Water and Nitrogen Productivity of Potato Growth in Desert Areas under Low-Discharge Drip Irrigation
Abstract
:- Potatoes grown under low-discharge drip irrigation in desert region
- Tuber yields and quality were similar to the ones from sprinkler irrigation
- Water productivity affected by water dose and nitrogen level
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Sampling and Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Water Inputs and Outputs
3.2. Tuber Yield
3.3. Water Productivity
3.4. Nitrogen Productivity
3.5. Potato Tuber Size Distribution
3.6. Potato Tuber Quality
3.7. Nitrogen in the Petioles
3.8. Soil Analysis
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ojala, J.C.; Stark, J.C.; Kleinkopf, G.E. Influence of irrigation and nitrogen management on potato yield and quality. Am. Potato J. 1990, 67, 29–43. [Google Scholar] [CrossRef]
- Waddell, J.T.; Gupta, S.C.; Moncrief, J.F.; Rosen, C.J.; Steele, D.D. Irrigation and nitrogen management effects on potato yield, tuber quality, and nitrogen uptake. Agron. J. 1999, 91, 991–997. [Google Scholar] [CrossRef]
- Westermann, D.T.; Kleinkopf, G.E.; Porter, L.K. Nitrogen Fertilizer Efficiencies on Potatoes. Am. Potato J. 1988, 65, 377–386. [Google Scholar] [CrossRef]
- Satchithanantham, S.; Krahn, V.; Sri Ranjan, R.; Sager, S. Shallow groundwater uptake and irrigation water redistribution within the potato root zone. Agric. Water Manag. 2014, 132, 101–110. [Google Scholar] [CrossRef]
- Zotarelli, L.; Rens, L.R.; Cantliffe, D.J.; Stoffella, P.J.; Gergela, D.; Burhans, D. Rate and timing of nitrogen fertilizer application on potato ‘FL1867’. Part I: Plant nitrogen uptake and soil nitrogen availability. Field Crops Res. 2015, 183, 246–256. [Google Scholar] [CrossRef]
- Ierna, A.; Pandino, G.; Lombardo, S.; Mauromicale, G. Tuber yield, water and fertilizer productivity in early potato as affected by a combination of irrigation and fertilization. Agric. Water Manag. 2011, 101, 35–41. [Google Scholar] [CrossRef]
- Watkins, K.B.; Lu, Y.; Huang, W. Economic and environmental feasibility of variable rate nitrogen fertilizer application with carry-over effects. J. Agric. Resour. Econ. 1998, 23, 401–426. [Google Scholar]
- Hou, Z.N.; Li, P.F.; Li, B.G.; Gong, J.; Wang, Y.N. Effects of fertigation scheme on N uptake and N use efficiency in cotton. Plant Soil. 2007, 290, 115–126. [Google Scholar] [CrossRef]
- Guo, S.; Wang, J.; Zhang, F.; Wang, Y.; Guo, P. An integrated water-saving and quality-guarantee uncertain programming approach for the optimal irrigation scheduling of seed maize in arid regions. Water 2018, 10, 908. [Google Scholar] [CrossRef]
- Papadopoulos, I. Nitrogen fertigation of trickle-irrigated potato. Fertil. Res. 1988, 16, 157–167. [Google Scholar] [CrossRef]
- Unlu, M.; Kanber, R.; Senyigit, U.; Onaran, H.; Diker, K. Trickle and sprinkler irrigation of potato (Solanum tuberosum L.) in the middle Anatolian Region in Turkey. Agric. Water Manag. 2006, 79, 43–71. [Google Scholar] [CrossRef]
- Ju, X.T.; Kou, C.L.; Zhang, F.S.; Christie, P. Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain. Environ. Pollut. 2006, 143, 117–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levallois, P. Groundwater contamination by nitrate associated with intensive potato culture in Québec. Sci. Total Environ. 1998, 217, 91–101. [Google Scholar] [CrossRef]
