Seasonal and Event-Based Hydrological and Slope Stability Modeling of Pyroclastic Fall Deposits Covering Slopes in Campania (Southern Italy)
Abstract
:1. Introduction
2. Study Area and Landslide Phenomena Description
Spatial Distribution of Pyroclastic Fall Deposits
3. Data and Methods
3.1. Soil Hydrological Monitoring
3.2. Coupled Hydrological and Slope Stability Modeling
4. Results
4.1. Hydrological Response of the Pyroclastic Fall Soil Mantle
4.2. Hydrological and Slope Stability Modeling
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lagomarsimo, D.; Segoni, S.; Fanti, R.; Catani, F. Updating and tuning a regional-scale landslide early warning system. Landslides 2013, 10, 91–97. [Google Scholar] [CrossRef]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol. Atmos. Phys. 2007, 98, 239–267. [Google Scholar] [CrossRef]
- Caine, N. The rainfall intensity-duration control of shallow landslides and debris flows. Geogr. Ann. 1980, 62, 23–27. [Google Scholar]
- Crozier, M.J.; Eyles, R.J. Assessing the probability of rapid mass movement. In Proceedings of the 3rd Australia New Zealand Conference on Geomechanics, Wellington, New Zealand, 12–16 May 1980; Volume 6, pp. 2.47–2.51. [Google Scholar]
- Nikolopoulos, E.I.; Crema, S.; Marchi, L.; Marra, F.; Guzzetti, F.; Borga, M. Impact of uncertainty in rainfall estimation on the identification of rainfall thresholds for debris flow occurrence. Geomorphology 2014, 221, 286–297. [Google Scholar] [CrossRef]
- Mirus, B.B.; Nimmo, J.R. Balancing practicality and hydrologic realism: a parsimonious approach for simulating rapid groundwater recharge via unsaturated-zone preferential flow. Water Resour. Res. 2013, 49, 1458–1465. [Google Scholar] [CrossRef]
- Godt, J.W.; Schulz, W.H.; Baum, R.L.; Savage, W.Z. Modeling rainfall conditions for shallow landsliding in Seattle, Washington. In Landslides and Engineering Geology of the Seattle, Washington, Area; Baum, R.L., Godt, J.W., Highland, L.M., Eds.; Geological Society of America Reviews in Engineering Geology; Geological Society of America: Boulder, CO, USA, 2008; Volume 20, pp. 137–152. [Google Scholar]
- Peres, D.J.; Cancelliere, A. Derivation and evaluation of landslide-triggering thresholds by a Monte Carlo approach. Hydrol. Earth Syst. Sci. 2014, 18, 4913–4931. [Google Scholar] [CrossRef] [Green Version]
- Guadagno, F.M.; Revellino, P.; Grelle, G. The 1998 Sarno landslides: conflicting interpretations of a natural event. In Italian Journal of Engineering Geology and Environment, Proceedings of the 5th International Conference on Debris-Flow Hazards “Mitigation, Mechanics, Prediction and Assessment”, Rome, Italy, 14 June 2011; Genevois, R., Hamilton, D.L., Prestininzi, A., Eds.; Sapienza Università Editrice University Press: Rome, Italy, 2011; pp. 71–81. [Google Scholar] [CrossRef]
- GEO—Geotechnical Engineering Office, Hong Kong Government; Government of the Hong Kong Special Administrative Region; Geotechnical Engineering Office. Landslides and Boulder Falls from Natural Terrain: Interim Risk Guideline. GEO Report No. 75; Government Publications Centre: Hong Kong, China, 1998.
