Quantity and Quality of Surface and Subsurface Runoff from an Eroded Loess Slope Used for Agricultural Purposes
Abstract
:1. Introduction
2. Material and Methods
2.1. Research Object
2.2. Water Research
- total nitrogen: WTW photometer model MPM 2010 (after oxidation of the test sample in thermo-reactor at the temperature 100 °C);
- ammonium and nitrite: WTW photometer model MPM 2010;
- nitrate, phosphorus, and potassium: Slandi photometer model LF 300.
2.3. Rainfall Research
2.4. Soil Research
- Granulometric composition, using the Bouyoucos areometric method modified by Casagrande and Prószyński;
- Density of the solid phase of the soil, by means of the pycnometric method;
- Soil bulk density, using gravimetry (after collecting the soil with an intact structure into metal cylinders);
- Total porosity, using Formula (2):
- Water permeability coefficient, using the Eijkelkamp device (after collecting the soil with an intact structure into metal cylinders).
3. Results and Discussion
3.1. Meteorological Conditions
3.2. Soil Properties
3.3. Water Outflow and Selected Matter Components
4. Conclusions
Conflicts of Interest
References
- Jankauskas, B.; Fullen, M.A. A pedological investigation of soil erosion severity on undulating land in Lithuania. Can. J. Soil Sci. 2002, 82, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Mazur, A.; Obroślak, R.; Nieścioruk, K.; Król, Ż.; Gabryszuk, J.; Rybicki, R. Analysis of erosion control constructions effectiveness the case of a road gully in Wielkopole (Lublin Upland). J. Ecol. Eng. 2016, 17, 180–183. [Google Scholar] [CrossRef]
- Young, F.J.; Hammer, R.D. Soil-landform relationship on a loess-mantled upland landscape in Missouri. Soil Sci. Soc. Am. J. 2000, 64, 1443–1454. [Google Scholar] [CrossRef]
- Lal, R. Soil erosion and carbon dynamics. Soil Tillage Res. 2005, 81, 137–142. [Google Scholar] [CrossRef]
- Olson, K.R. Soil organic carbon storage in southern Illinois woodland and cropland. Soil Sci. 2007, 172, 623–630. [Google Scholar] [CrossRef]
- Olson, K.R.; Jones, R.L. Soil organic carbon and fly-ash distribution in eroded phases of soils in Illinois and Russia. Soil Tillage Res. 2005, 81, 143–153. [Google Scholar] [CrossRef]
- Bu, C.-F.; Wu, S.-F.; Yang, K.-B. Effects of physical soil crusts on infiltration and splash erosion in three typical chinese soils. Int. J. Sediment Res. 2014, 29, 491–501. [Google Scholar] [CrossRef]
- Fullen, M.A.; Brandsma, R.T. Property changes by erosion of loamy sand soils in east Shropshire—UK. Soil Technol. 1995, 8, 1–15. [Google Scholar] [CrossRef]
- Hladký, J.; Novotná, J.; Elbl, J.; Kynický, J.; Juřička, D.; Novotná, J.; Brtnický, M. Impacts of Water Erosion on Soil Physical Properties. Acta Univ. Agric. Silvic. Mendel. Brun. 2016, 64, 1523–1527. [Google Scholar] [CrossRef] [Green Version]
- Ijaz, A.; Khan, F.; Bhatti, A.U. Some physico-chemical properties of soil as influenced by surface erosion under different cropping systems on upland-sloping soil. Soil Environ. 2006, 25, 28–34. [Google Scholar]
- Bakker, M.M.; Govers, G.; Rounsevell, M.D.A. The crops productivity-erosion relationship: An analysis based on experimental work. Catena 2004, 57, 55–76. [Google Scholar] [CrossRef]
- Duan, X.; Xie, Y.; Ou, T.; Lu, H. Effects of soil erosion on long-term soil productivity in the black soil region of northeastern China. Catena 2011, 87, 268–275. [Google Scholar] [CrossRef]
- Lobo, D.; Lozano, Z.; Delgado, F. Water erosion risk assessment and impact on productivity of a Venezuelan soil. Catena 2005, 64, 297–306. [Google Scholar] [CrossRef]
- Arriaga, F.J.; Lowery, B. Corn production on an eroded soil: Effects of total rainfall and soil water storage. Soil Tillage Res. 2003, 71, 87–93. [Google Scholar] [CrossRef]