- Trifonov, P.; Lazarovitch, N.; Arye, G. Increasing water productivity in arid regions using low-discharge drip irrigation: A case study on potato growth. Irrig. Sci. 2017, 35, 287–295. [Google Scholar] [CrossRef]
- Dahan, O.; Babad, A.; Lazarovitch, N.; Eliani, E.; Kurtzman, D. Nitrate leaching from intensive organic farms to groundwater. Hydrol. Earth Syst. Sci. 2014, 18, 333–341. [Google Scholar] [CrossRef] [Green Version]
- Giménez, L.; Paredes, P.; Pereira, L.S. Water use and yield of soybean under various irrigation regimes and severe water stress. Application of AquaCrop and SIMDualKc models. Water 2017, 9, 393. [Google Scholar] [CrossRef]
- Rajput, T.B.S.; Patel, N. Water and nitrate movement in drip-irrigated onion under fertigation and irrigation treatments. Agric. Water Manag. 2006, 79, 293–311. [Google Scholar] [CrossRef]
- Mmolawa, K.; Or, D. Root zone solute dynamics under drip irrigation: A review. Plant Soil. 2000, 222, 163–190. [Google Scholar] [CrossRef]
- Shenker, M.; Ben-Gal, A.; Shani, U. Sweet corn response to combined nitrogen and salinity environmental stresses. Plant Soil. 2003, 256, 139–147. [Google Scholar] [CrossRef]
- Silber, A.; Xu, G.; Levkovitch, I.; Soriano, S.; Bilu, A.; Wallach, R. High fertigation frequency: The effects on uptake of nutrients, water and plant growth. Plant Soil 2003, 253, 467–477. [Google Scholar] [CrossRef]
- Lesczynski, D.B.; Tanner, C.B. Seasonal variation of root distribution of irrigated, field-grown Russet Burbank potato. Am. Potato J. 1976, 53, 69–78. [Google Scholar] [CrossRef]
- Opena, G.B.; Porter, G.A. Soil management and supplemental irrigation effects on potato. II. Root growth. Agron. J. 1999, 91, 426–431. [Google Scholar] [CrossRef]
- Aragüés, R.; Medina, E.T.; Martínez-Cob, A.; Faci, J. Effects of deficit irrigation strategies on soil salinization and sodification in a semiarid drip-irrigated peach orchard. Agric. Water Manag. 2014, 142, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rozema, J.; Flowers, T. Crops for a salinized world. Science 2008, 322, 1478–1480. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.R.; Minhas, P.S. Strategies for managing saline/alkali waters for sustainable agricultural production in South Asia. Agric. Water Manag. 2005, 78, 136–151. [Google Scholar] [CrossRef]
- Ben-Asher, J.; Yano, T.; Shainberg, I. Dripper discharge rates and the hydraulic properties of the soil. Irrig. Drain. Syst. 2003, 17, 325–339. [Google Scholar] [CrossRef]
- Elmaloglou, S.; Diamantopoulos, E. Soil water dynamics under surface trickle irrigation as affected by soil hydraulic properties, discharge rate, dripper spacing and irrigation duration. Irrig. Drain. 2010, 59, 254–263. [Google Scholar] [CrossRef]
- Hinnell, A.C.; Lazarovitch, N.; Furman, A.; Poulton, M.; Warrick, A.W. Neuro-Drip: Estimation of subsurface wetting patterns for drip irrigation using neural networks. Irrig. Sci. 2010, 28, 535–544. [Google Scholar] [CrossRef]
- Lazarovitch, N.; Poulton, M.; Furman, A.; Warrick, A.W. Water distribution under trickle irrigation predicted using artificial neural networks. J. Eng. Math. 2009, 64, 207–218. [Google Scholar] [CrossRef]