- HSE—United Kingdom Health and Safety Executive. Reducing Risk, Protecting People, HSE Decision-Making Process; HM Stationery Office: London, UK, 2001. [Google Scholar]
- Campbell, R. Soil Slips, Debris Flows and Rainstorms in the Santa Monica Mountains and Vicinity, Southern California. In USGS Professional Paper; U.S. Geological Survey: Washington, DC, USA, 1975; Volume 851, p. 51. [Google Scholar]
- Montgomery, D.R.; Dietrich, W.E.; Torres, R.; Anderson, S.P.; Heffner, J.T.; Loague, K. Hydrologic response of a steep, unchanneled valley to natural and applied rainfall. Water Resour. Res. 1997, 33, 91–109. [Google Scholar] [CrossRef]
- Selby, M.J. Hillslope Materials and Processes, 2nd ed.; Oxford University Press: Oxford, UK, 2000; p. 451. [Google Scholar]
- Allocca, V.; Manna, F.; De Vita, P. Estimating annual groundwater recharge coefficient for karst aquifers of the southern Apennines (Italy) 2014. Hydrol. Earth Syst. Sci. 2014, 18, 803–817. [Google Scholar] [CrossRef] [Green Version]
- Allocca, V.; De Vita, P.; Manna, F.; Nimmo, J.R. Groundwater recharge assessment at local and episodic scale in a soil mantled perched karst aquifer in southern Italy. J. Hydrol. 2015, 529, 843–853. [Google Scholar] [CrossRef]
- D’Argenio, B.; Pescatore, T.; Scandone, P. Schema geologico dell’Appennino Meridionale (Campania e Lucania). In Proceedings of the meeting “Moderne vedute sulla geologia dell’Appennino”, Rome, Italy, 16–18 February 1972; Quaderni Accademia Nazionale dei Lincei: Rome, Italy, 1973; Volume 183, pp. 49–72. [Google Scholar]
- Mostardini, F.; Merlini, S. Appennino centro meridionale. Sezioni geologiche e proposta di modello strutturale. Mem. Soc. Geol. Ital. 1986, 35, 177–202. [Google Scholar]
- Patacca, E.; Scandone, P. Geological interpretation of the CROP-04 seismic line (Southern Apennines, Italy). Boll. Soc. Geol. Ital. 2007, 7, 297–315. [Google Scholar]
- USDA. Keys to Soil Taxonomy, 12th ed.; United States Department of Agriculture Natural Resources Conservation Service: Washington, DC, USA, 2014; p. 372.
- Schmidt, R. Descriptive nomenclature and classification of pyroclastic deposits and fragments: Recommendations of the I.U.G.S. Subcommission on the Systematics of Igneous Rocks. Geology 1981, 9, 41–43. [Google Scholar] [CrossRef]
- Rolandi, G.; Petrosino, P.; Mc Geehin, J. The interplinian activity at Somma-Vesuvius in the last 3500 years. J. Volcanol. Geotherm. Res. 1998, 82, 19–52. [Google Scholar] [CrossRef]
- Rolandi, G.; Mastrolorenzo, G.; Barrella, A.M.; Borrelli, A. The Avellino Plinian eruption of Somma-Vesuvius (3760 y B.P.): the progressive evolution from magmatic to hydromagmatic style. J. Volcanol. Geotherm. Res. 1993, 58, 67–88. [Google Scholar] [CrossRef]
- Rolandi, G.; Maraffi, S.; Petrosino, P.; Lirer, L. The Ottaviano eruption of Somma-Vesuvius (8000 y B.P.): A magmatic alternating fall and flow forming eruption. J. Volcanol. Geotherm. Res. 1993, 58, 43–65. [Google Scholar] [CrossRef]
- Lirer, L.; Pescatore, T.; Booth, B.; Walker, J.P.L. Two Plinian pumice-fall deposits from Somma-Vesuvius. Geol. Soc. Am. Bull. 1973, 84, 759–772. [Google Scholar] [CrossRef]
- Cole, P.D.; Scarpati, C. The 1944 eruption of Vesuvius, Italy: Combining contemporary accounts and field studies for a new volcanological reconstruction. Geol. Mag. 2010, 147, 391–415. [Google Scholar] [CrossRef]
