Joint Operation of Surface Water and Groundwater Reservoirs to Address Water Conflicts in Arid Regions: An Integrated Modeling Study
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Hydrological Model
2.3. The Huangzangsi Reservoir
2.4. Numerical Modeling Experiments
3. Results and Discussion
3.1. Water Balance of the Reservoir
3.2. Water Balance at the Middle and Lower HRB
3.3. Impacts of the Joint Operation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Doll, P.; Siebert, S. Global modeling of irrigation water requirements. Water Resour. Res. 2002, 38, 8-1–8-10. [Google Scholar] [CrossRef]
- Jagermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W. Water savings potentials of irrigation systems: Global simulation of processes and linkages. Hydrol. Earth Syst. Sc. 2015, 19, 3073–3091. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Dheeravath, V.; Li, Y.J.; Velpuri, M.; Gumma, M.; Gangalakunta, O.R.P.; Turral, H.; Cai, X.L.; et al. Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium. Int. J. Remote Sens. 2009, 30, 3679–3733. [Google Scholar] [CrossRef]
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Doll, P.; Portmann, F.T. Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef] [Green Version]
- Garrido, A.; Martinez-Santos, P.; Llamas, M.R. Groundwater irrigation and its implications for water policy in semiarid countries: The spanish experience. Hydrogeol. J. 2006, 14, 340–349. [Google Scholar] [CrossRef]
- Hu, X.L.; Shi, L.S.; Zeng, J.C.; Yang, J.Z.; Zha, Y.Y.; Yao, Y.J.; Cao, G.L. Estimation of actual irrigation amount and its impact on groundwater depletion: A case study in the Hebei plain, China. J. Hydrol. 2016, 543, 433–449. [Google Scholar] [CrossRef]
- Leng, G.Y.; Huang, M.Y.; Tang, Q.H.; Gao, H.L.; Leung, L.R. Modeling the effects of groundwater-fed irrigation on terrestrial hydrology over the conterminous united states. J. Hydrometeorol. 2014, 15, 957–972. [Google Scholar] [CrossRef]
- Velazquez, M.P.; Jenkins, M.W.; Lund, J.R. Economic values for conjunctive use and water banking in southern California. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef] [Green Version]
- Kundzewicz, Z.W.; Doll, P. Will groundwater ease freshwater stress under climate change? Hydrolog. Sci. J. 2009, 54, 665–675. [Google Scholar] [CrossRef] [Green Version]
- Scanlon, B.R.; Reedy, R.C.; Faunt, C.C.; Pool, D.; Uhlman, K. Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona. Environ. Res. Lett. 2016, 11. [Google Scholar] [CrossRef]
- Murray-Darling Basin Commission (MDBC). Groundwater: A Resource for the Future. Available online: https://www.mdba.gov.au/sites/default/files/archived/mdbc-GW reports/2173_GW_a_resource_for_the_future.pdf (accessed on 12 August 2018).
