Artificial Neural Network and Multiple Linear Regression for Flood Prediction in Mohawk River, New York
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Time Series Decomposition–Kolmogorov–Zurbenko (KZ) Filter
2.4. Multiple Linear Regression (MLR)
or ln(1 + ε(t)) ≈ ε(t)
2.5. Artificial Neural Network (ANN)
2.6. Assessment of Model Performance for MLR and ANN Model
3. Results
3.1. Assessment of the MLR Model
3.2. Assessment of the ANN Model
3.3. Mean Square of Error (MSE) for the MLR and ANN Model
3.4. Total Explanation for the MLR and ANN Model
4. Discussion
4.1. Performance of ANN and MLR on Decomposition Data
4.2. Comparison of MLR and ANN Performance on the Physical Interpretation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Svetlana, D.; Radovan, D.; Ján, D. The economic impact of floods and their importance in different regions of the world with emphasis on Europe. Procedia Econ. Financ. 2015, 34, 649–655. [Google Scholar] [CrossRef]
- Berz, G. Flood disasters: Lessons from the past—Worries for the future. Proc. Inst Civ. Eng.-Water Marit. Eng. 2000, 142, 3–8. [Google Scholar] [CrossRef]
- Jha, A.K.; Bloch, R.; Lamond, J. Cities and Flooding: A Guide to Integrated Urban Flood Risk Management for the 21st Century; The World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Annual Disaster Statistical Review 2016: The Numbers and Trends; Centre for Research on the Epidemiology of Disasters (CRED), Institute of Health and Society (IRSS): Université catholique de Louvain, Brussels, Belgium, 2017; p. 91.
- Arnell, N.W. Climate change and global water resources. Glob. Environ. Chang. 1999, 9, 31–49. [Google Scholar] [CrossRef]
- Arora, V.K.; Boer, G.J. Effects of simulated climate change on the hydrology of major river basins. J. Geophys. Res. Atmos. 2001, 106, 3335–3348. [Google Scholar] [CrossRef] [Green Version]
- Milly, P.C.D.; Wetherald, R.T.; Dunne, K.A.; Delworth, T.L. Increasing risk of great floods in a changing climate. Nature 2002, 415, 514–517. [Google Scholar] [CrossRef] [PubMed]
- Kleinen, T.; Petschel-Held, G. Integrated assessment of changes in flooding probabilities due to climate change. Clim. Chang. 2007, 81, 283–312. [Google Scholar] [CrossRef]
- Damle, C.; Yalcin, A. Flood prediction using Time Series Data Mining. J. Hydrol. 2007, 333, 305–316. [Google Scholar] [CrossRef]
- Pariset, E.; Hausser, R.; Gagnon, A. Formation of Ice Covers and Ice Jams in Rivers. J. Hydraul. Div. 1966, 92, 1–24. [Google Scholar]
- Garver, J.I.; Cockburn, J.M.H. A historical Perspective of Ice Jams on the Lower Mohawk River. In Proceedings of the Mohawk Watershed Symposium, Schenectady, NY, USA, 27 March 2009; pp. 25–29. [Google Scholar]
- Marsellos, A.E.; Garver, J.I.; Cockburn, J.M.H. Flood Map and Volumetric Calculation of the January 25th Ice-jam Flood Using LiDAR and GIS. In Proceedings of the Mohawk Watershed Symposium, Schenectady, NY, USA, 19 March 2010; pp. 23–27. [Google Scholar]
- Foster, J.A.; Marsellos, A.E.; Garver, J.I. Predicting Trigger Level for Ice jam Flooding of the Lower Mohawk River Using LiDAR and GIS. In Proceedings of the Mohawk Symposium, Schenectady, NY, USA, 18 March 2011; pp. 13–15. [Google Scholar]
- Tsakiri, K.G.; Marsellos, A.E.; Zurbenko, I.G. An efficient prediction model for water discharge in Schoharie Creek, NY. J. Climatol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Plate, E.J.; Shahzad, K.M. Uncertainty analysis of multi-model flood forecasts. Water 2015, 7, 6788–6809. [Google Scholar] [CrossRef]
- Lewis, A.; Weaver, E.; Dorward, E.; Marsellos, A.E. Two Methods for Determining the Extent of Flooding During Hurricane Irene in Schenectady, NY. In Proceedings of the Mohawk Watershed Symposium, Schenectady, NY, USA, 18 March 2016; pp. 21–23. [Google Scholar]
