 | 82.9 | |
NS | −0.45 | −0.17 | 0.06 | 0.08 | 0.14 | 0.18 | 0.19 | 0.18 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, F.; Zhang, Y.; Ming, H.; Mi, N.; Zhang, S.; Zhang, H.; Xie, Y.; Zhao, X. Comparison of the Roles of Optimizing Root Distribution and the Water Uptake Function in Simulating Water and Heat Fluxes within a Maize Agroecosystem. Water 2018, 10, 1090. https://doi.org/10.3390/w10081090
Cai F, Zhang Y, Ming H, Mi N, Zhang S, Zhang H, Xie Y, Zhao X. Comparison of the Roles of Optimizing Root Distribution and the Water Uptake Function in Simulating Water and Heat Fluxes within a Maize Agroecosystem. Water. 2018; 10(8):1090. https://doi.org/10.3390/w10081090
Chicago/Turabian StyleCai, Fu, Yushu Zhang, Huiqing Ming, Na Mi, Shujie Zhang, Hui Zhang, Yanbing Xie, and Xianli Zhao. 2018. "Comparison of the Roles of Optimizing Root Distribution and the Water Uptake Function in Simulating Water and Heat Fluxes within a Maize Agroecosystem" Water 10, no. 8: 1090. https://doi.org/10.3390/w10081090
APA StyleCai, F., Zhang, Y., Ming, H., Mi, N., Zhang, S., Zhang, H., Xie, Y., & Zhao, X. (2018). Comparison of the Roles of Optimizing Root Distribution and the Water Uptake Function in Simulating Water and Heat Fluxes within a Maize Agroecosystem. Water, 10(8), 1090. https://doi.org/10.3390/w10081090