- Castle, S.L.; Thomas, B.F.; Reager, J.T.; Rodell, M.; Swenson, S.C.; Famiglietti, J.S. Groundwater depletion during drought threatens future water security of the Colorado River Basin. Geophys. Res. Lett. 2014, 41, 5904–5911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuchs, E.H.; Carroll, K.C.; King, J.P. Quantifying groundwater resilience through conjunctive use for irrigated agriculture in a constrained aquifer system. J. Hydrol. 2018. [Google Scholar] [CrossRef]
- Nikoo, M.R.; Karimi, A.; Kerachian, R.; Poorsepahy-Samian, H.; Daneshmand, F. Rules for optimal operation of reservoir-river-groundwater systems considering water quality targets: Application of M5P model. Water Resour. Manag. 2013, 27, 2771–2784. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.; Ge, Y.; Li, H.; Han, F.; Hu, X.; Tian, W.; Tian, Y.; Pan, X.; Nian, Y.; et al. Hydrological cycle in the heihe river basin and its implication for water resource management in endorheic basins. J. Geophys. Res. Atmos. 2018, 123, 890–914. [Google Scholar] [CrossRef]
- Gao, G.; Shen, Q.; Zhang, Y.; Pan, N.; Ma, Y.; Jiang, X.; Fu, B. Determining spatio-temporal variations of ecological water consumption by natural oases for sustainable water resources allocation in a hyper-arid endorheic basin. J. Clean Prod. 2018, 185, 1–13. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.Z.; Zhang, X.C.; Zheng, F.L. Impacts of land use change and climate variability on hydrology in an agricultural catchment on the loess plateau of China. J. Hydrol. 2009, 377, 35–42. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, D.; Sun, Y.; Liu, X.; Wang, N.; Savenije, H.H.G. Water demand management: A case study of the Heihe River Basin in China. Phys. Chem. Earth Parts A/B/C 2005, 30, 408–419. [Google Scholar] [CrossRef]
- Wu, X.; Zheng, Y.; Wu, B.; Tian, Y.; Han, F.; Zheng, C.M. Optimizing conjunctive use of surface water and groundwater for irrigation to address human-nature water conflicts: A surrogate modeling approach. Agric. Water Manag. 2016, 163, 380–392. [Google Scholar] [CrossRef]
- Tian, Y.; Zheng, Y.; Wu, B.; Wu, X.; Liu, J.; Zheng, C.M. Modeling surface water-groundwater interaction in arid and semi-arid regions with intensive agriculture. Environ. Modell. Softw. 2015, 63, 170–184. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, H.L.; Lu, M.F. Analysis of water consumption using a regional input–output model: Model development and application to Zhangye City, Northwestern China. J. Arid Environ. 2009, 73, 894–900. [Google Scholar] [CrossRef]
- Markstrom, S.L.; Niswonger, R.G.; Regan, R.S.; Prudic, D.E.; Barlow, P.M. Gsflow—Coupled Groundewater and Surfaceewater Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (prms) and the Modular Groundewater Flow Model (modflow-2005); USGS: Reston, VA, USA, 2008; p. 240. [Google Scholar]
- Niswonger, R.G.; Prudic, D.E.; Regan, R.S. Documentation of the Unsaturated-Zone Flow (UZF1) Package for Modeling Unsaturated flow Between the Land Surface and the Water Table with Modflow-2005; USGS: Reston, VA, USA, 2006; p. 62. [Google Scholar]
- Niswonger, R.G.; Prudic, D.E. Documentation of the Streamflow-Routing (SFR2) Package to Include Unsaturated Flow Beneath Streams—A Modification to SFR1; USGS: Reston, VA, USA, 2005. [Google Scholar]
- Merritt, M.L.; Konikow, L.F. Documentation of a Computer Program to Simulate Lake-Aquifer Interaction Using the Modflow Ground Water Flow Model and the MOC3D Solute-Transport Model; USGS: Reston, VA, USA, 2000. [Google Scholar]
- Tian, Y.; Zheng, Y.; Zheng, C.M.; Xiao, H.L.; Fan, W.J.; Zou, S.B.; Wu, B.; Yao, Y.Y.; Zhang, A.J.; Liu, J. Exploring scale-dependent ecohydrological responses in a large endorheic river basin through integrated surface water-groundwater modeling. Water Resour. Res. 2015, 51, 4065–4085. [Google Scholar] [CrossRef] [Green Version]
- Heihe River Basin Authority. Environmental impact assessment report for the Huangzangsi Reservoir on the Heihe River. Available online: http://www.zhb.gov.cn/gkml/hbb/spwj1/201507/t20150717_306844.htm (accessed on 15 July 2018).