- Varnes, D.J. Slope movement types and processes. In Landslides: Analysis and Control Special Report 176; Schuster, R.L., Krizek, R.J., Eds.; Transportation and Road Research Board, National Academy of Science: Washington, DC, USA, 1978; pp. 11–33. [Google Scholar]
- Cruden, D.M.; Varnes, D.J.; Turner, A.K.; Schuster, R.L. Landslide Types and Processes. In Landslides, Investigation and Mitigation; Transportation Research Board, US National Research Council: Washington, DC, USA, 1996; Volume 247, pp. 36–75. [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an updated. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Jakob, M.; Hungr, O. Debris-Flow Hazards and Related Phenomena; Springer: Berlin/Heidelberg, Germany, 2005; Volume 739, ISBN 978-3-540-27129-1. [Google Scholar]
- Celico, P.; Guadagno, F.M.; Vallario, A. Proposta di un modello interpretativo per lo studio delle frane nei terreni piroclastici. Geol. Appl. Idrogeol. 1986, 21, 173–193. [Google Scholar]
- Cascini, L.; Cuomo, S.; Guida, D. Typical source areas of May 1998 flow-like mass movements in the Campania region, Southern Italy. Eng. Geol. 2008, 96, 107–125. [Google Scholar] [CrossRef]
- De Vita, P.; Nappi, M. Regional distribution of ash-fall pyroclastic soils for landslide susceptibility assessment. In Landslide Science and Practice; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 103–109. [Google Scholar]
- De Vita, P.; Agrello, D.; Ambrosino, F. Landslide susceptibility assessment in ashfall pyroclastic deposits surrounding Mount Somma-Vesuvius. Application of geophysical surveys for soil thickness mapping. J. Appl. Geophys. 2006, 59, 126–139. [Google Scholar] [CrossRef]
- Del Soldato, M.; Pazzi, V.; Segoni, S.; De Vita, P.; Tofani, V.; Moretti, S. Spatial modeling of pyroclastic cover deposit thickness (Depth to bedrock) in peri-volcanic area of Campania (southern Italy). Earth Surf. Process. Landf. 2018, 43, 1757–1767. [Google Scholar] [CrossRef]
- De Vita, P.; Celico, P.; Siniscalchi, M.; Panza, R. Distribution, hydrogeological features and landslide hazard of pyroclastic soils on carbonate slopes in the area surrounding Mount Somma-Vesuvius. Ital. J. Eng. Geol. Environ. 2006, 1, 1–24. [Google Scholar]
- Reid, M.E.; Nielsen, H.J.P.; Dreiss, S.J. Hydrologic factors triggering a shallow hillslope failure. Bull. Assoc. Eng. Geol. 1988, 25, 349–362. [Google Scholar] [CrossRef]
- Fusco, F.; Allocca, V.; De Vita, P. Hydro-geomorphological modeling of ash-fall pyroclastic soils for debris flow initiation and groundwater recharge in Campania (southern Italy). Catena 2017, 158, 235–249. [Google Scholar] [CrossRef]
- De Vita, P.; Napolitano, E.; Godt, J.W.; Baum, R. Deterministic estimation of hydrological thresholds for shallow landslide initiation and slope stability models: case study from the Somma-Vesuvius area of southern Italy. Landslides 2013, 10, 713–728. [Google Scholar] [CrossRef]
- Napolitano, E.; Fusco, F.; Baum, R.L.; Godt, J.W.; De Vita, P. Effect of antecedent hydrological conditions on rainfall triggering of debris flows in ash-fall pyroclastic mantled slopes of Campania (southern Italy). Landslides 2016, 13, 967–983. [Google Scholar] [CrossRef]
- Helsel, D.R.; Hirsch, R.M. Statistical Methods in Water Resources; Techniques of Water-Resources; Investigations of the United States Geological Survey: Reston, VA, USA, 2002; Volume 4, p. 510.