- Daniels, R.B.; Gilliam, J.W.; Cassel, D.K.; Nelson, L.A. Soil erosion has limited effect on scale crop productivity in the southern Piedmont. Soil Sci. Soc. Am. J. 1989, 53, 917–920. [Google Scholar] [CrossRef]
- Papiernik, S.K.; Lindstrom, M.J.; Schumacher, J.A.; Farenhorst, A.; Stephens, K.D.; Schumacher, T.E.; Lobb, D.A. Variation in soil properties and crop yield across an eroded prairie landscape. J. Soil Water Conserv. 2005, 60, 388–395. [Google Scholar]
- Grzywna, A.; Tarkowska-Kukuryk, M.; Bochniak, A.; Marczuk, A.; Jóźwiakowski, K.; Marzec, M.; Mazur, A.; Obroślak, R.; Nieścioruk, K.; Zarajczyk, J. Application of chemical and biological indicators for assessment of an ecological potential of artificial watercourses. Przem. Chem. 2015, 94, 1954–1957. [Google Scholar]
- Kim, K.; Kim, B.; Eum, J.; Seo, B.; Christopher, L.; Shope, C.L.; Peiffer, S. Impacts of land use change and summer monsoon on nutrients and sediment exports from an agricultural catchment. Water 2018, 10, 544. [Google Scholar] [CrossRef]
- Skowron, P.; Skowrońska, M.; Bronowicka-Mielniczuk, U.; Filipek, T.; Igras, J.; Kowalczyk-Juśko, A.; Krzepiłko, A. Anthropogenic sources of potassium in surface water: The case study of the Bystrzyca river catchment, Poland. Agric. Ecosyst. Environ. 2018, 265, 454–460. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, J.; Xiaoping Wang, X. Recognizing the relationship between spatial patterns in water quality and land-use/cover types: A case study of the Jinghe Oasis in Xinjiang, China. Water 2018, 10, 646. [Google Scholar] [CrossRef]
- Olson, K.R.; Gennadiyew, A.N.; Jones, R.L.; Chernyanskii, S. Erosion pattern on cultivated and reforested hillslopes in Moscow Region, Russia. Soil Sci. Soc. Am. J. 2002, 66, 193–201. [Google Scholar] [CrossRef]
- Pimentel, D.; Allen, J.; Beers, A.; Guinand, L.; Hawkins, A.; Linder, R.; McLanghlin, P.; Meer, B.; Musonda, D.; Perdue, D.; et al. Soil erosion and agricultural productivity. In World Soil Erosion and Conservation; David, P., Ed.; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Seybold, C.A.; Herrick, J.E.; Brejda, J.J. Soil resilience: A fundamental component of soil quality. Soil Sci. 1999, 164, 224–234. [Google Scholar] [CrossRef]
- Catt, J.A. The agricultural importance of loess. Earth-Sci. Rev. 2001, 54, 213–229. [Google Scholar] [CrossRef]
- Shi, H.; Shao, M. Soil and water loss from the loess plateau in China. J. Arid Environ. 2000, 45, 9–20. [Google Scholar] [CrossRef]
- Józefaciuk, Cz.; Józefaciuk, A.; Nowocień, E.; Wawer, R. Structure of soil hazard with surface water erosion in the Zachodniopomorskie Voivodeship. Folia Univ. Agric. Stetin. Agric. 2001, 87, 285–290. Available online: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.agro-article-38990215-ab59-49ee-a459-eb2f377229d6?q=bwmeta1.element.agro-volume-3b5c3bd3-025b-4231-baad-1d6667682f21;10&qt=CHILDREN-STATELESS (accessed on 22 August 2018). (In Polish).
- Licznar, P. Modeling of soil water erosion. Zesz. Nauk. AR Wrocław 2003, 456. (In Polish) [Google Scholar]
- Nowocień, E.; Podolski, B.; Wawer, R. Estimating Outflow and Sediment Uptake Chosen Polish Soil Kinds in Simulated Conditions, 2004. Available online: https://www.infona.pl/resource/bwmeta1.element.agro-article-5796a670-d7d2-4d99-9491-090ca9fa2375 (accessed on 20 August 2018).
- Rejman, J. Effect of Water and Tillage Erosion on Transformation of Soils and Loess Slopes, 2006. Available online: http://agris.fao.org/agris-search/search.do?recordID=PL2006001095 (accessed on 20 August 2018).
- Żmuda, R.; Sasik, J.; Szewrański, S. Analysis of needs for spatial planing changes in Trzebnica Hills aimed at water erosion control. Acta Agrophys. 2005, 5, 229–237. (In Polish) [Google Scholar]
- Żmuda, R. Fluvial Transport System Functioning in Small Catchment Threatened by Soil Water Erosion, 2006. Available online: http://agris.fao.org/agris-search/search.do?recordID=PL2009001226 (accessed on 20 August 2018).