- Wu, B.; Zheng, Y.; Wu, X.; Tian, Y.; Han, F.; Liu, J.; Zheng, C.M. Optimizing water resources management in large river basins with integrated surface water-groundwater modeling: A surrogate-based approach. Water Resour. Res. 2015, 51, 2153–2173. [Google Scholar] [CrossRef] [Green Version]
Hydrological Characteristics | Value |
---|---|
Basin area above dam site | 7648 km2 |
Annual inflow | 1285 × 106 m3 |
Averaged annual discharge | 40.7 m3/s |
Maximum measured discharge | 603 m3/s |
Physical Characteristics | |
Maximum water level | 2629 m (elevation) |
Normal water level | 2628 m (elevation) |
Flood control water level | 2628 m (elevation) |
Dead storage level | 2580 m (elevation) |
Water surface area at normal water level | 11.01 km2 |
Length of reservoir at normal level | 13.5 km |
Total storage | 406 × 106 m3 |
Dead storage | 61 × 106 m3 |
Normal storage | 356 × 106 m3 |
Maximum discharge capability | 2775 m3/s |
Month | Water Demands | ||
---|---|---|---|
Surface Water for Irrigation (106 m3) | Environmental Flow (106 m3) | Base Flow (106 m3) | |
January | 0 | 0 | 6 |
February | 0 | 0 | 6 |
March | 22 | 0 | 9 |
April | 72 | 140 | 0 |
May | 183 | 0 | 0 |
June | 379 | 0 | 0 |
July | 305 | 82 | 0 |
August | 344 | 82 | 0 |
September | 101 | 202 | 0 |
October | 101 | 0 | 0 |
November | 219 | 0 | 0 |
December | 0 | 0 | 9 |
Total | 1727 | 506 | 30 |
Condition | Operational Decision |
---|---|
If storage level > Normal Curve (NC) | Increase water release to keep storage level = NC. |
If Critical Curve (CC) < storage level ≤ NC | Perform environmental flow regulation if required. Regulate release to meet agriculture water and base flow demands. |
If storage level ≤ CC | Stops release to keep storage level = CC. |
A0 | A1 | A2 | A3 | ||||
---|---|---|---|---|---|---|---|
Period | Discharge (m3/s) | Period | Discharge (m3/s) | Period | Discharge (m3/s) | Period | Discharge (m3/s) |
N/A | N/A | April 1–5 | 324 | April 1–10 | 162 | April 1–15 | 108 |
July 10–12 | 318 | July 10–15 | 159 | July 10–18 | 106 | ||
August 10–12 | 315 | August 10–15 | 158 | August 10–18 | 105 | ||
September 10–15 | 390 | September 10–21 | 195 | September 10–27 | 130 | ||
N/A | N/A | Duration | 17 days | Duration | 34 days | Duration | 51 days |
Av. Discharge | 344.5 m3/s | Av. Discharge | 172.2 m3/s | Av. Discharge | 114.8 m3/s | ||
Total volume | 506 × 106 m3 | Total volume | 506 × 106 m3 | Total volume | 506 × 106 m3 |
Experiment | Inflow Q (106 m3) | Water Release R (106 m3) | Evaporation E (106 m3) | Storage Change ΔSr (106 m3) | Average Water Level (Elevation) (m) |
---|---|---|---|---|---|
A0 | 1319.1 | 1297.0 | 4.8 | 17.3 | 2604.69 |
A1 | 1319.1 | 1311.9 | 2.9 | 4.3 | 2593.09 |
A2 | 1319.1 | 1311.0 | 3.0 | 5.1 | 2593.89 |
A3 | 1319.1 | 1308.9 | 3.2 | 7.0 | 2594.45 |
Hydrological Process | Variable | Baseline Scenario | Ecological Operations (Experiment ID) | |||
---|---|---|---|---|---|---|