- Tufano, R.; Fusco, F.; De Vita, P. Spatial modeling of ash-fall pyroclastic deposits for the assessment of rainfall thresholds triggering debris flows in the Sarno and Lattari mountains (Campania, southern Italy). Rend. Online Soc. Geol. Ital. 2016, 41, 210–213. [Google Scholar] [CrossRef]
- De Vita, P.; Fusco, F.; Napolitano, E.; Tufano, R. Physically-Based Models for Estimating Rainfall Triggering Debris Flows in Campania (southern Italy). In Advancing Culture of Living with Landslides, Diversity of Landslide Forms; Mikoš, M., Arbanas, Z., Yin, Y., Sassa, K., Eds.; Springer International Publishing AG: Basel, Switzerland, 2017; Volume 4, pp. 289–297. [Google Scholar] [CrossRef]
- De Riso, R.; Budetta, P.; Calcaterra, D.; Santo, A. Le colate rapide in terreni piroclastici del territorio campano. In Proceedings of the Atti della conferenza su Previsione e prevenzione di movimenti franosi rapidi, Trento, Italy, 17–19 June 1999; Peila, D., Ed.; GEAM. pp. 133–150. [Google Scholar]
- Hsieh, P.A.; Wingle, W.; Healy, R.W. VS2DI—A graphical software package for simulating fluid flow and solute or energy transport in variably saturated porous media. In Water-Resources Investigations Report 99-4130; U.S. Geological Survey: Reston, WV, USA, 2000. [Google Scholar] [CrossRef]
- Lu, N.; Likos, W.J. Unsaturated Soil Mechanics; Wiley: Hoboken, NJ, USA, 2004; p. 556. ISBN 978-0-471-44731-3. [Google Scholar]
- Papa, M.N.; Medina, V.; Ciervo, E.; Bateman, A. Derivation of critical rainfall thresholds for shallow landslides as a tool for debris flow early warning systems. Hydrol. Earth Syst. Sci. 2013, 17, 4095–4107. [Google Scholar] [CrossRef] [Green Version]
- Sorbino, G. Numerical modeling of soil suction measurements in pyroclastic soils. In International Symposium “Advanced Experimental Unsaturated Soil Mechanics”; Cui, Y.J., Tarantino, A., Romero, E., Eds.; Taylor and Francis Group: London, UK, 2005; pp. 541–547. [Google Scholar]
- Urciuoli, G.; Pirone, M.; Comegna, L.; Picarelli, L. Long-term investigations on the pore pressure regime in saturated and unsaturated sloping soils. Eng. Geol. 2016, 212, 98–119. [Google Scholar] [CrossRef]
- Del Prete, M.; Guadagno, F.M.; Hawkins, A.B. Preliminary report on the landslides of 5 May 1998, Campania, southern Italy. Bull. Eng. Geol. Environ. 1998, 57, 113–129. [Google Scholar] [CrossRef]
- Calcaterra, D.; Parise, M.; Palma, B.; Pelella, L. The influence of meteoric events in triggering shallow landslides in pyroclastic deposits of Campania, Italy. In Landslides in Research, Theory and Practice, Proceedings of the 8th International Symposium on Landslides, Cardiff, UK, 26–30 June 2000; Bromhead, E., Dixon, N., Ibsen, M.L., Eds.; Thomas Telford Publishing: London, UK, 2000; pp. 209–214. [Google Scholar]
- De Vita, P.; Piscopo, P. Influences of hydrological and hydrogeological conditions on debris flows in peri-Vesuvian hillslopes. Nat. Hazards Earth Syst. Sci. 2002, 2, 1–9. [Google Scholar] [CrossRef]
- Ebel, B.A.; Loague, K. Rapid simulated hydrologic response within the variably saturated near surface. Hydrol. Process. 2008, 22, 464–471. [Google Scholar] [CrossRef]
- De Vita, P.; Di Maio, R.; Piegari, E. A study of the correlation between electrical resistivity and matric suction for unsaturated ash-fall pyroclastic soils in the Campania region (southern Italy). Environ. Earth Sci. 2012, 67, 787–798. [Google Scholar] [CrossRef] [Green Version]