- Kondracki, J. Regional Geography of Poland; PWN Warsaw: Warsaw, Poland, 2000. (In Polish) [Google Scholar]
- Mazur, Z.; Pałys, S.; Grodzieński, W.; Mitrus, W. Water erosion in the period of thaw runoffs of 1987 in two agricultural and one afforested catchment basin in the Lublin Upland. Rocz. Nauk Roln. 1990, 82, 81–99. (In Polish) [Google Scholar]
- Brański, J. Determination of the amount of suspension by gravimetric method, direct using filters. Pr. Inst. Hydrol. Melior. 1969, 94, 13–21. (In Polish) [Google Scholar]
- Hermanowicz, W.; Dojlido, W.; Dożańska, W.; Kosiorowski, B.; Zerbe, J. Physico-Chemical Testing of Water and Sewage; Wyd. Arkady: Warszawa, Poland, 1999. (In Polish) [Google Scholar]
- Brown, L.C.; Forester, G.R. Storm erosivity using idealized intensity distributions. Trans. ASAE 1987, 30, 379–386. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses—A Guide to Conservation Planning; USDA, Science and Education Administration: Hyattsville, MD, USA, 1978.
- Polish Society of Soil Science. Systematics of Polish soils. Roczn. Gleb. 1989, 40, 1–155. (In Polish) [Google Scholar]
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Methods of Analysis and Assessment of Soil and Plant Properties—Catalog; Inst. Ochr. Środ: Warszawa, Poland, 1991. (In Polish) [Google Scholar]
- Van Reeuwijk, L.P. Procedures for Soil Analysis; ISRIC, World Soil Information: Wageningen, The Netherlands, 2002. [Google Scholar]
- Turski, R.; Słowińska-Jurkiewicz, A.; Paluszek, J. The effect of erosion on the spatial differentation of the physical prperties of Orthic Luvisols. Int. Agrophys. 1992, 6, 123–136. [Google Scholar]
- Szewrański, S. Raindrop Splash as the Form of Loess Soils Water Erosion, 2009. Available online: http://agris.fao.org/agris-search/search.do?recordID=PL2011000251 (accessed on 20 August 2018).
- Święchowicz, J. Rainfall thresholds for erosion processes in agricultural catchments, 2012. Available online: http://www.geo.uj.edu.pl/publikacje.php?pdf=000130-097 (accessed on 20 August 2018).
- Banasik, K.; Górski, D. Determination of erosive rainfall in the universal soil loss equation. Zesz. Nauk. AR Wrocław 1990, 189, 103–109. (In Polish) [Google Scholar]
- Sharpley, A.N. The selective erosion of plant nutrients in runoff. Soil Sci. Soc. Am. J. 1985, 49, 1527–1534. [Google Scholar] [CrossRef]
- Berger, C.; Schulze, M.; Rieke-Zapp, D.; Schlunegger, F. Rill development and soil erosion: A laboratory study of slope and rainfall intensity. Earth Surf. Process. Landf. 2010, 35, 1456–1467. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Lai, C.-C. Evaluating the erosion process from a single-stripe laser-scanned topography: A laboratory case study. Water 2018, 10, 956. [Google Scholar] [CrossRef]
- Shen, H.; Zheng, F.; Wen, L.; Han, Y.; Hu, W. Impacts of rainfall intensity and slope gradient on rill erosion processes at loessial hillslope. Soil Tillage Res. 2016, 155, 429–436. [Google Scholar] [CrossRef]
- Gil, E. The role of land use in the course of surface runoff and rinsing on flysch slopes. Przegląd Geograficzny 1986, 58, 51–65. Available online: http://rcin.org.pl/Content/13228/WA51_16244_r1986-t58-z1-2_Przeg-Geogr.pdf (accessed on 23 August 2018). (In Polish).