- Mahoney, L.; Roscoe, S.L.; Marsellos, A.E. Reconstruction and flood simulation using GIS and Google Earth to Determine the Extent and Damage of the January 14–15th 2018 Ice Jams on the Mohawk River in Schenectady, New York. In Proceedings of the Mohawk Watershed Symposium, Schenectady, NY, USA, 23 March 2018; pp. 39–42. [Google Scholar]
- Yang, W.; Zurbenko, I. Nonstationarity. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 107–115. [Google Scholar] [CrossRef]
- Rao, S.T.; Zurbenko, I.G.; Neagu, R.; Porter, P.S.; Ku, J.Y.; Henry, R.F. Space and time scales in ambient ozone data. Bull. Am. Meteorol. Soc. 1997, 10, 2153–2166. [Google Scholar] [CrossRef]
- Yakowitz, S. Markov flow models and the flood warning problem. Water Resour. Res. 1985, 21, 81–88. [Google Scholar] [CrossRef]
- Moore, R.J.; Jones, D.A.; Black, K.B.; Austin, R.M.; Carrington, D.S.; Tinnion, M.; Akhondi, A. RFFS and HYRAD: Integrated System for Rainfall and River Flow Forecasting in Real-Time and Their Application in Yorkshire; BHS National Meeting: Newcastle upon Tyne, UK, 1994. [Google Scholar]
- Box, G.E.P.; Jenkins, G.M. Time Series Analysis: Forecasting and Control. Available online: http://garfield.library.upenn.edu/classics1989/A1989AV48500001.pdf (accessed on 22 August 2018).
- Elsafi, S.H. Artificial Neural Networks (ANNs) for flood forecasting at Dongola station in River Nile Sudan. Alex. Eng. J. 2014, 53, 655–662. [Google Scholar] [CrossRef]
- Bronstert, A. River flooding in Germany: Influenced By climate change? Phys. Chem. Earth 1995, 20, 445–450. [Google Scholar] [CrossRef]
- Hartmann, H.; Andresky, L. Flooding in the Indus river basin—A spatiotemporal analysis of precipitation records. Glob. Planet. Chang. 2013, 107, 25–35. [Google Scholar] [CrossRef]
- Kotlarski, S.; Hagemann, S.; Krahe, P.; Podzun, R.; Jacob, D. The Elbe river flooding 2002 as seen by an extended regional climate model. J. Hydrol. 2012, 472, 169–183. [Google Scholar] [CrossRef]
- Zurbenko, I.G.; Sowizral, M. Resolution of the destructive effect of noise on linear regression of two time series. Far East J. Theor. Stat. 1999, 3, 139–157. [Google Scholar]
- Tsakiri, K.G.; Zurbenko, I.G. Effect of noise in principal component analysis. J. Stat. Math. 2011, 2, 40. [Google Scholar]
- Zurbenko, I.G. The Spectral Analysis of Time Series; Amsterdam North Holland Series in Statistics and Probability; Elsevier North-Holland: New York, NY, USA, 1986. [Google Scholar]
- Tsakiri, K.; Zurbenko, I.G. Explanation of fluctuations in water use time series. Environ. Ecol Stat. 2013, 20, 399–412. [Google Scholar] [CrossRef]
- Tsakiri, K.G.; Zurbenko, I.G. Prediction of ozone concentrations using atmospheric variables. Air Qual. Atmos. Health 2011, 4, 111–120. [Google Scholar] [CrossRef]
- Eskridge, R.E.; Ku, J.U.; Porter, P.S.; Rao, S.T.; Zurbenko, I. Separating Different Scales of Motion in Time Series of Meteorological Variables. Bull. Am. Meteorol. Soc. 1997, 78, 1473–1483. [Google Scholar] [CrossRef] [Green Version]
- Ward, D. Guidelines for the reporting of different forms of data. Data and Metadata Reporting and Presentation Handbook; OECD Publishing: Paris, France, 2007. [Google Scholar]
- Wikipedia. Kolmogorov-Zurbenko Filters. Available online: http://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Zurbenko_filter (accessed on 2 February 2018).
- Yang, W.; Zurbenko, I. Kolmogorov-Zurbenko filters. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 340–351. [Google Scholar] [CrossRef]
- Close, B.; Zurbenko, I. Kolmogorov-Zurbenko Adaptive Filters. Available online: http://cran.r-project.org/web/packages/kza/index.html (accessed on 22 August 2018).