- Fusco, F.; De Vita, P.; Napolitano, E.; Allocca, V.; Manna, F. Monitoring the soil suction regime of landslide-prone ash-fall pyroclastic deposits covering slopes in the Sarno area (Campania—southern Italy). Rend. Online Soc. Geol. Ital. 2013, 24, 146–148. [Google Scholar]
- Fusco, F.; De Vita, P. Hydrological behavior of ash-fall pyroclastic soil mantled slopes of the Sarno Mountains (Campania-southern Italy). Rend. Online Soc. Geol. Ital. 2015, 35, 148–151. [Google Scholar] [CrossRef]
- Fusco, F.; De Vita, P. Hydrological Monitoring of Ash-Fall Pyroclastic Soil Mantled Slopes in Campania (southern Italy). In Advancing Culture of Living with Landslides, Advances in Landslide Technology; Mikoš, M., Arbanas, Z., Yin, Y., Sassa, K., Eds.; Springer: Cham, Switzerland, 2017; Volume 3, pp. 349–356. [Google Scholar] [CrossRef]
- Cascini, L.; Sorbino, G.; Cuomo, S.; Ferlisi, S. Seasonal effects of rainfall on the shallow pyroclastic deposits of the Campania region (southern Italy). Landslides 2014, 11, 779–792. [Google Scholar] [CrossRef]
- Damiano, E.; Olivares, L.; Picarelli, L. Steep-slope monitoring in unsaturated pyroclastic soils. Eng. Geol. 2012, 137–138, 1–12. [Google Scholar] [CrossRef]
- Greco, R.; Comegna, L.; Damiano, E.; Guida, A.; Olivares, L.; Picarelli, L. Hydrological modeling of a slope covered with shallow pyroclastic deposits from field monitoring data. Hydrol. Earth Syst. Sci. 2013, 17, 4001–4013. [Google Scholar] [CrossRef]
- Comegna, L.; Damiano, E.; Greco, R.; Guida, A.; Olivares, L.; Picarelli, L. Effects of the vegetation on the hydrological behavior of a loose pyroclastic deposit. Procedia Environ. Sci. 2013, 19, 922–931. [Google Scholar] [CrossRef]
- Pagano, L.; Picarelli, L.; Rianna, G.; Urciuoli, G. A simple numerical procedure for timely prediction of precipitation-induced landslides in unsaturated pyroclastic soils. Landslides 2010, 7, 273–289. [Google Scholar] [CrossRef]
- Papa, R.; Pirone, M.; Nicotera, M.V.; Urciuoli, G. Seasonal groundwater regime in an unsaturated pyroclastic slope. Géotechnique 2013, 63, 420–426. [Google Scholar] [CrossRef]
- Comegna, L.; Damiano, E.; Greco, R.; Guida, A.; Olivares, L.; Picarelli, L. Field hydrological monitoring of a sloping shallow pyroclastic deposit. Can. Geotech. J. 2016, 53, 1125–1137. [Google Scholar] [CrossRef] [Green Version]
- Crosta, G.B.; Dal Negro, P. Observations and modeling of soil slip-debris flow initiation processes in pyroclastic deposits: the Sarno 1998 event. Nat. Hazards Earth Syst. Sci. 2003, 3, 53–69. [Google Scholar] [CrossRef]
- Esposito, L.; Guadagno, F.M. Some special geotechnical properties of pumice deposits. Bull. Eng. Geol. Environ. 1998, 57, 41–50. [Google Scholar] [CrossRef]
- Leung, A.K.; Ng, C.W.W. Seasonal movement and groundwater flow mechanism in an unsaturated saprolitic hillslope. Landslides 2013, 10, 455–467. [Google Scholar] [CrossRef]
- Glade, T.; Crozier, M.; Smith, P. Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “antecedent daily rainfall model”. Pure Appl. Geophys. 2000, 157, 1059–1079. [Google Scholar] [CrossRef]
Horizon | Tensiometer | Watermark | MPS-2 | Range Depth (m) |
---|---|---|---|---|
B | 16 | 8 | 3 | 0.0–1.5 |
Bb | 5 | 2 | 1 | 1.8–2.5 |
Bbbasal | 2 | 2 | 1 | 3.5–4.0 |
Parameter | Horizon B | Horizon Bb | Horizon Bbbasal | Horizon C | Bedrock |