- Gil, E. Water circulation and rinsing on flysch slopes used for agricultural purposes in the years 1980–1990. Zesz. IGiPZ PAN 1999, 60, 1–77. (In Polish) [Google Scholar]
- Regulation of the Minister of Environment of November 9, 2011 on the Method of Classification of Uniform State Surface Water Bodies and Environmental Quality Standards for Priority Substances, 2011. Available online: http://prawo.sejm.gov.pl/isap.nsf/download.xsp/WDU20112571545/O/D20111545.pdf (accessed on 23 August 2018). (In Polish)
- Koc, J. The effect of the intensity of the area’s use on the amount of nutrients outflow from agricultural areas. Roczn. AR w Poznaniu 1998, 52, 101–106. (In Polish) [Google Scholar]
- Rajda, W.; Ostrowski, K.; Kowalik, T.; Marzec, J. Chemical erosion in agricultural micro-watersheds in the areas at the mountain feet. Rocz. AR w Poznaniu 1994, 266, 139–152. (In Polish) [Google Scholar]
- Dupas, R.; Delmas, M.; Dorioz, J.M.; Garnier, J.; Moatar, F.; Gascuel-Odoux, C. Assessing the impact of agricultural pressures on N and P loads and eutrophication risk. Ecol. Indic. 2015, 48, 396–407. [Google Scholar] [CrossRef]
- Laflen, J.M.; Moldehauer, W.C. Pioneering Soil Erosion Prediction: The USLE Story; World Association of Soil and Water Conservation: Bangkok, Thailand, 2003. [Google Scholar]
- Shainberg, I.; Mamedow, A.I.; Levy, G.J. Role of wetting rate and rain energy in seal formation and erosion. Soil Sci. 2003, 168, 54–62. [Google Scholar] [CrossRef]
Month | 2008 | 2009 | 2010 | 2011 | ||||
---|---|---|---|---|---|---|---|---|
Day | Rainfall (mm) | Day | Rainfall (mm) | Day | Rainfall (mm) | Day | Rainfall (mm) | |
Apr | - | - | - | - | - | - | 11–12 | 21.2 |
May | 2–4 18–20 | 22.2 26.3 | 19 | 18.2 | 14–18 | 31.2 | 2 | 33.2 |
Jun | - | - | 6 23 25 | 19.1 19.8 50.8 | 1–3 19–20 | -37.2 23.2 | - 29–30 | 32.1 |
Jul | 7 20–22 | 31.5 28.4 | 25 | 15.3 | 24 | 59.8 | 3–4 5 14–15 20 27–28 | 63.5 57.2 38.8 32.1 46.3 |
Aug | - | - | - | - | 6–7 9 30 | 44.2 63.6 41.5 | 13–14 18 | 42.1 22.2 |
Sep | 16–20 | 46.1 | - | - | - | - | - | - |
Year | Month | Sum (mm) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | ||
2008 | 45.7 | 19.7 | 42.3 | 21.3 | 78.9 | 49.3 | 70.2 | 39.0 | 102.3 | 77.8 | 108.9 | 52.1 | 707.5 |
2009 | 26.6 | 24.0 | 25.2 | 20.0 | 56.4 | 12.0 | 61.5 | 143.4 | 72.3 | 28.3 | 35.3 | 82.0 | 587.0 |
2010 | 41.1 | 47.6 | 35.5 | 37.5 | 14.8 | 29.4 | 100.8 | 71.8 | 169.5 | 200.5 | 102.8 | 16.4 | 867.7 |
2011 | 42.0 | 36.7 | 23.8 | 23.4 | 14.7 | 70.4 | 83.0 | 86.4 | 339.0 | 109.0 | 16.2 | 30.7 | 875.3 |
Average long-term 1987–2011 | 39.8 | 34.0 | 31.5 | 30.2 | 39.8 | 50.9 | 61.1 | 74.4 | 97.1 | 73.1 | 65.2 | 39.0 | 636.1 |
Horizon | Depth (cm) | Percent of Fraction of Diameter in mm | Sum of Floatable Parts <0.02 | |||||
---|---|---|---|---|---|---|---|---|