- Chiari, F.; Delhom, M.; Santucci, J.F.; Filippi, J.B. Prediction of the hydrologic behavior of a watershed using artificial neural networks and geographic information systems. IEEE Syst. Man Cybern. 2000, 1, 382–386. [Google Scholar]
- Campolo, M.; Andreussi, P.; Soldati, A. River flood forecasting with a neural network model. Water Resour. Res. 1999, 35, 1191–1197. [Google Scholar] [CrossRef] [Green Version]
- Xiong, L.; Shamseldin, A.Y.; O’connor, K.M. A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi–Sugeno fuzzy system. J. Hydrol. 2001, 245, 196–217. [Google Scholar] [CrossRef]
- Smith, J.; Eli, R.N. Neural-network models of rainfall-runoff process. J. Water Resour. Plann. Manag. 1995, 121, 499–508. [Google Scholar] [CrossRef]
- Lee, S.Y.; Chung, S.K.; Oh, J.K. Demand forecasting based infrastructure asset management. KSCE J. Civ. Eng. 2004, 8, 165–172. [Google Scholar] [CrossRef]
- Kim, T.W. Monthly precipitation forecasting using rescaling errors. KSCE J. Civ. Eng. 2006, 10, 137–143. [Google Scholar] [CrossRef]
- Şahin, M.; Kaya, Y.; Uyar, M. Comparison of ANN and MLR models for estimating solar radiation in Turkey using NOAA/AVHRR data. Adv. Space Res. 2013, 51, 891–904. [Google Scholar] [CrossRef]
- Luxhøj, J.T.; Riis, J.O.; Stensballe, B. A hybrid econometric—Neural network modeling approach for sales forecasting. Int. J. Prod. Econ. 1996, 43, 175–192. [Google Scholar] [CrossRef]
- Theodosiou, M. Disaggregation & aggregation of time series components: A hybrid forecasting approach using generalized regression neural networks and the theta method. Neurocomputing 2011, 74, 896–905. [Google Scholar] [CrossRef]
- Govindoraju, R.S.; Rao, A.R. Artificial Neural Networks in Hydrology. Available online: https://books.google.com.hk/books?hl=zh-TW&lr=&id=5-7qCAAAQBAJ&oi=fnd&pg=PR11&dq=Artificial+neural+networks+in+hydrology&ots=dIdLPN7xl0&sig=aLKmodH9KCSnVjOk0_D2P2rFP4U&redir_esc=y#v=onepage&q=Artificial%20neural%20networks%20in%20hydrology&f=false (accessed on 22 August 2018).
- Kişi, Ö. a combined generalized regression neural network wavelet model for monthly streamflow prediction. KSCE J. Civ. Eng. 2011, 15, 1469–1479. [Google Scholar] [CrossRef]
- Li, Y.X.; Jiang, L.C. Application of ANN algorithm in tree height modeling. Appl. Mech. Mater. 2010, 20, 756–761. [Google Scholar] [CrossRef]
- Gaume, E.; Gosset, R. Over-parameterisation, a major obstacle to the use of artificial neural networks in hydrology? Hydrol. Earth Syst. Sci. 2003, 7, 693–706. [Google Scholar] [CrossRef] [Green Version]
- Imrie, C.E.; Durucan, S.; Korre, A. River flow prediction using artificial neural networks: Generalisation beyond the calibration range. J. Hydrol. 2000, 233, 138–153. [Google Scholar] [CrossRef]
- Mohawk River Watershed Coalition (MRWC). Mohawk River Watershed Management Plan; Department of State: New York, NY, USA, March 2015; p. 131.
- Helsel, D.R.; Hirsch, R.M. Techniques of Water-Resources Investigations of the U. S. Geological Survey Book 4, Hydrologic Analysis and Interpretation, Chapter A3. Statistical Methods in Water Resources. Available online: https://pubs.usgs.gov/twri/twri4a3/pdf/twri4a3-new.pdf (accessed on 22 August 2018).
- Haykin, S. Neural Networks: A comprehensive Foundation. Available online: https://www.amazon.com/Neural-Networks-Comprehensive-Foundation-2nd/dp/0132733501 (accessed on 22 August 2018).