A0 | A1 | A2 | A3 | |||
Agricultural water uses | SW diversion in MHRB (106 m3) | 1456 | 1672 | 1483 | 1402 | 1336 |
GW pumping in MHRB (106 m3) | 403 | 405 | 405 | 405 | 405 | |
Total supply in MHRB (106 m3) | 1859 | 2078 | 1888 | 1807 | 1741 | |
Degree of demand fulfillment (%) | 87.39 | 97.67 | 88.76 | 84.97 | 81.85 | |
Streamflow | Streamflow through ZYX (106 m3) | 994 | 807 | 972 | 1030 | 1079 |
Streamflow entering EJL (106 m3) | 74 | 33 | 61 | 68 | 74 | |
Stream-aquifer interaction | Stream leakage in YLX-312B (106 m3) | 466 | 480 | 459 | 466 | 476 |
GW discharge in 312B-ZYX (106 m3) | −462 | −484 | −468 | −461 | −455 | |
Stream leakage in ZYX-EJL (106 m3) | 543 | 518 | 553 | 569 | 583 | |
Groundwater flow | Areal recharge in MHRB (106 m3) | 462 | 461 | 462 | 400 | 389 |
Areal recharge in LHRB (106 m3) | 6 | 6 | 6 | 9 | 10 | |
ΔS in MHRB (106 m3) | −86 | −64 | −81 | −84 | −86 | |
ΔS in LHRB (106 m3) | 15 | 6 | 11 | 14 | 16 | |
Evapotranspiration | ET in MHRB (106 m3) | 1473 | 1566 | 1564 | 1458 | 1433 |
ET in LHRB (106 m3) | 1038 | 859 | 858 | 1055 | 1090 |
Variable | A3 | B | Difference (Percentage Change) |
---|---|---|---|
SW diversion in MHRB (106 m3) | 1336 | 1307 | −0.29 (−2.14%) |
GW pumping in MHRB (106 m3) | 405 | 409 | 0.04 (0.79%) |
Total supply in MHRB (106 m3) | 1741 | 1716 | −0.25 (−1.45%) |
Degree of demand fulfillment (%) | 81.85 | 80.66 | −1.19 (−1.45%) |
Streamflow through ZYX (106 m3) | 1079 | 1031 | −0.48 (−4.49%) |
Stream leakage in YLX-312B (106 m3) | 476 | 458 | −0.18 (−3.82%) |
GW discharge in 312B-ZYX (106 m3) | −455 | −384 | −0.71 (−15.59%) |
Areal recharge in MHRB (106 m3) | 389 | 388 | −0.01 (−0.39%) |
Areal recharge in LHRB (106 m3) | 10 | 9 | −0.01 (−6.97%) |
ΔS in MHRB (106 m3) | −86 | −39 | 0.47 (54.40%) |
ΔS in LHRB (106 m3) | 16 | 13 | −0.03 (−22.31%) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Xiong, J.; He, X.; Pi, X.; Jiang, S.; Han, F.; Zheng, Y. Joint Operation of Surface Water and Groundwater Reservoirs to Address Water Conflicts in Arid Regions: An Integrated Modeling Study. Water 2018, 10, 1105. https://doi.org/10.3390/w10081105
Tian Y, Xiong J, He X, Pi X, Jiang S, Han F, Zheng Y. Joint Operation of Surface Water and Groundwater Reservoirs to Address Water Conflicts in Arid Regions: An Integrated Modeling Study. Water. 2018; 10(8):1105. https://doi.org/10.3390/w10081105
Chicago/Turabian StyleTian, Yong, Jianzhi Xiong, Xin He, Xuehui Pi, Shijie Jiang, Feng Han, and Yi Zheng. 2018. "Joint Operation of Surface Water and Groundwater Reservoirs to Address Water Conflicts in Arid Regions: An Integrated Modeling Study" Water 10, no. 8: 1105. https://doi.org/10.3390/w10081105
APA StyleTian, Y., Xiong, J., He, X., Pi, X., Jiang, S., Han, F., & Zheng, Y. (2018). Joint Operation of Surface Water and Groundwater Reservoirs to Address Water Conflicts in Arid Regions: An Integrated Modeling Study. Water, 10(8), 1105. https://doi.org/10.3390/w10081105