1–0.1 | 0.1–0.05 | 0.05–0.02 | 0.02–0.006 | 0.006–0.002 | <0.002 | |||
Ap | 0–24 | 4.1 | 15.2 | 46.5 | 17.2 | 10.8 | 6.2 | 34.2 |
Bt2 | 24–52 | 3.9 | 15.5 | 47.3 | 16.5 | 10 | 6.8 | 33.3 |
BC | 52–70 | 2.7 | 17.1 | 46.2 | 16.3 | 9.6 | 8.1 | 34.0 |
Cca | >70 | 2.8 | 15.8 | 47.9 | 17.4 | 8.2 | 7.9 | 33.5 |
Horizon | Depth (cm) | Specific Density | Bulk Density | Total Porosity | Water Permeability |
---|---|---|---|---|---|
(Mg m−3) | (Mg m−3) | (%) | (×10−6 m s−1) | ||
Ap | 0–25 | 2.59 | 1.40 | 45.9 | 6.152 |
Bt2 | 25–35 | 2.67 | 1.63 | 39.0 | 2.132 |
Bt2 | 35–52 | 2.65 | 1.60 | 39.6 | 3.256 |
BC | 52–70 | 2.64 | 1.59 | 39.8 | 3.746 |
Cca | >70 | 2.64 | 1.63 | 38.3 | 3.869 |
Parameter | Year | |||
---|---|---|---|---|
2008 | 2009 | 2010 | 2011 | |
Range | ||||
Average/Standard Deviation | ||||
Rainfall (mm) | 22.2–46.1 | 15.3–50.8 | 31.2–63.6 | 21.2–63.5 |
30.9/8.1 | 24.6/13.2 | 42.9/13.5 | 38.9/13.1 | |
Kinetic energy per area unit (J ha−1) | 132.5–388.6 | 176.3–623.5 | 145.1–699.3 | 123.5–586.7 |
235.6/111.4 | 310.5/169.3 | 376.1/199.7 | 315.1/164.4 | |
Index EI30 (MJ mm ha−1 h−1) | 11.5–145.6 | 53.4–324.5 | 23.5–450.2 | 8.9–396.1 |
49.6/50.7 | 115.3/104.9 | 197.1/162.8 | 134.7/113.1 | |
Surface Runoff | ||||
Outflow (mm) | 2.8–8.9 | 3.4–12.3 | 3.2–18.2 | 1.2–11.2 |
4.4/2.3 | 5.6/3.4 | 10.9/4.9 | 5.9/2.6 | |
Soil suspension (g dm−3) | 56.365–186.235 | 12.421–156.232 | 98.445–301.278 | 9.345–175.324 |
120.323/53.712 | 43.376/56.474 | 190.817/74.899 | 82.855/55.273 | |
N-Ntot (mg dm−3) | 0.923–5.854 | 0.652–5.023 | 1.156–6.321 | 0.956–5.354 |
3.088/2.043 | 2.655/1.641 | 3.721/2.080 | 2.147/1.593 | |
N-NH4 (mg dm−3) | 0.501–2.524 | 0.354–2.498 | 0.654–4.224 | 0.551–3.195 |
1.450/0.882 | 1.359/0.785 | 3.721/1.311 | 1.161/0.913 | |
N-NO3 (mg dm−3) | 0.222–1.623 | 0.156–1.212 | 0.247–1.514 | 0.211–1.365 |
0.856/0.620 | 0.658/0.409 | 0.858/0.405 | 0.543/0.407 | |
N-NO2 (mg dm−3) | 0.102–1.315 | 0.118–0.956 | 0.113–0.921 | 0.098–0.786 |
0.533/0.465 | 0.421/0.330 | 0.478/0.336 | 0.260/0.227 | |
P (mg dm−3) | 0.039–1.141 | 0.041–0.852 | 0.131–2.105 | 0.112–1.125 |
0.454/0.495 | 0.452/0.350 | 0.837/0.814 | 0.393/0.375 | |
K (mg dm−3) | 1.126–5.023 | 1.156–5.234 | 0.885–7.852 | 0.698–5.734 |
2.965/1.431 | 3.201/1.419 | 3.185/2.602 | 2.230/1.834 | |
Subsurface Runoff | ||||
Outflow (mm) | 0.5–0.9 | 0.5–2.3 | 0.3–3.6 | 0.2–3.6 |
0.7/0.2 | 1.0/0.6 | 1.4/1.3 | 1.2/0.9 | |
Soil suspension (g dm−3) | 1.213–3.245 | 1.456–23.455 | 1.245–51.235 | 1.021–24.254 |
2.216/0.905 | 6.474/8.524 | 20.208/19.292 | 10.560/8.809 | |
N-Ntot (mg dm−3) | 1.345–8.542 | 1.561–8.245 | 1.982–8.256 | 1.132–8.563 |
4.619/3.153 | 3.651/2.549 | 4.882/2.639 | 3.050/2.513 | |
N-NH4 (mg dm−3) | 0.723–4.456 | 0.554–4.562 | 0.856–4.952 | 0.525–4.954 |
2.380/1.617 | 1.948/1.433 | 2.651/1.66 | 1.584/1.466 | |
N-NO3 (mg dm−3) | 0.308–2.394 | 0.214–2.280 | 0.512–2.312 | 0.242–2.212 |