- Olfs, H.W.; Blankenau, K.; Brentrup, F.; Jasper, J.; Link, A.; Lammel, J. Soil and plant-based nitrogen fertilizer recommendations in arable farming. J. Plant Nutr. Soil Sci. 2005, 168, 414–431. [Google Scholar] [CrossRef]
- Expósito, A.; Berbel, J. Microeconomics of deficit irrigation and subjective water response function for intensive olive groves. Water 2016, 8, 254. [Google Scholar] [CrossRef]
- Sadras, V.O. Does partial root-zone drying improve irrigation water productivity in the field? A meta-analysis. Irrig. Sci. 2009, 27, 183–190. [Google Scholar] [CrossRef]
- Gardner, B.R.; Jones, J.P. Petiole analysis and the nitrogen fertilization of Russet Burbank potatoes. Am. J. Potato Res. 1975, 52, 195–200. [Google Scholar] [CrossRef]
- Shrestha, R.K.; Cooperband, L.R.; MacGuidwin, A.E. Strategies to reduce nitrate leaching into groundwater in potato grown in sandy soils: Case study from North Central USA. Am. J. Potato Res. 2010, 87, 229–244. [Google Scholar] [CrossRef]
- Matović, G.; Broćić, Z.; Djuričin, S.; Gregorić, E.; Bodroža, D. Profitability assessment of potato production applying different irrigation methods. Irrig. Drain. 2016, 65, 502–513. [Google Scholar] [CrossRef]
- Starr, G.C.; Rowland, D.; Griffin, T.S.; Olanya, O.M. Soil water in relation to irrigation, water uptake and potato yield in a humid climate. Agric. Water Manag. 2008, 95, 292–300. [Google Scholar] [CrossRef]
- Kalbitz, K.; Solinger, S.; Park, J.H.; Michalzik, B.; Matzner, E. Controls on the dynamics of dissolved organic matter in soils: A review. Soil Sci. 2000, 165, 227–304. [Google Scholar] [CrossRef]
Ca2+ | Mg+2ss | Na+ | K+ | PO4−3 | NO3− | NH4+ | SO4−2 | HCO3− | EC | pH |
---|---|---|---|---|---|---|---|---|---|---|
mg L−1 | dS m−1 | - | ||||||||
192.2 + 3.7 | 139.4 ± 5.1 | 290 ± 5.7 | 12.8 ± 2.6 | 0 | 4 ± 0.3 | 0 | 758.5 ± 17.6 | 226.7 | 2.5 ± 0.6 | 7.2 ± 0.1 |
W40% F0% | W60% F0% | W80% F0% | W100% F0% | W40% F50% | W60% F50% | W80% F50% | W100% F50% | W40% F100% | W60% F100% | W80% F100% | W100% F100% |
---|---|---|---|---|---|---|---|---|---|---|---|
226.6 | 331.0 | 435.2 | 549.2 | 224.8 | 333.3 | 438.6 | 547.1 | 222.6 | 331.5 | 436.6 | 541.5 |
Ca+2 | Mg+2 | Na+ | K+ | P | OM | N | P | K | C | C/N | EC | pH |
---|---|---|---|---|---|---|---|---|---|---|---|---|
103 × mg L−1 | %wt. | - | dS m−1 | - | ||||||||
120.5 | 5.8 | 11.2 | 21.1 | 5.5 | 35.7 ± 0.6 | 1.6 ± 0.2 | 1.0 ± 0.0 | 2.1 ± 0.1 | 21.0 ± 0.0 | 12.3 ± 1.1 | 37.3 ± 4.1 | 8.1 ± 0.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trifonov, P.; Lazarovitch, N.; Arye, G. Water and Nitrogen Productivity of Potato Growth in Desert Areas under Low-Discharge Drip Irrigation. Water 2018, 10, 970. https://doi.org/10.3390/w10080970
Trifonov P, Lazarovitch N, Arye G. Water and Nitrogen Productivity of Potato Growth in Desert Areas under Low-Discharge Drip Irrigation. Water. 2018; 10(8):970. https://doi.org/10.3390/w10080970
Chicago/Turabian StyleTrifonov, Pavel, Naftali Lazarovitch, and Gilboa Arye. 2018. "Water and Nitrogen Productivity of Potato Growth in Desert Areas under Low-Discharge Drip Irrigation" Water 10, no. 8: 970. https://doi.org/10.3390/w10080970
APA StyleTrifonov, P., Lazarovitch, N., & Arye, G. (2018). Water and Nitrogen Productivity of Potato Growth in Desert Areas under Low-Discharge Drip Irrigation. Water, 10(8), 970. https://doi.org/10.3390/w10080970