- Iqbal, M. An Introduction to Solar Radiation; Academic Press: Toronto, ON, Canada, 1986; pp. 215–234. [Google Scholar]
- Joint Venture. Joint Venture. Joint Venture of Gannett Flemming and Hazen and Sawyer, prepared for NYCDEP. In Phase 1 Final Report, Catskill Turbidity Control Study; Bureau of Water Supply: Flushing, NY, USA, 2004. [Google Scholar]
- Minocha, V.K. Discussion of “comparative analysis of event-based rainfall-runoff modeling techniques—Deterministic, statistical, and artificial neural networks” by Ashu Jain and S. K. V. Prasad Indurthy. J. Hydrol. Eng. 2004, 9, 550–551. [Google Scholar] [CrossRef]
- Sveinsson, O.G.; Lall, U.; Fortin, V.; Perrault, L.; Gaudet, J.; Zebiak, S.; Kushnir, Y. Forecasting spring reservoir inflows in Churchill Falls basin in Quebec, Canada. J. Hydrol. Eng. 2008, 13, 426–437. [Google Scholar] [CrossRef]
- Magar, R.B.; Jothiprakash, V. Intermittent reservoir daily-inflow prediction using lumped and distributed data multi-linear regression models. J. Earth Syst. Sci. 2011, 120, 1067–1084. [Google Scholar] [CrossRef]
Station | Raw | Long | Seasonal | Short |
---|---|---|---|---|
Multiple Linear | ||||
Regression R2 | ||||
WD1346 | 48.7 | 73.5 | 93.1 | 70.6 |
WD1347 | 47.6 | 73.6 | 92.1 | 68.3 |
WD1500 | 59.0 | 83.3 | 91.2 | 34.1 |
Station | Raw | Long | Seasonal | Short |
---|---|---|---|---|
Artificial Neural | ||||
Network R2 | ||||
WD1346 | 53.4 | 97.6 | 93.1 | 94.9 |
WD1347 | 55.4 | 97.6 | 95.1 | 95.3 |
WD1500 | 60.7 | 98.0 | 94.5 | 94.1 |
Station | Raw | Long | Seasonal | Short | |
---|---|---|---|---|---|
WD1346 | |||||
TR | 0.237 | 0.018 | 0.036 | 0.012 | |
TE | 0.246 | 0.017 | 0.039 | 0.014 | |
MLR | 0.190 | 0.100 | 0.055 | 0.126 | |
WD1347 | |||||
TR | 0.224 | 0.012 | 0.025 | 0.011 | |
TE | 0.234 | 0.012 | 0.030 | 0.015 | |
MLR | 0.214 | 0.110 | 0.063 | 0.141 | |
WD1500 | |||||
TR | 0.196 | 0.010 | 0.027 | 0.008 | |
TE | 0.222 | 0.011 | 0.031 | 0.013 | |
MLR | 0.429 | 0.205 | 0.100 | 0.274 |
Station | Long | Seasonal | Short | Total Explanation |
---|---|---|---|---|
Variance % | ||||
WD1346 | 23.5 | 37.1 | 39.4 | |
WD1347 | 23.4 | 36.1 | 40.5 | |
WD1500 | 53.1 | 16.2 | 30.7 | |
MLR Explanation % | ||||
WD1346 | 17.3 | 34.5 | 27.8 | 79.6 |
WD1347 | 17.2 | 33.2 | 27.7 | 78.1 |
WD1500 | 44.1 | 14.8 | 10.5 | 69.4 |
ANN Explanation % | ||||
WD1346 | 23.0 | 35.4 | 37.4 | 95.8 |
WD1347 | 22.8 | 34.5 | 38.6 | 95.8 |
WD1500 | 51.0 | 15.2 | 28.9 | 95.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsakiri, K.; Marsellos, A.; Kapetanakis, S. Artificial Neural Network and Multiple Linear Regression for Flood Prediction in Mohawk River, New York. Water 2018, 10, 1158. https://doi.org/10.3390/w10091158
Tsakiri K, Marsellos A, Kapetanakis S. Artificial Neural Network and Multiple Linear Regression for Flood Prediction in Mohawk River, New York. Water. 2018; 10(9):1158. https://doi.org/10.3390/w10091158
Chicago/Turabian StyleTsakiri, Katerina, Antonios Marsellos, and Stelios Kapetanakis. 2018. "Artificial Neural Network and Multiple Linear Regression for Flood Prediction in Mohawk River, New York" Water 10, no. 9: 1158. https://doi.org/10.3390/w10091158
APA StyleTsakiri, K., Marsellos, A., & Kapetanakis, S. (2018). Artificial Neural Network and Multiple Linear Regression for Flood Prediction in Mohawk River, New York. Water, 10(9), 1158. https://doi.org/10.3390/w10091158