1.227/0.941 | 0.999/0.733 | 1.311/0.741 | 0.795/0.720 | |
N-NO2 (mg dm−3) | 0.122–1.456 | 0.098–1.145 | 0.298–0.962 | 0.081–0.985 |
0.795/0.561 | 0.410/0.402 | 0.582/0.284 | 0.795/0.307 | |
P (mg dm−3) | 0.045–1.325 | 0.071–1.008 | 0.312–2.563 | 0.123–1.262 |
0.513/0.544 | 0.523/0.397 | 1.081/0.884 | 0.466/0.440 | |
K (mg dm−3) | 1.156–6.256 | 1.521–5.214 | 1.324–8.234 | 1.023–7.234 |
3.461/1.935 | 3.407/1.283 | 3.729/2.602 | 3.126/2.510 |
Index | Threshold Values | |
---|---|---|
I Quality Class | II Quality Class | |
N-NH4 (mg dm−3) | ≤0.78 | ≤1.56 |
N-NO3 (mg dm−3) | ≤2.2 | ≤5 |
P-PO4 (mg dm−3) | ≤0.07 | ≤0.10 |
Parameter | Rainfall (mm) | R2 | r | EI30—Index | R2 | r |
---|---|---|---|---|---|---|
Surface Runoff | ||||||
N-Ntot (mg dm−3) | y = −0.0486x + 4.5634 | 0.1264 | −0.36 | y = −0.98ln(x) + 7.0755 | 0.3231 | −0.41 |
N-NH4 (mg dm−3) | y = −0.0246x + 2.3867 | 0.1032 | −0.32 | y = −0.503ln(x) + 3.69 | 0.2715 | −0.39 |
N-NO3 (mg dm−3) | y = −0.0121x + 1.1377 | 0.1238 | −0.35 | y = −0.263ln(x) + 1.8474 | 0.3695 | −0.40 |
N-NO2 (mg dm−3) | y = −0.0103x + 0.7673 | 0.1768 | −0.42 | y = −0.182ln(x) + 1.1881 | 0.3464 | −0.44 |
P (mg dm−3) | y = −0.015x + 1.0676 | 0.1382 | −0.37 | y = −0.275ln(x) + 1.7231 | 0.2922 | −0.47 |
K (mg dm−3) | y = −0.0622x + 5.022 | 0.1959 | −0.44 | y = −1.05ln(x) + 7.3505 | 0.3516 | −0.49 |
Subsurface Runoff | ||||||
N-Ntot (mg dm−3) | y = −0.0872x + 7.2027 | 0.1949 | −0.39 | y = −1.479ln(x) + 10.488 | 0.3717 | −0.45 |
N-NH4 (mg dm−3) | y = −0.048x + 3.8796 | 0.1789 | −0.37 | y = −0.816ln(x) + 5.6974 | 0.3417 | −0.44 |
N-NO3 (mg dm−3) | y = 0.0002x2 − 0.0391x + 2.2444 | 0.2102 | −0.40 | y = −0.435ln(x) + 2.974 | 0.3886 | −0.47 |
N-NO2 (mg dm−3) | y = 0.0002x2 − 0.0258x + 1.2236 | 0.2286 | −0.42 | y = −0.24ln(x) + 1.5563 | 0.4352 | −0.46 |
P (mg dm−3) | y = −0.0169x + 1.2804 | 0.1333 | −0.32 | y = 0.00001x2 − 0.0072x + 1.2016 | 0.2521 | −0.42 |
K (mg dm−3) | y = −0.0751x + 6.215 | 0.2201 | −0.41 | y = −1.258ln(x) + 8.9784 | 0.4120 | −0.52 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazur, A. Quantity and Quality of Surface and Subsurface Runoff from an Eroded Loess Slope Used for Agricultural Purposes. Water 2018, 10, 1132. https://doi.org/10.3390/w10091132
Mazur A. Quantity and Quality of Surface and Subsurface Runoff from an Eroded Loess Slope Used for Agricultural Purposes. Water. 2018; 10(9):1132. https://doi.org/10.3390/w10091132
Chicago/Turabian StyleMazur, Andrzej. 2018. "Quantity and Quality of Surface and Subsurface Runoff from an Eroded Loess Slope Used for Agricultural Purposes" Water 10, no. 9: 1132. https://doi.org/10.3390/w10091132
APA StyleMazur, A. (2018). Quantity and Quality of Surface and Subsurface Runoff from an Eroded Loess Slope Used for Agricultural Purposes. Water, 10(9), 1132. https://doi.org/10.3390/w10091132