---|---|---|---|---|---|
γdry (kN/m3) | 10.22 | 10.33 | 6.83 | 8.42 | - |
γnat (kN/m3) | 12.09 | 11.64 | 10.09 | 10.57 | - |
γsat (kN/m3) | 15.85 | 16.16 | 13.82 | 14.94 | - |
c’ (kPa) | 4.3 | 0.7 | 8.1 | 0.2 | - |
φ’ (°) | 31.5 | 33.5 | 35.1 | 37.0 | - |
θs [-] | 0.500 | 0.560 | 0.590 | 0.630 | 0.030 |
θr [-] | 0.080 | 0.200 | 0.001 | 0.001 | 0.020 |
α [m–1] | 5.600 | 0.730 | 7.200 | 4.200 | 4.310 |
n [-] | 1.570 | 1.320 | 1.110 | 1.430 | 3.100 |
Soil Horizon (USDA) | Percentile 25% < Ksat < Percentile 75% (m/s) | Number of Samples |
---|---|---|
B | 4.82 × 10−5 < Ksat < 1.26 × 10−4 | 18 |
Bb | 6.00 × 10−6 < Ksat < 2.64 × 10−5 | 13 |
Bbbasal | 2.48 × 10−7 < Ksat < 6.84 × 10−6 | 15 |
C | 2.82 × 10−3 < Ksat < 1.26 × 10−2 | 29 |
Soil horizon | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | |
---|---|---|---|---|---|---|---|
B | −0.3 | −0.6 | −0.8 | −0.3 | −0.1 | −0.1 | Max |
Bb | −1.0 | −2.2 | −1.3 | −1.1 | −9.2 | −10.4 | |
Bbbas | −1.8 | −3.6 | −2.0 | −2.8 | −2.0 | −1.6 | |
Whole cover | −0.3 | −0.6 | −0.8 | −0.3 | −0.1 | −0.1 | |
B | −2.2 | −1.6 | −2.2 | −2.4 | −4.0 | −1.0 | Median |
Bb | −2.5 | −2.7 | −4.5 | −2.5 | −14.7 | −14.2 | |
Bbbas | −3.2 | −3.6 | −4.2 | −8.4 | −10.5 | −5.9 | |
Whole cover | −2.3 | −2.1 | −3.4 | −2.5 | −7.6 | −5.8 | |
B | < −20.4 | −11.1 | < −20.4 | −6.7 | −152.2 | −62.8 | Min |
Bb | −9.3 | −20.4 | < −20.4 | −4.4 | −19.2 | −15.1 | |
Bbbas | −8.0 | −3.6 | < −20.4 | < −20.4 | −12.2 | < −20.4 | |
Whole cover | < −20.4 | −20.4 | < −20.4 | < −20.4 | −152.2 | −62.8 |
Winter Antecedent Hydrological Conditions | ||||||
Sarno Mountains | Lattari Mountains | |||||
Slope Angle | 35° | 40° | 45° | 35° | 40° | 45° |
I (mm/h) | Duration to Failure (h) | |||||
2.5 | - | - | 20.2 | - | - | 22.2 |
5 | - | 32.8 | 11.2 | - | - | 11.0 |
10 | - | 13.8 | 6.7 | - | 25.3 | 5.3 |
20 | - | 7.3 | 4.0 | - | 13.5 | 2.7 |
40 | - | 4.8 | 2.3 | - | 8.0 | 1.3 |
Summer Antecedent Hydrological Conditions | ||||||
Sarno Mountains | Lattari Mountains | |||||
Slope Angle | 35° | 40° | 45° | 35° | 40° | 45° |
I (mm/h) | Duration to Failure (h) | |||||
2.5 | - | - | 107.8 | - | - | 74.8 |
5 | - | - | 54.3 | - | - | 35.8 |
10 | - | 66.2 | 27.8 | - | 63.5 | 17.8 |
20 | - | 36.3 | 14.8 | - | 37.2 | 9.2 |
40 | - | 19.2 | 7.8 | - | 31.8 | 4.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Vita, P.; Fusco, F.; Tufano, R.; Cusano, D. Seasonal and Event-Based Hydrological and Slope Stability Modeling of Pyroclastic Fall Deposits Covering Slopes in Campania (Southern Italy). Water 2018, 10, 1140. https://doi.org/10.3390/w10091140
De Vita P, Fusco F, Tufano R, Cusano D. Seasonal and Event-Based Hydrological and Slope Stability Modeling of Pyroclastic Fall Deposits Covering Slopes in Campania (Southern Italy). Water. 2018; 10(9):1140. https://doi.org/10.3390/w10091140
Chicago/Turabian StyleDe Vita, Pantaleone, Francesco Fusco, Rita Tufano, and Delia Cusano. 2018. "Seasonal and Event-Based Hydrological and Slope Stability Modeling of Pyroclastic Fall Deposits Covering Slopes in Campania (Southern Italy)" Water 10, no. 9: 1140. https://doi.org/10.3390/w10091140
APA StyleDe Vita, P., Fusco, F., Tufano, R., & Cusano, D. (2018). Seasonal and Event-Based Hydrological and Slope Stability Modeling of Pyroclastic Fall Deposits Covering Slopes in Campania (Southern Italy). Water, 10(9), 1140. https://doi.org/10.3390/w10091140